留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Supercapacitors based on nitrogen-enriched crumpled graphene with a high volumetric capacitance and high-mass-loading per area of the electrode

YU Qiong WANG Yong-zhi MENG Meng SHEN Shu-ling TANG Zhi-hong YANG Jun-he

于琼, 王勇智, 孟梦, 沈淑玲, 唐志红, 杨俊和. 具有高体积比电容的富氮褶皱石墨烯的制备. 新型炭材料(中英文), 2022, 37(3): 575-584. doi: 10.1016/S1872-5805(22)60599-7
引用本文: 于琼, 王勇智, 孟梦, 沈淑玲, 唐志红, 杨俊和. 具有高体积比电容的富氮褶皱石墨烯的制备. 新型炭材料(中英文), 2022, 37(3): 575-584. doi: 10.1016/S1872-5805(22)60599-7
YU Qiong, WANG Yong-zhi, MENG Meng, SHEN Shu-ling, TANG Zhi-hong, YANG Jun-he. Supercapacitors based on nitrogen-enriched crumpled graphene with a high volumetric capacitance and high-mass-loading per area of the electrode. New Carbon Mater., 2022, 37(3): 575-584. doi: 10.1016/S1872-5805(22)60599-7
Citation: YU Qiong, WANG Yong-zhi, MENG Meng, SHEN Shu-ling, TANG Zhi-hong, YANG Jun-he. Supercapacitors based on nitrogen-enriched crumpled graphene with a high volumetric capacitance and high-mass-loading per area of the electrode. New Carbon Mater., 2022, 37(3): 575-584. doi: 10.1016/S1872-5805(22)60599-7

具有高体积比电容的富氮褶皱石墨烯的制备

doi: 10.1016/S1872-5805(22)60599-7
基金项目: 上海市基础重大基金(19JC1410402);上海市教委创新基金(2019-01-07-00-07-E00015);上海市自然科学基金(18ZR1426300和18ZR1426400)和上海市人才发展基金的支持
详细信息
    通讯作者:

    唐志红,副教授. E-mail:zhtang@usst.edu.cn

  • 中图分类号: TQ127.1+1

Supercapacitors based on nitrogen-enriched crumpled graphene with a high volumetric capacitance and high-mass-loading per area of the electrode

More Information
  • 摘要: 目前超级电容器较低的体积容量以及高负载量时缓慢的扩散动力学,阻碍了其能量密度和功率密度的进一步提高。本文利用气溶胶法处理氧化石墨烯和尿素溶液制备了褶皱尿素/氧化石墨烯,最后通过600 °C快速高温分解50 s得到了含氮量高达11.38% 的皱褶石墨烯。将600oC快速热解制备的皱褶石墨烯作为超级电容器电极材料时,体积比电容高达384.0 F cm−3,并且离子可以快速转移,即使在高电流密度(10 A g−1)和高负载量(每个电极 21.00 mg)情况下,样品仍能保持较高的比容量。本文提出样品吡咯、酰亚胺、内酰胺或其他类型的吡啶类氮和高比表面积是提高电容的关键因素,而褶皱结构能够加快离子转移速度。
  • FIG. 1540.  FIG. 1540.

    FIG. 1540.. 

    Figure  1.  (a) Schematic illustration of the preparation of NCG. SEM images of (b) NCG-50, (c) NCG-90, (d) NCG-180 and (e) NCG-600. (f) TEM image of NCG-90. (g) N2 adsorption/desorption isotherms of NCGs.

    Figure  2.  (a) XRD patterns and (b) FTIR spectra of NCGs.

    Figure  3.  N 1s spectra of the NCGs: (a) NCG -50, (b) NCG -90, (c) NCG -180 and (d) NCG -600.

    Figure  4.  The chemical reaction mechanism of GO and urea at 600 °C in the heat shock process.

    Figure  5.  (a) The gravimetric specific capacitances and (b) volumetric specific capacitances of NCGs (NCG -50, NCG-90, NCG -180 and NCG -600) with current densities ranging from 0.1 to 10 A g−1. (c) Cycling stability of NCG-90 at a current density of 5.0 A g−1. (d) GCD curves of the NCG-90 with different mass loadings at a current density of 1.0 A g−1. (e) Digital photograph of thirty-six white light-emitting diodes “USST” powered by four supercapacitor devices connected in series.

  • [1] Yang X D, Li Y L, Zhang P X, et al. Hierarchical hollow carbon spheres: Novel synthesis strategy, pore structure engineering and application for micro-supercapacitor[J]. Carbon,2020,157:70-79. doi: 10.1016/j.carbon.2019.10.008
    [2] Du J, Zhang Y, Wu H X, et al. N-doped hollow mesoporous carbon spheres by improved dissolution-capture for supercapacitor[J]. Carbon,2020,156:523-528. doi: 10.1016/j.carbon.2019.09.091
    [3] Son I S, Oh Y, Yi S H, et al. Facile fabrication of mesoporous carbon from mixed polymer precursor of PVDF and PTFE for high-power supercapacitors[J]. Carbon,2020,159:283-291. doi: 10.1016/j.carbon.2019.12.049
    [4] Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials,2019,34(2):132-139. doi: 10.1016/S1872-5805(19)60006-5
    [5] Liu M J, Wei F, Yang X M, et al. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template[J]. New Carbon Materials,2018,33(4):316-323. doi: 10.1016/S1872-5805(18)60342-7
    [6] Yang Z, Yang Y, Lu C X, et al. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers[J]. New Carbon Materials,2019,34(6):559-568. doi: 10.1016/S1872-5805(19)60031-4
    [7] Zhang H F, Xiao D J, Li Q, et al. Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density[J]. Journal of Energy Chemistry,2018,27(1):195-202. doi: 10.1016/j.jechem.2017.10.034
    [8] Choudhury A, Dey B, Mahapatra S S, et al. Flexible and freestanding supercapacitor based on nanostructured poly (m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities[J]. Nanotechnology,2018,29:165401. doi: 10.1088/1361-6528/aaa7e3
    [9] Ma H Y, Kong D B, Xu Y, et al. Disassembly-reassembly approach to RuO2/graphene composites for ultrahigh volumetric capacitance supercapacitor[J]. Small,2017,13(30):1701026. doi: 10.1002/smll.201701026
    [10] Liu Y, Jiao Y, Zhang Z L, et al. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications[J]. ACS Applied Materials & Interfaces,2014,6:2174-2184.
    [11] Chen M J, Wang J Y, Tang H J, et al. Synthesis of multi-shelled MnO2 hollow microspheres via an anion-adsorption process of hydrothermal intensification[J]. Inorganic Chemistry Frontiers,2016,3:1065-1070. doi: 10.1039/C6QI00083E
    [12] Xia H, Meng Y S, Yuan G L, et al. A symmetric RuO2/RuO2 supercapacitor operating at 1.6 V by using a neutral aqueous electrolyte[J]. Electrochemical and Solid-State Letters,2012,15(4):A60-A63. doi: 10.1149/2.023204esl
    [13] Kim S I, Lee J S, Ahn H J, et al. Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology[J]. ACS Applied Materials & Interfaces,2013,5:1596-1603.
    [14] Li J, Hao H L, Wang J J, et al. 3D Nitrogen-enriched graphene porous graphene hydrogel for high-performance supercapacitor[J]. Materials Science and Engineering,2019,490:022069.
    [15] Gopalsamy K, Yang Q Y, Cai S Y, et al. Wet-spun poly(ionic liquid)-graphene hybrid fibers for high performance all-solid-state flexible supercapacitors[J]. Journal of Energy Chemistry,2019,34:104-110. doi: 10.1016/j.jechem.2018.10.007
    [16] Ji Y J, Deng Y L, Chen F, et al. Ultrathin Co3O4 nanosheets anchored on multi-heteroatom doped porous carbon derived from biowaste for high performance solid-state supercapacitor[J]. Carbon,2020,156:359-369. doi: 10.1016/j.carbon.2019.09.064
    [17] Li Y, Ma W S, Sun J, et al. Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo[J]. Carbon,2020,159:149-160. doi: 10.1016/j.carbon.2019.11.093
    [18] Liu Y, Hao X Q, Wang L K, et al. Facile synthesis of porous carbon materials with extra high nitrogen content for supercapacitor electrodes[J]. New Journal of Chemistry,2019,43:3713-3718. doi: 10.1039/C8NJ05718D
    [19] Xu F, Ding B C, Qiu Y Q, et al. Hollow carbon nanospheres with developed porous structure and retained N doping for facilitated electrochemical energy storage[J]. Langmuir,2019,35:12889-12897. doi: 10.1021/acs.langmuir.8b03973
    [20] Wang J S, Qin F F, Guo Z Y, et al. Oxygen- and nitrogen-enriched honeycomb-like porous carbon from laminaria japonica with excellent supercapacitor performance in aqueous solution[J]. ACS Sustainable Chemistry & Engineering,2019,7:11550-11563.
    [21] Tao Y, Xie X Y, Lv W, et al. Towards ultrahigh volumetric capacitance: graphene derived highly dense but porous carbons for supercapacitors[J]. Scientific Reports,2013,3:2975. doi: 10.1038/srep02975
    [22] Zhang Y, Wen G W, Fan S, et al. Phenolic hydroxyl functionalized partially reduced graphene oxides for symmetric supercapacitors with significantly enhanced electrochemical performance[J]. Journal of Power Sources,2019,435:226799. doi: 10.1016/j.jpowsour.2019.226799
    [23] Xu Y, Tao Y, Zheng X Y, et al. A metal‐free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm−3[J]. Advanced materials,2015,27:8082-8087. doi: 10.1002/adma.201504151
    [24] Fan Z M, Cheng Z J, Feng J Y, et al. Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors[J]. Journal of Materials Chemistry A,2017,A:516689.
    [25] Dong Y, Zhu J Y, Li Q Q, et al. Carbon materials for high mass-loading supercapacitors: Filling the gap between new materials and practical applications[J]. Journal of Materials Chemistry A,2020,8:21930-21946. doi: 10.1039/D0TA08265A
    [26] Mao S, Wen Z H, Bo Z, et al. Hierarchical nanohybrids with porous CNT-networks decorated crumpled graphene balls for supercapacitors[J]. ACS Applied Materials & Interfaces,2014,6:9881-9889.
    [27] Ma Y X, Li X P, Shao W J, et al. Fabrication of 3D porous polyvinyl alcohol/sodium alginate/graphene oxide spherical composites for the adsorption of methylene blue[J]. Journal of nanoscience and nanotechnology,2020,20:2205-2213. doi: 10.1166/jnn.2020.17193
    [28] Mou Z G, Chen X Y, Du Y K, et al. Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea[J]. Applied Surface Science,2011,258:1704-1710. doi: 10.1016/j.apsusc.2011.10.019
    [29] Sun L, Wang L, Tian C G, et al. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage[J]. Royal Society of Chemistry Advances,2012,2:4498-4506.
    [30] Xiao N, Lau D, Shi W H, et al. A simple process to prepare nitrogen-modified few-layer graphene for a supercapacitor electrode[J]. Carbon,2013,57:184-190. doi: 10.1016/j.carbon.2013.01.062
    [31] Jun Y S, Lee E Z, Wang X C, et al. From melamine‐cyanuric acid supramolecular aggregates to carbon nitride hollow spheres[J]. Advanced Functional Materials,2013,23:3661-3667. doi: 10.1002/adfm.201203732
    [32] Lei Z B, Lu L, Zhao X S. The electrocapacitive properties of graphene oxide reduced by urea[J]. Energy & Environmental Science,2012,5:6391-6399.
    [33] Yuan K, Xu Y Z, Uihlein J, et al. Straightforward generation of pillared, microporous graphene frameworks for use in supercapacitors[J]. Advanced Materials,2015,27:6714-6721. doi: 10.1002/adma.201503390
    [34] Sun L, Wang L, Tian C G, et al. Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage[J]. Royal Society of Chemistry Advances,2012,2:4498-4506.
    [35] Xu X, Zhou Y, Yuan K T, et al. Methanol electrocatalytic oxidation on Pt nanoparticles on nitrogen doped graphene prepared by the hydrothermal reaction of graphene oxide with urea[J]. Electrochim Acta,2013,112:587-595. doi: 10.1016/j.electacta.2013.09.038
    [36] Lister M W. Some observations on cyanic acid and cyanates[J]. Canadian Journal of Chemistry,1955,33:426-440. doi: 10.1139/v55-050
  • 20200221-Supporting information.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  105
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 修回日期:  2021-04-10
  • 网络出版日期:  2022-01-05
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回