In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy
-
摘要: 石墨在碳酸酯基电解液中储钠活性很低,因此被认为不合适作为钠离子电池负极材料。而最近的研究表明,在以线性醚为溶剂的钠离子电解液中,石墨具有高的储钠容量和首圈库伦效率。因此,探索这种溶剂依赖型的石墨界面演绎过程具有重要的意义。本研究采用原位原子力显微镜(Atomic force microscopy,AFM)实时观测石墨在碳酸酯基和线性醚基电解液下的界面微观动态过程。结果表明:在线性醚溶剂下,石墨电极界面没有固体电解质界面膜(Solid electrolyte interphase,SEI)形成,且溶剂化钠离子可以在石墨层间进行可逆的插入和脱出,AFM结果从界面角度解释了其具有高初始库伦效率的内在原因。然而在碳酸酯溶剂中,可以观察到石墨电极表面出现明显的沉积物,对应SEI的生长;并且在充电过程中SEI逐渐减少,表明碳酸酯溶剂下形成的SEI不稳定,造成不可逆的容量损失和低库伦效率。此外,石墨表面未出现明显的台阶变化,反映了没有钠离子的脱嵌过程。上述研究结果为石墨负极界面反应动态过程提供了见解,从微观尺度揭示了溶剂依赖的石墨负极储钠行为及其界面反应机理,为高性能钠离子电池体系的设计与发展提供了理论依据。Abstract: Graphite has proved to be inactive for Na+ storage in ester-based electrolytes when used as the anode material. Recent studies have shown the feasibility of a graphite anode for Na+ storage with a large capacity and a high initial Coulombic efficiency (ICE) in linear ether-based electrolytes. Understanding such solvent-dependent electrochemical behavior at the nanometer scale is essential but has remained elusive, especially the direct visualization of the graphite/electrolyte interface. We report the in-situ observation by atomic force microscopy of a working battery that allowed us to monitor and visualize the changes of the graphite/electrolyte interface in both linear ether and ester-based electrolytes. Results indicate that there is no solid electrolyte interphase (SEI) formation in the linear ether-based electrolytes and the co-intercalation is reversible and stable in the following cycles, which are responsible for the relatively high ICE, large capacity and excellent stability. In the ester-based electrolytes, SEI deposition is obvious during the sodiation process, but not in the desodiation process, leading to a serious consumption of the electrolyte, and thus a low ICE and irreversible Na+ storage. Our findings provide insights into the dynamics of changes in the graphite/electrolyte interface and reveal the solvent-dependent Na+ storage at the nanometer scale, paving the way to develop high-performance Na+ batteries.
-
Key words:
- Graphite anode /
- In situ atomic force microscopy /
- Sodium-ion batteries /
- Diglyme
-
Figure 1. Galvanostatic discharge-charge curves of the graphite electrode in (a) carbonate and (b) diglyme electrolytes, at the current density of 100 mA g−1. (c) Long-term cycling performance and Coulombic efficiency of diglyme electrolyte at 100 mA g−1. (d) CV curves in diglyme electrolyte at 0.1 mV s−1.
-
[1] Xu Z L, Yoon G, Park K Y, et al. Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries[J]. Nature Communications,2019,10(1):2598. doi: 10.1038/s41467-019-10551-z [2] Xu X, Xu Y, Xu F, et al. Black BiVO4: size tailored synthesis, rich oxygen vacancies, and sodium storage performance[J]. Journal of Materials Chemistry A,2020,8(4):1636-1645. doi: 10.1039/C9TA13021G [3] Xu F, Qiu Y, Han H, et al. Manipulation of carbon framework from the microporous to nonporous via a mechanical-assisted treatment for structure-oriented energy storage[J]. Carbon,2020,159:140-148. doi: 10.1016/j.carbon.2019.12.005 [4] Yang J Y, Han H J, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries[J]. New Carbon Materials,2020,35(6):630-645. doi: 10.1016/S1872-5805(20)60519-4 [5] Xu F, Han H, Qiu Y, et al. Facile regulation of carbon framework from the microporous to low-porous via molecular crosslinker design and enhanced Na storage[J]. Carbon,2020,167:896-905. doi: 10.1016/j.carbon.2020.05.081 [6] Yoshio M, Wang H, Fukuda K. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material[J]. Angewandte Chemie International Edition,2003,42(35):4203-4206. doi: 10.1002/anie.200351203 [7] Nishi Y. Lithium ion secondary batteries; past 10 years and the future[J]. Journal of Power Sources,2001,100(1):101-106. [8] Ge P, Fouletier M. Electrochemical intercalation of sodium in graphite[J]. Solid State Ionics,1988,28-30:1172-1175. doi: 10.1016/0167-2738(88)90351-7 [9] Nobuhara K, Nakayama H, Nose M, et al. First-principles study of alkali metal-graphite intercalation compounds[J]. Journal of Power Sources,2013,243:585-587. doi: 10.1016/j.jpowsour.2013.06.057 [10] Yoon G, Kim H, Park I, et al. Conditions for reversible Na intercalation in graphite: Theoretical studies on the interplay among guest ions, solvent, and graphite host[J]. Advanced Energy Materials,2017,7(2):1601519. doi: 10.1002/aenm.201601519 [11] Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-10173. doi: 10.1002/anie.201403734 [12] Goktas M, Bolli C, Berg E J, et al. Graphite as cointercalation electrode for sodium-ion batteries: Electrode dynamics and the missing solid electrolyte interphase (SEI)[J]. Advanced Energy Materials,2018,8(16):1702724. doi: 10.1002/aenm.201702724 [13] Kim H, Hong J, Yoon G, et al. Sodium intercalation chemistry in graphite[J]. Energy & Environmental Science,2015,8(10):2963-2969. [14] Zhu Z, Cheng F, Hu Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. Journal of Power Sources,2015,293:626-634. doi: 10.1016/j.jpowsour.2015.05.116 [15] Xu K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews,2014,114(23):11503-11618. doi: 10.1021/cr500003w [16] Zhang J, Wang D W, Lv W, et al. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase[J]. Energy & Environmental Science,2017,10(1):370-376. [17] Liu M, Xing L, Xu K, et al. Deciphering the paradox between the co-intercalation of sodium-solvent into graphite and its irreversible capacity[J]. Energy Storage Materials,2020,26:32-39. doi: 10.1016/j.ensm.2019.12.026 [18] Stevens D A, Dahn J. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of The Electrochemical Society,2001,148(8):A803. doi: 10.1149/1.1379565 [19] Kim H, Hong J, Park Y U, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials,2015,25(4):534-541. doi: 10.1002/adfm.201402984 [20] Liang H J, Hou B H, Li W H, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries[J]. Energy & Environmental Science,2019,12(12):3575-3584. [21] Seidl L, Bucher N, Chu E, et al. Intercalation of solvated Na-ions into graphite[J]. Energy & Environmental Science,2017,10(7):1631-1642. [22] Cohn A P, Share K, Carter R, et al. Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene[J]. Nano Letters,2016,16(1):543-548. doi: 10.1021/acs.nanolett.5b04187 [23] Kajita T, Itoh T. Mixed ether-based solvents provide a long cycle life with high rate capability to graphite anodes for Na-ion batteries[J]. Physical Chemistry Chemical Physics,2018,20(4):2188-2195. doi: 10.1039/C7CP06998G [24] Leifer N, Greenstein M F, Mor A, et al. NMR-detected dynamics of sodium co-intercalation with diglyme solvent molecules in graphite anodes linked to prolonged cycling[J]. The Journal of Physical Chemistry C,2018,122(37):21172-21184. doi: 10.1021/acs.jpcc.8b06089 [25] Liu S, Peng J, Chen L, et al. In-situ STM and AFM studies on electrochemical interfaces in imidazolium-based ionic liquids[J]. Electrochimica Acta,2019,309:11-17. doi: 10.1016/j.electacta.2019.04.066 [26] Esat T, Friedrich N, Tautz F S, et al. A standing molecule as a single-electron field emitter[J]. Nature,2018,558(7711):573-576. doi: 10.1038/s41586-018-0223-y [27] Larson A M, van Baren J, Kintigh J, et al. Lateral standing of the pentacene derivative 5, 6, 7-trithiapentacene-13-one on gold: a combined STM, DFT, and NC-AFM study[J]. The Journal of Physical Chemistry C,2018,122(22):11938-11944. doi: 10.1021/acs.jpcc.8b03633 [28] Vernisse L, Guillermet O, Gourdon A, et al. Interaction between perylene-derivated molecules observed by low temperature scanning tunneling microscopy[J]. Surface Science,2018,669:87-94. doi: 10.1016/j.susc.2017.11.008 [29] Liu X R, Wang L, Wan L J, et al. In situ observation of electrolyte-concentration-dependent solid electrolyte interphase on graphite in dimethyl sulfoxide[J]. ACS Applied Materials & Interfaces,2015,7(18):9573-9580. [30] Wan J, Hao Y, Shi Y, et al. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries[J]. Nature Communications,2019,10(1):3265. doi: 10.1038/s41467-019-11197-7 [31] Gross L, Mohn F, Moll N, et al. Bond-order discrimination by atomic force microscopy[J]. Science,2012,337(6100):1326. doi: 10.1126/science.1225621 [32] Liu X, Wang D, Wan L. Progress of electrode/electrolyte interfacial investigation of Li-ion batteries via in situ scanning probe microscopy[J]. Science Bulletin,2015,60(9):839-849. doi: 10.1007/s11434-015-0763-6 [33] Jandt K D. Atomic force microscopy of biomaterials surfaces and interfaces[J]. Surface Science,2001,491(3):303-332. doi: 10.1016/S0039-6028(01)01296-1 [34] Wang Z, Yang H, Liu Y, et al. Analysis of the stable interphase responsible for the excellent electrochemical performance of graphite electrodes in sodium-ion batteries[J]. Small,2020,16(51):2003268. doi: 10.1002/smll.202003268 [35] Zhou M, Gan H, Yang X, et al. Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte[J]. Journal of Materials Chemistry A,2018,6:1582-1589. doi: 10.1039/C7TA09631C [36] Shakourian-Fard M, Kamath G, Smith K, et al. Trends in Na-ion solvation with alkyl-carbonate electrolytes for sodium-ion batteries: insights from first-principles calculations[J]. The Journal of Physical Chemistry C,2015,119:22747-22759. doi: 10.1021/acs.jpcc.5b04706 [37] Xing L, Zheng X, Schroeder M, et al. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries[J]. Accounts of Chemical Research,2018,51(2):282-289. doi: 10.1021/acs.accounts.7b00474 [38] Xu K. Electrolytes and interphasial chemistry in Li ion devices[J]. Energies,2010,3(1):135-154. doi: 10.3390/en3010135 [39] An S J, Li J, Daniel C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon,2016,105:52-76. doi: 10.1016/j.carbon.2016.04.008 -