留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of the coefficient of thermal expansion and thermal conductivity of graphite

ZHAO Lu TANG Jiang ZHOU Min SHEN Ke

赵露, 唐江, 周敏, 申克. 石墨晶体的热膨胀系数和热导率. 新型炭材料(中英文), 2022, 37(3): 544-555. doi: 10.1016/S1872-5805(22)60603-6
引用本文: 赵露, 唐江, 周敏, 申克. 石墨晶体的热膨胀系数和热导率. 新型炭材料(中英文), 2022, 37(3): 544-555. doi: 10.1016/S1872-5805(22)60603-6
ZHAO Lu, TANG Jiang, ZHOU Min, SHEN Ke. A review of the coefficient of thermal expansion and thermal conductivity of graphite. New Carbon Mater., 2022, 37(3): 544-555. doi: 10.1016/S1872-5805(22)60603-6
Citation: ZHAO Lu, TANG Jiang, ZHOU Min, SHEN Ke. A review of the coefficient of thermal expansion and thermal conductivity of graphite. New Carbon Mater., 2022, 37(3): 544-555. doi: 10.1016/S1872-5805(22)60603-6

石墨晶体的热膨胀系数和热导率

doi: 10.1016/S1872-5805(22)60603-6
基金项目: 国家自然科学基金项目(51872083)
详细信息
    通讯作者:

    申 克,教授. E-mail:shenk@hnu.edu.cn

  • 中图分类号: TQ127.1+1

A review of the coefficient of thermal expansion and thermal conductivity of graphite

Funds: This study was supported by the National Natural Science Foundation of China (51872083)
More Information
  • 摘要: 石墨平面内和平面间的原子间作用力具有显著差异,形成了各向异性的物理性质。其独特的热学性质使石墨材料在电子器件散热、核能等领域具有重要的应用。石墨热膨胀和导热性质一直以来是炭材料领域中的前沿科学问题,其理论和实验研究受到广泛关注。本文综述了石墨晶体热膨胀系数和热导率的研究进展及应用现状,首先介绍了石墨热膨胀系数的理论分析和实验结果,并探讨了热膨胀系数的影响因素;然后总结了石墨热导率的测量和理论计算结果,讨论了石墨中特殊的声子散射机制;最后总结了石墨在热管理领域的应用,并对该领域发展前景进行了展望。
  • FIG. 1537.  FIG. 1537.

    FIG. 1537.. 

    Figure  1.  Schematic diagram of graphite structure[4]. Reprinted with permission.

    Figure  2.  (a) In-plane thermal expansion coefficients of graphite at different temperatures[10] and (b) Out-of-plane thermal expansion coefficient of graphite at different temperatures[10]. Reprinted with permission.

    Figure  3.  (a) Plots of αa against temperature compared with experiment results from Steward[15], (b) Plots of αc against temperature compared with experiment results from Steward, Nelson and Riley, Yates and Harrison[15]. Reprinted with permission.

    Figure  4.  (a) In-plane thermal expansion coefficient of graphite as a function of temperature for graphite (solid line) and graphene from ab initio study. The experiment data for graphite are marked by filled circles and open diamonds[16]. (b) Out-of-plane thermal expansion coefficient of graphite as a function of temperature for graphite (solid line) from ab initio study. The experiment data for graphite are marked by filled circles and open diamonds[16]. Reprinted with permission.

    Figure  5.  Comparison of the observed αa values with the best linear fitting with temperature[10]. Reprinted with permission.

    Figure  6.  Specimen and holder for low-temperature attachment for in situ XRD measurement[18]. Reprinted with permission.

    Figure  7.  (a) Plot of the variation of the a-dimension with temperature[18], (b) Plot of the variation of the coefficient of thermal of expansion perpendicular to the hexagonal axis with temperature: comparison with previous measurement[18]. Reprinted with permission.

    Figure  10.  Temperature-dependent thermal conductivity of graphite: Thermal conductivity in TPRC handbook data[23] (orange open squares) and previous reports by Taylor[24] (olive open triangle) and Nihira et al.[25] (blue open circles). Reprinted with permission.

    Figure  8.  Temperature dependences of the CTEs in the (a) a- and (b) c-directions of CNW1, CNW2 and HOPG[19]. Reprinted with permission.

    Figure  9.  (a) Typical topography of the graphite surface during heating, and (b) successive out-of-plane height profiles of a graphite crystal heated from 25 °C to 225 °C, scanned along the line indicated in (a). (c) Comparison of measured and theoretical CTEs for single-crystal graphite[20]. Reprinted with permission.

    Figure  11.  Thickness-dependent in-plane thermal conductivity of graphite at room temperature: (a) Thickness of several layers[3033] and (b) thickness within the range of several micrometers to bulk graphite[35, 36]. Reprinted with permission.

    Figure  12.  Room-temperature cross-plane phonon MFPs of graphite measured by Fu et al.[49] and Zhang et al.[50]. Reprinted with permission.

    Table  1.   Various results for coefficients in αa and αc.

    A (J mol−1)B (J mol−1)C (deg−2)L (J mol−1)M (J mol−1)N (deg−2)
    1945Riley1.620 × 10−7−1.013 × 10−70−7.70 × 10−71.38 × 10−61.08 × 10−8
    1972Morgan1.677 × 10−7−1.036 × 10−7−8.3 × 10−11−7.93 × 10−71.56 × 10−67.19 × 10−9
    1964Kellett and Richards1.777 × 10−7−1.065 × 10−70
    2005Tsang−5.05 × 10−71.40 × 10−65.15 × 10−9
    下载: 导出CSV
  • [1] Moore A L, Shi L. Emerging challenges and materials for thermal management of electronics[J]. Materials Today,2014,17:163-174. doi: 10.1016/j.mattod.2014.04.003
    [2] Pop E. Energy dissipation and transport in nanoscale devices[J]. Nano Research,2010,3:147-169. doi: 10.1007/s12274-010-1019-z
    [3] Yan Z, Liu G, Khan J M, et al. Graphene quilts for thermal management of high-power GaN transistors[J]. Nature Communications,2012,3:1-8.
    [4] Edwards I, Marsh H, Menendez R. Introduction to Carbon Science [M]. Butterworth-Heinemann, 1989.
    [5] Xu X, Pereira L, Wang Y, et al. Length-dependent thermal conductivity in suspended single-layer graphene[J]. Nature Communications,2014,5:3689. doi: 10.1038/ncomms4689
    [6] Lee S, Broido D, Esfarjani K, et al. Hydrodynamic phonon transport in suspended graphene[J]. Nature Communications,2015,6:6290. doi: 10.1038/ncomms7290
    [7] Cepellotti A, Fugallo G, Paulatto L, et al. Phonon hydrodynamics in two-dimensional materials[J]. Nature Communications,2015,6:6400. doi: 10.1038/ncomms7400
    [8] Feng T, Ruan X. Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons[J]. Physical Review B,2018,97:045202. doi: 10.1103/PhysRevB.97.045202
    [9] Gu X, Fan Z, Bao H, et al. Revisiting phonon-phonon scattering in single-layer graphene[J]. Physical Review B,2019,100:064306. doi: 10.1103/PhysRevB.100.064306
    [10] Nelson J B, Riley D P. The thermal expansion of graphite from 15 °C to 800 °C: Part II. Theoretical[J]. Proceedings of the Physical Society (1926-1948),1945,57(6):486. doi: 10.1088/0959-5309/57/6/304
    [11] Steward E G, Cook B P. X-ray measurement of thermal expansion perpendicular to the layer planes of artificial and natural graphites[J]. Nature,1960,185:78-80.
    [12] Harrison J W. Absolute measurements of the coefficient of thermal expansion of pyrolytic graphite from room temperature to 1200 K and a comparison with current theory[J]. High temperatures-High Pressures,1977,9:211-229.
    [13] Morgan W C. Thermal expansion coefficients of graphite crystals[J]. Carbon,1972,10:73-79. doi: 10.1016/0008-6223(72)90011-5
    [14] Riley D P. The thermal expansion of graphite: part II. Theoretical[J]. Proceedings of the Physical Society (1926-1948),2002,57:486.
    [15] Tsang D K, Marsden B J, Fok S L, et al. Graphite thermal expansion relationship for different temperature ranges[J]. Carbon,2005,43:2902-2906. doi: 10.1016/j.carbon.2005.06.009
    [16] Mounet N, Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[J]. Physical Review B,2005,71:205214. doi: 10.1103/PhysRevB.71.205214
    [17] Boi F S, Liu M, Xia J, et al. Temperature driven anomalous unit-cell c-axis shifts in highly oriented pyrolytic graphite measured at the magic-angle[J]. Carbon,2019,145:690-693. doi: 10.1016/j.carbon.2019.01.066
    [18] Kellett E A, Richards B P. The thermal expansion of graphite within the layer planes[J]. Journal of Nuclear Materials,1964,12:184-192. doi: 10.1016/0022-3115(64)90139-4
    [19] Akikubo K, Kurahashi T, Kawaguchi S, et al. Thermal expansion measurements of nano-graphite using high-temperature X-ray diffraction[J]. Carbon,2020,169:307-311. doi: 10.1016/j.carbon.2020.07.027
    [20] Mag-isa A E, Kim J, Oh C. Measurements of the in-plane coefficient of thermal expansion of freestanding single-crystal natural graphite[J]. Materials Letters,2016,171:312-314. doi: 10.1016/j.matlet.2016.02.110
    [21] Weast Robert C. CRC Handbook of Chemistry and Physics [M]. CRC handbook of chemistry and physics, 1988.
    [22] Ho C Y, Powell R W, Liley P E. Thermal conductivity of the elements[J]. Journal of Physical and Chemical Reference Data,1972,1:279-421. doi: 10.1063/1.3253100
    [23] Touloukian Y S, Powell R W, Ho C Y, et al. (Thermophysical and Electronic Properties Information Analysis Center, 1971).
    [24] Taylor R. The thermal conductivity of pyrolytic graphite[J]. Philosophical Magazine,1966,13:157-166. doi: 10.1080/14786436608211993
    [25] Nihira T, Iwata T. Thermal resistivity changes in electron-irradiated pyrolytic graphite[J]. Japanese Journal of Applied Physics,1975,14:1099. doi: 10.1143/JJAP.14.1099
    [26] Schmidt A J. Massachusetts Institute of Technology [M]. 2008.
    [27] Feser J P, Cahill D G. Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots[J]. Review of Scientific Instruments,2012,83:104901. doi: 10.1063/1.4757863
    [28] Jiang P, Qian X, Yang R. Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach[J]. Review of Scientific Instruments,2017,88:074901. doi: 10.1063/1.4991715
    [29] Qian X, Ding Z, Shin J, et al. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance[J]. Review of Scientific Instruments,2020,91:064903. doi: 10.1063/5.0003770
    [30] Taylor R, Gilchrist K E, Poston, L J. Thermal conductivity of polycrystalline graphite[J]. Carbon,1968,6:537-544. doi: 10.1016/0008-6223(68)90093-6
    [31] Taylor R, Kelly B T, Gilchrist K E. The thermal conductivity of fast neutron irradiated graphite[J]. Journal of Physics and Chemistry of Solids,1969,30:2251-2267. doi: 10.1016/0022-3697(69)90152-8
    [32] Maruyama T, Harayama M. Neutron irradiation effect on the thermal conductivity and dimensional change of graphite materials[J]. Journal of Nuclear Materials,1992,195:44-50. doi: 10.1016/0022-3115(92)90362-O
    [33] Hooker C N, Ubbelohde A R, Young D A. Anisotropy of thermal conductance in near-ideal graphite[J]. Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences,1965,284:17-31.
    [34] Slack G A. Anisotropic thermal conductivity of pyrolytic graphite[J]. Physical Review,1962,127:694-701. doi: 10.1103/PhysRev.127.694
    [35] Issi J, Heremans J, Dresselhaus M S. Electronic and lattice contributions to the thermal conductivity of graphite intercalation compounds[J]. Physical Review B,1983,27:1333. doi: 10.1103/PhysRevB.27.1333
    [36] Boxus J, Poulaert B, Issi J P, et al. Low temperature thermal conductivity of graphite-FeCl3 intercalation compounds[J]. Solid State Communications,1981,38:1117-1119. doi: 10.1016/0038-1098(81)90969-8
    [37] Ghosh S, Bao W, Nika D L, et al. Dimensional crossover of thermal transport in few-layer graphene[J]. Nature materials,2010,9:555-558. doi: 10.1038/nmat2753
    [38] Sadeghi M M, Jo I, Shi L. Phonon-interface scattering in multilayer graphene on an amorphous support[J]. Proceedings of the National Academy of Sciences,2013,110:16321-16326. doi: 10.1073/pnas.1306175110
    [39] Jang W, Chen Z, Bao W, et al. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite[J]. Nano Letters,2010,10:3909-3913. doi: 10.1021/nl101613u
    [40] Seol J H, Jo I, Moore A L, et al. Two-dimensional phonon transport in supported graphene[J]. Science,2010,328:213-216. doi: 10.1126/science.1184014
    [41] Lindsay L, Broido D A, Mingo N. Flexural phonons and thermal transport in graphene[J]. Physical Review B,2010,82:115427. doi: 10.1103/PhysRevB.82.115427
    [42] Machida Y, Matsumoto N, Isono T, et al. Phonon hydrodynamics and ultrahigh-room-temperature thermal conductivity in thin graphite[J]. Science,2020,367:309-312. doi: 10.1126/science.aaz8043
    [43] Wang N, Samani M K, Li H, et al. Tailoring the thermal and mechanical properties of graphene film by structural engineering[J]. Small,2018,14:1801346. doi: 10.1002/smll.201801346
    [44] Murakami M, Nishiki N, Nakamura K, et al. High-quality and highly oriented graphite block from polycondensation polymer films[J]. Carbon,1992,30:255-262. doi: 10.1016/0008-6223(92)90088-E
    [45] Fugallo G, Cepellotti A, Paulatto L, et al. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths[J]. Nano Letters,2014,14:6109-6114. doi: 10.1021/nl502059f
    [46] Wei Z, Yang J, Chen W, et al. Phonon mean free path of graphite along the c-axis[J]. Applied Physics Letters,2014,104:081903. doi: 10.1063/1.4866416
    [47] Harb M, von Korff Schmising C, Enquist H, et al. The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction[J]. Applied Physics Letters,2012,101:233108. doi: 10.1063/1.4769214
    [48] Zheng Q, Braun P V, Cahill D G. Thermal conductivity of graphite thin films grown by low temperature chemical vapor deposition on Ni (111)[J]. Advanced Materials Interfaces,2016,3:1600234. doi: 10.1002/admi.201600234
    [49] Fu Q, Yang J, Chen Y, et al. Experimental evidence of very long intrinsic phonon mean free path along the c-axis of graphite[J]. Applied Physics Letters,2015,106:031905. doi: 10.1063/1.4906348
    [50] Zhang H, Chen X, Jho Y, et al. Temperature-dependent mean free path spectra of thermal phonons along the c-axis of graphite[J]. Nano Letters,2016,16:1643-1649. doi: 10.1021/acs.nanolett.5b04499
    [51] Peng L, Xu Z, Liu Z, et al. Ultrahigh Thermal conductive yet superflexible graphene films[J]. Advanced Materials,2017,29:1700589. doi: 10.1002/adma.201700589
    [52] Wang B, Cunning B V, Kim N Y, et al. Ultrastiff, strong, and highly thermally conductive crystalline graphitic films with mixed stacking order[J]. Advanced Materials,2019,31:1903039. doi: 10.1002/adma.201903039
    [53] Akbari A, Cunning B V, Joshi S R, et al. Highly Ordered and dense thermally conductive graphitic films from a graphene oxide/reduced graphene oxide mixture[J]. Matter,2020,2:1198-1206. doi: 10.1016/j.matt.2020.02.014
    [54] Xin G, Sun H, Hu T, et al. Large-area freestanding graphene paper for superior thermal management[J]. Advanced Materials,2014,26:4521-4526. doi: 10.1002/adma.201400951
    [55] Chen S, Wang Q, Zhang M, et al. Scalable production of thick graphene film for next generation thermal management application[J]. Carbon,2020,167:270-277. doi: 10.1016/j.carbon.2020.06.030
    [56] Renteria J D, Ramirez S, Malekpour H, et al. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature[J]. Advanced Functional Materials,2015,25:4664-4672. doi: 10.1002/adfm.201501429
    [57] Inagaki M, Kaburagi Y, Hishiyama Y. Thermal management material: Graphite[J]. Advanced Engineering Materials,2014,16:494-506. doi: 10.1002/adem.201300418
    [58] Shen B, Zhai W, Zheng W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials,2014,24:4542-4548. doi: 10.1002/adfm.201400079
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  2028
  • HTML全文浏览量:  1179
  • PDF下载量:  260
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-11
  • 修回日期:  2022-01-24
  • 网络出版日期:  2022-03-04
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回