孙兵, 唐文, 向辉, 徐文莉, 丛野, 袁观明, 朱辉, 张琴, 李轩科. 三明治状多孔石墨烯基纳米片用于高性能电容器[J]. 新型炭材料, 2022, 37(3): 564-574. DOI: 10.1016/S1872-5805(22)60604-8
引用本文: 孙兵, 唐文, 向辉, 徐文莉, 丛野, 袁观明, 朱辉, 张琴, 李轩科. 三明治状多孔石墨烯基纳米片用于高性能电容器[J]. 新型炭材料, 2022, 37(3): 564-574. DOI: 10.1016/S1872-5805(22)60604-8
SUN Bing, TANG Wen, XIANG Hui, XU Wen-li, CONG Ye, YUAN Guan-ming, ZHU Hui, ZHANG Qin, LI Xuan-ke. Improving electron and ion transport by constructing 3D graphene nanosheets sandwiched between porous carbon nanolayers produced from resorcinol-formaldehyde resin for high-performance supercapacitor electrodes[J]. New Carbon Mater., 2022, 37(3): 564-574. DOI: 10.1016/S1872-5805(22)60604-8
Citation: SUN Bing, TANG Wen, XIANG Hui, XU Wen-li, CONG Ye, YUAN Guan-ming, ZHU Hui, ZHANG Qin, LI Xuan-ke. Improving electron and ion transport by constructing 3D graphene nanosheets sandwiched between porous carbon nanolayers produced from resorcinol-formaldehyde resin for high-performance supercapacitor electrodes[J]. New Carbon Mater., 2022, 37(3): 564-574. DOI: 10.1016/S1872-5805(22)60604-8

三明治状多孔石墨烯基纳米片用于高性能电容器

Improving electron and ion transport by constructing 3D graphene nanosheets sandwiched between porous carbon nanolayers produced from resorcinol-formaldehyde resin for high-performance supercapacitor electrodes

  • 摘要: 理想的电极结构应由具有较短传输距离的三维互穿电子和离子通道组成。本文通过在石墨烯表面构建厚度可调的间苯二酚-甲醛树脂碳,制备石墨烯纳米片三明治状多孔石墨烯基电极,并通过化学活化进一步提高树脂碳孔隙率。三维交联结构为离子提供丰富的输运通道,同时缩短离子扩散路径。此外,石墨烯网络增强电导率,促进电子传输。基于其结构特点,具有较薄树脂碳层的三明治状多孔石墨烯基纳米片电极在电流密度为0.2 A g−1的情况下,其比电容最高可达324 F g−1。与初始电容相比,在5 A g−1的大电流密度下,经过8000次充放电后,仍具有99%的容量保持率,具有良好的循环稳定性。研究结构揭示了其结构与电化学性能之间的关系,为开发高电子和离子输运效率的电极材料提供了有效策略。

     

    Abstract: An ideal supercapacitor electrode should contain three-dimensional (3D) interpenetrating electron and ion pathways with a short transport distance. Graphene-based carbon materials offer new and fascinating opportunities for high performance supercapacitor electrodes due to their excellent planar conductivity and large surface area. 3D graphene nanosheets coated with carbon nanolayers of controllable thickness from resorcinol-formaldehyde (RF) resin are constructed and activated by KOH to develop pores. Such a sandwich structure provides abundant transport channels for ions with short paths. The porous carbon nanolayers accelerate ion transport, while the graphene networks improve the conductivity, boosting electron transport. As expected, the prepared porous carbon has a high surface area of 690 m2 g−1 and a high specific capacitance of up to 324 F g−1 in a 6 mol L−1 KOH aqueous electrolyte at a current density of 0.2 A g−1. More than 99% of the capacitance is retained after 8000 charge–discharge cycles at a high current density of 5 A g−1, indicating good cycling stability. This research provides an effective strategy for the development of outstanding electrode materials for the enhanced transport of both electrons and ions.

     

/

返回文章
返回