留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of polymer-derived carbon molecular sieve membranes for gas separation

LI Hao-jie LIU Yao-dong

李浩杰, 刘耀东. 面向气体分离的聚合物衍生碳分子筛膜研究进展. 新型炭材料(中英文), 2022, 37(3): 484-507. doi: 10.1016/S1872-5805(22)60613-9
引用本文: 李浩杰, 刘耀东. 面向气体分离的聚合物衍生碳分子筛膜研究进展. 新型炭材料(中英文), 2022, 37(3): 484-507. doi: 10.1016/S1872-5805(22)60613-9
LI Hao-jie, LIU Yao-dong. A review of polymer-derived carbon molecular sieve membranes for gas separation. New Carbon Mater., 2022, 37(3): 484-507. doi: 10.1016/S1872-5805(22)60613-9
Citation: LI Hao-jie, LIU Yao-dong. A review of polymer-derived carbon molecular sieve membranes for gas separation. New Carbon Mater., 2022, 37(3): 484-507. doi: 10.1016/S1872-5805(22)60613-9

面向气体分离的聚合物衍生碳分子筛膜研究进展

doi: 10.1016/S1872-5805(22)60613-9
详细信息
    通讯作者:

    刘耀东,研究员. E-mail:liuyd@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

A review of polymer-derived carbon molecular sieve membranes for gas separation

Funds: The project was supported by National Natural Science Foundation of China (U21A2096, 52173090)
More Information
  • 摘要: 相比较于传统的气体纯化和分离工艺,膜分离技术具有显著的经济和环境优势。与聚合物膜相比,碳分子筛膜具有更高的气体渗透性和选择性、化学耐受性和更好的热稳定性,受到了研究工作者和制备厂商越来越多的关注。碳分子筛膜通常由聚合物前驱体薄膜通过热解和炭化制备,聚合物前驱体主要包括聚酰亚胺、树脂、纤维素和聚醚酰亚胺等。本文分类总结和讨论了不同化学结构前驱体制备碳分子筛膜的工艺和气体分离性能。前驱体的化学结构和膜物理结构均可显著影响其碳分子筛膜的结构和气体分离性能。在过去的几十年里,碳分子筛膜的气体分离性能得到了显著改善,并可能在不久的将来实现其商业应用。研究者可以通过本文了解碳分子筛膜的当前进展,推动碳分子筛膜制备的发展,拓展其应用领域。
  • FIG. 1534.  FIG. 1534.

    FIG. 1534.. 

    Figure  1.  Possible scheme of the structural transformation and pore formation from polymer to carbon[5]. (Reprinted with permission)

    Figure  2.  Scheme of main mechanisms for gas transport through carbon membranes.

    Figure  3.  Relationship of CO2 permeability and precursor FFV for PI-based CMSMs, the final thermal treatment temperatures are noted by different colored symbols.

    Figure  4.  (a) Chemical structures and optimized local conformations of single PI chain with different configurations[20]; (b) Chemical structure of PABZ-6FDA-PI and gas permeability and selectivity of H2/CH4 of the resulting CMSMs[21]; (c) Gas separation properties of aBPDA and sBPDA containing PI-based CMSMs for CO2/CH4[22]. (Reprinted with permission)

    Figure  5.  (a) Synthesis procedure of mixed CMSM; (b) SEM images of zeolite 5A; (c) cross-sectional SEM morphologies of the mixed CMSMs[33]. (Reprinted with permission)

    Figure  6.  (a) Conceptual model for adsorptive structure evolution in PFA-derived CMS[67]; (b) Gas permeance of the CMS/CNT membrane carbonized at 500 °C; (c) Ideal selectivities (blue bars) of the CMS/CNT membrane carbonized at 500 °C[75]; (d) Chemical structure of PFA and solidification cross-linking stage catalyzed by oxalic acid and iodine; (e) Effects of PFA chemical structure and pyrolysis temperature on their interlayer spacing d002[76]. (Reprinted with permission)

    Figure  7.  (a) CO2/CH4 separation teasted with a 10 mol% CO2-90 mol% CH4 mixed gas under different feed pressures at 60 °C[88]; (b) Single-gas separation performacne of CHFM-850 as a function of gas kinetic diameter at 130 °C and 2 MPa[94]; (c) Aging of carbon membranes under different environments and effect of electrical regeneration on N2 permeability[97]; (d) Relative change in permeability of N2, CO2, O2 and CH4 when CHFM are exposed to high H2S concentration[95]; (e) Mixed gas dynamic durability testing (50 mol% H2/50 mol% CO2) of CHFM-700 under dry and humidified conditions at 1 MPa and 90 °C[94]. (Reprinted with permission)

    Figure  8.  Performance of PEI-derived CMS membranes with different preparation/modification methods for (a) H2/CH4, and (b) CO2/CH4 separation[99-101,105,112-115]. (Reprinted with permission)

    Figure  9.  (a) Chemical structure of CTPI and MTPI and pore structure scheme of CMSMs derived from two precursors[116]; (b) Change of ultramicorpores by introdudtion of H2 during pyrolysis, (c) Permeability of p-xylene and permselectivity of p-xylene/o-xylene as H2 concentration[117]; (d) Aging mechanism scheme of PIM-1 based CMSMs and mixed CMSMs doping MOP-18 after 550 ℃ carbonization[118]; (e) Scheme of structural evolution about SBFDA-DMN; (f) CO2/CH4 Separation performance of the SBFDA-DMN polyimide and its heat-treated CMSMs[119]. (Reprinted with permission)

    Figure  10.  (a) Model of carbonaceous structure formed form the PEI pyrolysis; (b-c) Crystalline graphite-like local structures[150]; (d-f) Pore models and total selectivity with temperature for different pore sizes and each defect type at 100 kPa, respectively[151].(Reprinted with permission)

    Figure  11.  Reported gas separation performances of (a) CO2/N2 and (b) CO2/CH4 of various CMSMs.

    Table  1.   Gas separation performances of PI-based CMSMs.

    PolymerT (°C)Permeability (Barrer)SelectivityRef.
    H2CO2H2/N2H2/CH4CO2/N2CO2/CH4
    BTDA–m-PDA 600 840 70 [23]
    BTDA–2,4-DAT 600 925 54
    BTDA–m-TMPD 600 1017 48
    BTDA-DAI 550 1923 15 21 [34]
    ODPA-DAI 550 1321 15 18
    BPDA-DAI 550 1564 14 19
    6FDA-DAI 550 4800 25 28
    Matrimid 550 1049 17 62 [7]
    6FDA/BPDA-DAM 550 7170 35 29
    TB-PI 550 14600 16050 19 31 21 34 [24]
    ODPA-FDA 650 5379 27.7 [25]
    MAT-FDA 650 1592 28.0
    PPD-PMDA 700 366 241 73 45 [20]
    ODA-PMDA 700 466 331 67 155 47 110
    BAPP-PMDA 700 1182 1392 21 41 25 48
    BDAF-PMDA 700 1673 3135 12 12 22 23
    PABZ-6FDA 550 9495 5915 56 96 35 60 [21]
    600 8845 3706 89 148 37 62
    700 2312 525 199 475 45 108
    6FDA2∶sBPDA1∶aBPDA0/DAM3 550 10195 40 [22]
    6FDA2∶sBPDA0.5∶aBPDA0.5/DAM3 550 13284 33
    6FDA/DETDA 550 2779 31 46 [27]
    6FDA∶BPDA(1∶1)/DETDA 550 4663 20 24
    6FDA/DETDA∶DABA (3∶2) 550 21740 25 30
    6FDA/1,5-ND∶ODA (1∶1) 550 9791 29 45
    6FDA-6F∶DABA (1∶1) - 576 7175 2609 125 46 [30]
    Zn 576 7078 2284 170 55
    Binaphthol-6FDA-naphthol 550 2674 37 [32]
    Binaphthol-6FDA- acetyl 550 3332 32
    P84 - 800 1227 (GPU) 396 [35]
    7% NCC 800 1406 (GPU) 430
    7% MCC 800 1341 (GPU) 418
    9% PVP 800 1274 (GPU) 402
    6FDA-DAM∶DABA (3∶2) - 600 3420 1659 53 54 25.5 26.3 [36]
    10% CA 600 5310 2388 42 42 25.3 25.7
    6FDA-DAM∶DABA (3∶2) 20% LPSQ 550 3789 50 [37]
    - 550 2465 56
    P84 10 % ZIF-108 600 125 25 219 130 [38]
    - 600 26 5 125 79
    下载: 导出CSV

    Table  2.   Gas separation performances of PR- and PFA-based CMSMs.

    Polymer Temperature (℃)Permeability (10−10 mol m−2 s−1 Pa−1) SelectivityRef.
    H2CO2O2 O2/N2H2/N2H2/CH4CO2/N2CO2/CH4
    PR 700 46 (GPU) 13 10 37 85 [54]
    Sulfonated PR 500 1950 (GPU) 800 240 5 42 65 17 27 [57]
    45% sulfonated-PR/PR 500 1020 (GPU) 330 68 22 [56]
    PR 780 270 9 10 [49]
    PR 800 183 0.7 [48]
    PR 11% boehmite 500 1400 534 85 7 117 45 [58]
    550 1450 30 15 725 [58]
    600 189
    4% 550 1148 (Barrer) 153 5 35 [59]
    6.7% 550 1499 (Barrer) 256 4 26
    9.6% 550 2017 (Barrer) 284 3 24
    PR 500 548 (Barrer) 483 222 196 [59]
    550 503 (Barrer) 223 590 261
    PR 4% boehmite 550 650 (Barrer) 90 5 35 [60]
    0.2% Ag 550 509 (Barrer) 156 7 22 [61]
    PR 0% NaA-zeolite 600 58 170 48 4 5 28 [62]
    1% 600 25 39 9 6 18 28
    2% 600 4 13 1 15 44 159
    5% 600 9 20 4 8 18 40
    PR 0% NaA-zeolite 600 92 33 [63]
    1% 600 3390 28
    2% 600 5680 8
    PFA /Al2O3 600 1040 590 650 1 2 1 [77]
    /2H- Al2O3 600 490 240 140 3 10 5
    /2B- Al2O3 600 350 100 75 13 58 16
    PFA - 600 99 50 41 69 20 34 [78]
    zeolite 600 1002 572 36 63 20 36
    PFA - 600 6 23 32 [79]
    silica 600 166 10 6 92
    PFA-OH 600 100 200 [76]
    PFA-I 600 200 100
    PFA 600 68 6 272 25 [80]
    700 55 5 347 31
    800 17 2 412 53
    900 9 1 465 59
    PFA 600 100 125 [81]
    PFA 0% zeolite-T 600 778 621 17 36 14 29 [82]
    1% 600 256 253 24 52 24 52
    2% 600 88 83 55 103 52 97
    3% 600 97 93 54 94 52 89
    PFA 0% Pd 700 410 100 45 100 11 24 [82]
    0.05% 700 1440 120 225 240 19 20
    0.1% 700 1900 130 275 317 19 22
    0.2% 700 1800 120 286 353 19 24
    0.4% 700 1770 110 295 377 18 23
    PFA/CNT/AAO 500 200 141 264 [75]
    600 456 21 11 225 700
    下载: 导出CSV

    Table  3.   Gas separation performances of cellulose-based CMSMs.

    PolymerT (℃)Permeability (Barrer)SelectivityRef.
    H2CO2O2H2/N2H2/CO2H2/CH4CO2/N2CO2/CH4
    Cellulose - 550 940 190 54 223 204 45 41 [86]
    5% Fe2O3 550 280 110 30 34 70 13 28
    1.8% Fe(NO3)2 550 1000 310 86 122 476 38 148
    3.8% AgNO3 550 1500 180 53 294 1071 35 129
    4% Cu(NO3)2 550 1100 81 25 478 1667 35 123
    Cellulose (CHFMs) at 130 ℃ 550 1400 11 [87]
    700 773 50
    850 445 829 84 5706
    Cellulose (CHFMs) Drying at RT 900 100 [88]
    80 ℃ 400 188
    140 ℃ 100 917
    Cellulose 550 206 13 1288 16 84 [89]
    600 121 4 1344 29 46
    Cellulose 500 19 8 1 316 137 [89]
    550 33 13 1 457 3259 186 1303
    600 25 3 1
    下载: 导出CSV

    Table  4.   Gas separation performances of PEI-based CMSMs.

    PolymerT (℃)Permeability (Barrer)SelectivityRef.
    H2CO2O2O2/N2H2/N2H2/CH4CO2/N2CO2/CH4
    PEI/Al2O3 600 280 10 [98]
    600 1100 205 138 26 [99]
    PEI/TiO2/Al2O3 600 601 73 17 9 315 726 38 88 [100]
    600 669 102 510 78 [101]
    600 601 73 726 88
    600 479 63 333 47
    600 1-7 (GPU) 47-97 [102]
    600 1-45 (GPU) 19-56
    600 17-57 (GPU) 36-65
    PEI - 500 53 11 4 18 [103]
    PVP 500 64 21 5 14
    CNT 500 1463 724 24 49
    PEI PVP 550 2.6 12 22 [104]
    650 1.7 42 55
    800 0.7 35 69
    PEI 650 2.2 (GPU) 10 12 [14]
    650 1.7 (GPU) 21 24
    650 1.7 (GPU) 42 55
    650 1.0 (GPU) 26 52
    650 1.9 (GPU) 12 15
    PEI - 600 255 200 18 25 14 19 [105]
    PPO 600 812 513 136 136 86 86
    PEI - 650 285 200 70 6 24 17 [106]
    zeolite 650 264 31 13 4 86 10
    下载: 导出CSV

    Table  5.   Gas separation performances of PIM-based CMSMs.

    PolymerT (℃)Permeability (Barrer) SelectivityRef.
    H2CO2 H2/N2H2/CH4CO2/N2CO2/CH4
    PIM-6FDA-OH 530 2860 4110 14 20 [123]
    600 5248 5040 30 38
    800 2177 556 363 93
    PIM-6FDA-OH 800 512 88 [124]
    800 471 59
    SBFDA-DMN 550 1500 21 [119]
    600 2853 37
    700 236 41
    CTPI 550 6444 4633 54 54 39 39 [116]
    MTPI 550 10601 9878 36 48 34 45
    PIM-1/Poly(dimethysiloxane) 500 800 1000 <30 30 [128]
    550 1000 1050 20 35
    600 600 800 25 30
    PIM-1 550 3297 52 [118]
    Aged 6 days 1902 70
    PIM-1 40%MOP-18 550 4167 19
    Aged 6days 4187 21
    C2H4 C3H6 C2H4/C2H6 C3H6/C3H8
    PIM-6FDA-OH 600 70 7 [129]
    800 17
    PIM-6FDA-OH 600 45 33 [130]
    PIM-6FDA 500 328 2 [125]
    600 77 4
    800 3 25
    PIM-1 Boron 700 14 10 [126]
    PIM-1 600 44 6 [127]
    800 1 13
    PIM-1 p-xylene (10−10 mol m−2 s−1 Pa−1) p-/o-xylene
    550 3 27.5 [131]
    PIM-1 0%H2 550 1.4 1.4 [117]
    4%H2 550 52.3 8.9
    下载: 导出CSV
  • [1] Pinnau I, Freeman B D. Formation and Modification of Polymeric Membranes: Overview[M]. Membrane Formation and Modification. Washington: American Chemical Society, 1999, 1-22.
    [2] Koresh J E, Soffer A. Mechanism of permeation through molecular-sieve carbon membranev[J]. Journal of the Chemical Society, Faraday Transactions,1986,82:2057-2063. doi: 10.1039/f19868202057
    [3] Koresh J. Study of molecular sieve carbons: the langmuir modelin ultramicroporous adsorbents[J]. Journal of Colloid and Interface Science,1982,88(2):398-406. doi: 10.1016/0021-9797(82)90268-5
    [4] Koresh J, Soffe A. Study of molecular sieve carbons part 1.-pore structure, gradual pore opening and mechanism of molecular sieving[J]. Journal of the Chemical Society, Faraday Transactions,1980,76:2457-2471. doi: 10.1039/f19807602457
    [5] Adams J S, Itta A K, Zhang C, et al. New insights into structural evolution in carbon molecular sieve membranes during pyrolysis[J]. Carbon,2019,141:238-246. doi: 10.1016/j.carbon.2018.09.039
    [6] Hamm J B S, Ambrosi A, Griebeler J G, et al. Recent advances in the development of supported carbon membranes for gas separation[J]. International Journal of Hydrogen Energy,2017,42(39):24830-24845. doi: 10.1016/j.ijhydene.2017.08.071
    [7] Kiyono M, Williams P J, Koros W J. Effect of polymer precursors on carbon molecular sieve structure and separation performance properties[J]. Carbon,2010,48(15):4432-4441. doi: 10.1016/j.carbon.2010.08.002
    [8] Rungta M, Xu L, Koros W J. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation[J]. Carbon,2012,50(4):1488-1502. doi: 10.1016/j.carbon.2011.11.019
    [9] Kiyono M, Williams P J, Koros W J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes[J]. Journal of Membrane Science,2010,359(1-2):2-10. doi: 10.1016/j.memsci.2009.10.019
    [10] Ismail N H, Salleh W N W, Sazali N, et al. Disk supported carbon membrane via spray coating method: Effect of carbonization temperature and atmosphere[J]. Separation and Purification Technology,2018,195:295-304. doi: 10.1016/j.seppur.2017.12.032
    [11] Sazali N, Salleh W N W, Ismail A F, et al. Impact of stabilization environment and heating rates on P84 co-polyimide/nanocrystaline cellulose carbon membrane for hydrogen enrichment[J]. International Journal of Hydrogen Energy,2019,44(37):20924-20932. doi: 10.1016/j.ijhydene.2018.06.039
    [12] Kamath M G, Fu S, Itta A K, et al. 6FDA-DETDA: DABE polyimide-derived carbon molecular sieve hollow fiber membranes: Circumventing unusual aging phenomena[J]. Journal of Membrane Science,2018,546:197-205. doi: 10.1016/j.memsci.2017.10.020
    [13] Kamath M G, Itta A K, Hays S S, et al. Pyrolysis end-doping to optimize transport properties of carbon molecular sieve hHollow fiber membranes[J]. Industrial & Engineering Chemistry Research,2020,59(30):13755-13761.
    [14] Wan Salleh W N, Ismail A F. Effect of stabilization temperature on gas permeation properties of carbon hollow fiber membrane[J]. Journal of Applied Polymer Science,2013,127(4):2840-2846. doi: 10.1002/app.37621
    [15] Suda H, Harayav K. Molecular sieving effect of carbonized kapton polyimide membrane[J]. Journal of the Chemical Society, Chemical Communications,1995:1179-1180.
    [16] Jones C w, Koros W j. Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors[J]. Carbon,1994,32:1419-1425. doi: 10.1016/0008-6223(94)90135-X
    [17] Sulub-Sulub R, Loría-Bastarrachea M I, Vázquez-Torres H, et al. Highly permeable polyimide membranes with a structural pyrene containing tert-butyl groups: Synthesis, characterization and gas transport[J]. Journal of Membrane Science,2018,563:134-141. doi: 10.1016/j.memsci.2018.05.054
    [18] Jia M, Zhou M, Li Y, et al. Construction of semi-fluorinated polyimides with perfluorocyclobutyl aryl ether-based side chains[J]. Polymer Chemistry,2018,9(7):920-930. doi: 10.1039/C8PY00004B
    [19] Xu Y, Chen C, Li J. Experimental study on physical properties and pervaporation performances of polyimide membranes[J]. Chemical Engineering Science,2007,62(9):2466-2473. doi: 10.1016/j.ces.2007.01.019
    [20] Hou M, Qi W, Li L, et al. Carbon molecular sieve membrane with tunable microstructure for CO2 separation: Effect of multiscale structures of polyimide precursors[J]. Journal of Membrane Science,2021:635.
    [21] Liang J, Wang Z, Huang M, et al. Effects on carbon molecular sieve membrane properties for a precursor polyimide with simultaneous flatness and contortion in the repeat unit[J]. ChemSusChem,2020,13(20):5531-5538. doi: 10.1002/cssc.202001572
    [22] Qiu W, Li F S, Fu S, et al. Isomer-tailored carbon molecular sieve membranes with high gas separation performance[J]. ChemSusChem,2020,13(19):5318-5328. doi: 10.1002/cssc.202001567
    [23] Park H. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes[J]. Journal of Membrane Science,2004,229(1-2):117-127. doi: 10.1016/j.memsci.2003.10.023
    [24] Wang Z, Ren H, Zhang S, et al. Carbon molecular sieve membranes derived from troger's base-based microporous polyimide for gas separation[J]. ChemSusChem,2018,11(5):916-923. doi: 10.1002/cssc.201702243
    [25] Hu C P, Polintan C K, Tayo L L, et al. The gas separation performance adjustment of carbon molecular sieve membrane depending on the chain rigidity and free volume characteristic of the polymeric precursor[J]. Carbon,2019,143:343-351. doi: 10.1016/j.carbon.2018.11.037
    [26] Xiao Y, Dai Y, Chung T S, et al. Effects of brominating matrimid polyimide on the physical and gas transport properties of derived carbon membranes[J]. Macromolecules,2005,38:10042-10049. doi: 10.1021/ma051354j
    [27] Fu S, Sanders E S, Kulkarni S S, et al. Carbon molecular sieve membrane structure–property relationships for four novel 6FDA based polyimide precursors[J]. Journal of Membrane Science,2015,487:60-73. doi: 10.1016/j.memsci.2015.03.079
    [28] Qiu W, Zhang K, Li F S, et al. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3: 2) polyimide[J]. ChemSusChem,2014,7(4):1186-1194. doi: 10.1002/cssc.201300851
    [29] Qiu W, Xu L, Chen C C, et al. Gas separation performance of 6FDA-based polyimides with different chemical structures[J]. Polymer,2013,54(22):6226-6235. doi: 10.1016/j.polymer.2013.09.007
    [30] Wang Q, Huang F, Cornelius C J, et al. Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations[J]. Journal of Membrane Science,2021:621.
    [31] Karunaweera C, Musselman I H, Balkus K J, et al. Fabrication and characterization of aging resistant carbon molecular sieve membranes for C3 separation using high molecular weight crosslinkable polyimide, 6FDA-DABA[J]. Journal of Membrane Science,2019,581:430-438. doi: 10.1016/j.memsci.2019.03.065
    [32] Deng G, Wang Y, Zong X, et al. Structure evolution in carbon molecular sieve membranes derived from binaphthol-6FDA polyimide and their gas separation performance[J]. Journal of Industrial and Engineering Chemistry,2021,94:489-497. doi: 10.1016/j.jiec.2020.11.024
    [33] Li W, Goh K, Chuah C Y, et al. Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO2 permeability enhancements[J]. Journal of Membrane Science,2019,588:117220. doi: 10.1016/j.memsci.2019.117220
    [34] Xiao Y, Chung T S, Chng M L, et al. Structure and properties relationships for aromatic polyimides and their derived carbon membranes: Experimental and simulation approaches[J]. The Journal of Physical Chemistry B,2005,109:18741-18748. doi: 10.1021/jp050177l
    [35] Sazali N, Salleh W N W, Ismail A F, et al. Incorporation of thermally labile additives in polyimide carbon membrane for hydrogen separation[J]. International Journal of Hydrogen Energy,2021,46(48):24855-24863. doi: 10.1016/j.ijhydene.2020.10.218
    [36] Li H, Xu S, Zhao B, et al. The phase structural evolution and gas separation performances of cellulose acetate/polyimide composite membrane from polymer to carbon stage[J]. Membranes, 2021, 11(8).
    [37] Shin J H, Yu H J, Park J, et al. Fluorine-containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno-economic evaluation thereof for C3H6/C3H8 separation[J]. Journal of Membrane Science,2020,598:117660. doi: 10.1016/j.memsci.2019.117660
    [38] Jiao W, Ban Y, Shi Z, et al. High performance carbon molecular sieving membranes derived from pyrolysis of metal-organic framework ZIF-108 doped polyimide matrices[J]. Chemical Communications,2016,52(95):13779-13782. doi: 10.1039/C6CC07833H
    [39] Lo C T, Seifert S, Thiyagarajan P, et al. Effect of polydispersity on the phase behavior of polymer blends[J]. Macromolecular Rapid Communicaitons,2005,26(7):533-536. doi: 10.1002/marc.200400574
    [40] H Hatori, T. Kobayashi, Y. Hanzawa Y Y, et al. Mesoporous carbon membranes from polyimide blended with poly(ethylene glycol)[J]. Journal of Applied Polymer Science,2001,79:836-841. doi: 10.1002/1097-4628(20010131)79:5<836::AID-APP80>3.0.CO;2-1
    [41] Shin J H, Yu H J, An H, et al. Rigid double-stranded siloxane-induced high-flux carbon molecular sieve hollow fiber membranes for CO2/CH4 separation[J]. Journal of Membrane Science,2019,570-571:504-512. doi: 10.1016/j.memsci.2018.10.076
    [42] Fu Y J, Hu C C, Lin D W, et al. Adjustable microstructure carbon molecular sieve membranes derived from thermally stable polyetherimide/polyimide blends for gas separation[J]. Carbon,2017,113:10-17. doi: 10.1016/j.carbon.2016.11.026
    [43] Hosseini S S, Omidkhah M R, Zarringhalam Moghaddam A, et al. Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process[J]. Separation and Purification Technology,2014,122:278-289. doi: 10.1016/j.seppur.2013.11.021
    [44] Chuah C Y, Lee J, Bao Y, et al. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation[J]. Journal of Membrane Science,2021:622.
    [45] Wang F, Zhang B, Liu S, et al. Investigation of the attapulgite hybrid carbon molecular sieving membranes for permanent gas separation[J]. Chemical Engineering Research & Design,2019,151:146-156.
    [46] Chu Y H, Yancey D, Xu L, et al. Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations[J]. Journal of Membrane Science,2018,548:609-620. doi: 10.1016/j.memsci.2017.11.052
    [47] Kim Y. Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties[J]. Journal of Membrane Science,2003,226(1-2):145-158. doi: 10.1016/j.memsci.2003.08.017
    [48] Katsaros F K, Steriotis T A, Romanos G E, et al. Preparation and characterisation of gas selective microporous carbon membranes[J]. Microporous Mesoporous Materials,2007,99(1-2):181-189. doi: 10.1016/j.micromeso.2006.07.041
    [49] Roy S, Das R, Gagrai M K, et al. Preparation of carbon molecular sieve membrane derived from phenolic resin over macroporous clay-alumina based support for hydrogen separation[J]. Journal of Porous Materials,2016,23(6):1653-1662. doi: 10.1007/s10934-016-0226-8
    [50] Centeno T A, Vilas J L, Fuertes A B. Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation[J]. Journal of Membrane Science,2004,228(1):45-54. doi: 10.1016/j.memsci.2003.09.010
    [51] Fuertes A B, Menendez I. Separation of hydrocarbon gas mixtures using phenolic resin-based carbon membranes[J]. Separation and Purification Technology,2002,28:29-41. doi: 10.1016/S1383-5866(02)00006-0
    [52] Fuertes A B. Effect of air oxidation on gas separation properties of adsorption-selective carbon membranes[J]. Carbon,2001,39:697-706. doi: 10.1016/S0008-6223(00)00168-8
    [53] Centeno T A, Fuertes A B. Supported carbon molecular sieve membranes based on a phenolic resin[J]. Journal of Membrane Science,1999,160:201-211. doi: 10.1016/S0376-7388(99)00083-6
    [54] Centeno T A, Fuertes A B. Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes[J]. Separation and Purification Technology,2001,25:379-384. doi: 10.1016/S1383-5866(01)00065-X
    [55] Jung C H, Kim G W, Han S H, et al. Gas separation of pyrolyzed polymeric membranes: Effect of polymer precursor and pyrolysis conditions[J]. Macromolecular Research,2007,15(6):565-574. doi: 10.1007/BF03218832
    [56] Zhou W, Yoshino M, Kita H, et al. Preparation and gas permeation properties of carbon molecular sieve membranes based on sulfonated phenolic resin[J]. Journal of Membrane Science,2003,217(1-2):55-67. doi: 10.1016/S0376-7388(03)00074-7
    [57] Zhou W, Yoshino M, Kita H, et al. Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group[J]. Industrial & Engineering Chemistry Research,2001,40:4801-4807.
    [58] Llosa Tanco M A, Pacheco Tanaka D A, Rodrigues S C, et al. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies[J]. International Journal of Hydrogen Energy,2015,40(16):5653-5663. doi: 10.1016/j.ijhydene.2015.02.112
    [59] Teixeira M, Rodrigues S C, Campo M, et al. Boehmite-phenolic resin carbon molecular sieve membranes—Permeation and adsorption studies[J]. Chemical Engineering Research & Design,2014,92(11):2668-2680.
    [60] Teixeira M, Campo M C, Pacheco Tanaka D A, et al. Composite phenolic resin-based carbon molecular sieve membranes for gas separation[J]. Carbon,2011,49(13):4348-4358. doi: 10.1016/j.carbon.2011.06.012
    [61] Teixeira M, Campo M, Tanaka D A, et al. Carbon–Al2O3–Ag composite molecular sieve membranes for gas separation[J]. Chemical Engineering Research & Design,2012,90(12):2338-2345.
    [62] Zeng C, Zhang L, Cheng X, et al. Preparation and gas permeation of nano-sized zeolite NaA-filled carbon membranes[J]. Separation and Purification Technology,2008,63(3):628-633. doi: 10.1016/j.seppur.2008.07.009
    [63] Zhou Z H, Yang J H, Chang L F, et al. Novel preparation of NaA/carbon nanocomposite thin films with high permeance for CO2/CH4 separation[J]. Chinese Chemical Letters,2007,18(4):455-457. doi: 10.1016/j.cclet.2007.01.039
    [64] Lee P S, Kim D, Nam S E, et al. Carbon molecular sieve membranes on porous composite tubular supports for high performance gas separations[J]. Microporous and Mesoporous Materials,2016,224:332-338. doi: 10.1016/j.micromeso.2015.12.054
    [65] Carretero J, Benito J, Guerreroruiz A, et al. Infiltrated glassy carbon membranes in γ-Al2O3 supports[J]. Journal of Membrane Science,2006,281(1-2):500-507. doi: 10.1016/j.memsci.2006.04.020
    [66] Liu B S, Guo Y H, Yuan F. Novel modification of a macroporous stainless steel tube by electroless Ni plating for use as a substrate for preparation of nanoporous carbon membranes[J]. Industrial & Engineering Chemistry Research,2012,51(26):9007-9015.
    [67] Mariwalat R K, Foley H C. Evolution of ultramicroporous adsorptive structure in poly(furfury1 alcohol) -derived carbogenic molecular sieves[J]. Industrial & Engineering Chemistry Research,1994,33:607-615.
    [68] Sedigh M G, Onstot W J, Xu L, et al. Experiments and simulation of transport and separation of gas mixtures in carbon molecular sieve membranes[J]. The Journal of Physical Chemistry A,1998,102:8580-8589. doi: 10.1021/jp982075j
    [69] Acharya M, Raich B A, Foley H C. Metal-supported carbogenic molecular sieve membranes: Synthesis and applications[J]. Industrial & Engineering Chemistry Research,1997,36:2924-2930.
    [70] Acharya M, Foley H C. Spray-coating of nanoporous carbon membranes for air separation[J]. Journal of Membrane Science,1999,161:1-5. doi: 10.1016/S0376-7388(99)00173-8
    [71] Strano M S, Foley H C. Synthesis and characterization of catalytic nanoporous carbon membranes[J]. AIChE Journal,2001,47(1):66-78. doi: 10.1002/aic.690470110
    [72] Shiflett M B, Foley H C. On the preparation of supported nanoporous carbon membranes[J]. Journal of Membrane Science,2000,179:275-282. doi: 10.1016/S0376-7388(00)00513-5
    [73] Shiflett M B, Foley H C. Ultrasonic deposition of high-selectivity nanoporous carbon membranes[J]. Science,1999,285:1902-1905. doi: 10.1126/science.285.5435.1902
    [74] Wang H, Zhang L, Gavalas G R. Preparation of supported carbon membranes from furfuryl alcohol by vapor deposition polymerization[J]. Journal of Membrane Science,2000,177:25-31. doi: 10.1016/S0376-7388(00)00444-0
    [75] Hou J, Zhang H, Hu Y, et al. Carbon nanotube networks as nanoscaffolds for fabricating ultrathin carbon molecular sieve membranes[J]. ACS Applied Materials & Interfaces,2018,10(23):20182-20188.
    [76] Song C, Wang T, Jiang H, et al. Gas separation performance of C/CMS membranes derived from poly(furfuryl alcohol) (PFA) with different chemical structure[J]. Journal of Membrane Science,2010,361(1-2):22-27. doi: 10.1016/j.memsci.2010.06.018
    [77] Wang C, Ling L, Huang Y, et al. Decoration of porous ceramic substrate with pencil for enhanced gas separation performance of carbon membrane[J]. Carbon,2015,84:151-159. doi: 10.1016/j.carbon.2014.12.003
    [78] Yin X, Wang J, Chu N, et al. Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties[J]. Journal of Membrane Science,2010,348(1-2):181-189. doi: 10.1016/j.memsci.2009.10.055
    [79] Rajagopalan R, Merritt A, Tseytlin A, et al. Modification of macroporous stainless steel supports with silica nanoparticles for size selective carbon membranes with improved flux[J]. Carbon,2006,44(10):2051-2058. doi: 10.1016/j.carbon.2006.01.009
    [80] Song C, Wang T, Wang X, et al. Preparation and gas separation properties of poly(furfuryl alcohol)-based C/CMS composite membranes[J]. Separation and Purification Technology,2008,58(3):412-418. doi: 10.1016/j.seppur.2007.05.019
    [81] Song C, Wang T, Qiu J. Preparation of C/CMS composite membranes derived from Poly(furfuryl alcohol) polymerized by iodine catalyst[J]. Desalination,2009,249(2):486-489. doi: 10.1016/j.desal.2009.04.006
    [82] Yin X, Chu N, Yang J, et al. Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO2 separation[J]. International Journal of Greenhouse Gas Control,2013,15:55-64. doi: 10.1016/j.ijggc.2013.01.032
    [83] Anderson C J, Pas S J, Arora G, et al. Effect of pyrolysis temperature and operating temperature on the performance of nanoporous carbon membranes[J]. Journal of Membrane Science,2008,322(1):19-27. doi: 10.1016/j.memsci.2008.04.064
    [84] Wang C, Hu X, Yu J, et al. Intermediate gel coating on macroporous Al2O3 substrate for fabrication of thin carbon membranes[J]. Ceramics International,2014,40(7):10367-10373. doi: 10.1016/j.ceramint.2014.03.010
    [85] Zhang L, Chen X, Zeng C, et al. Preparation and gas separation of nano-sized nickel particle-filled carbon membranes[J]. Journal of Membrane Science,2006,281(1-2):429-434. doi: 10.1016/j.memsci.2006.04.011
    [86] Lie J A, Hägg M B. Carbon membranes from cellulose and metal loaded cellulose[J]. Carbon,2005,43(12):2600-2607. doi: 10.1016/j.carbon.2005.05.018
    [87] Lei L, Lindbråthen A, Hillestad M, et al. Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process[J]. Journal of Membrane Science,2021,627:119241. doi: 10.1016/j.memsci.2021.119241
    [88] Lei L, Lindbråthen A, Zhang X, et al. Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening[J]. Journal of Membrane Science,2020,614:118529. doi: 10.1016/j.memsci.2020.118529
    [89] Rodrigues S C, Andrade M, Moffat J, et al. Preparation of carbon molecular sieve membranes from an optimized ionic liquid-regenerated cellulose precursor[J]. Journal of Membrane Science,2019,572:390-400. doi: 10.1016/j.memsci.2018.11.027
    [90] Yoda S, Hasegawa A, Suda H, et al. Preparation of a platinum and palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation[J]. Chemistry of Materials,2004,16:2363-2368. doi: 10.1021/cm0349250
    [91] Barsema J N, Balster J, Jordan V, et al. Functionalized carbon molecular sieve membranes containing Ag-nanoclusters[J]. Journal of Membrane Science,2003,219(1-2):47-57. doi: 10.1016/S0376-7388(03)00176-5
    [92] Turner M B, Spear S K, Holbrey J D, et al. Production of bioactive cellulose films reconstituted from ionic liquids[J]. Biomacromolecules,2004,5:1379-1384. doi: 10.1021/bm049748q
    [93] Song J, Ge H, Xu M, et al. Study on the interaction between urea and cellulose by combining solid-state 13C CP/MAS NMR and extended Hückel charges[J]. Cellulose,2014,21(6):4019-4027. doi: 10.1007/s10570-014-0461-6
    [94] Lei L, Pan F, Lindbrathen A, et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation[J]. Nature Communications,2021,12(1):268. doi: 10.1038/s41467-020-20628-9
    [95] Lei L, Lindbråthen A, Hillestad M, et al. Screening cellulose spinning parameters for fabrication of novel carbon hollow fiber membranes for gas separation[J]. Industrial & Engineering Chemistry Research,2019,58(29):13330-13339.
    [96] Karousos D S, Lei L, Lindbråthen A, et al. Cellulose-based carbon hollow fiber membranes for high-pressure mixed gas separations of CO2/CH4 and CO2/N2[J]. Separation and Purification Technology,2020,253:117473. doi: 10.1016/j.seppur.2020.117473
    [97] Haider S, Lindbråthen A, Lie J A, et al. Carbon membranes for oxygen enriched air – Part I: Synthesis, performance and preventive regeneration[J]. Separation and Purification Technology,2018,204:290-297. doi: 10.1016/j.seppur.2018.05.014
    [98] Itta A K, Tseng H H. Hydrogen separation performance of CMS membranes derived from the imide-functional group of two similar types of precursors[J]. International Journal of Hydrogen Energy,2011,36(14):8645-8657. doi: 10.1016/j.ijhydene.2011.03.146
    [99] Tseng H H, Shih K, Shiu P T, et al. Influence of support structure on the permeation behavior of polyetherimide-derived carbon molecular sieve composite membrane[J]. Journal of Membrane Science,2012,405-406:250-260. doi: 10.1016/j.memsci.2012.03.014
    [100] Tseng H H, Wang C T, Zhuang G L, et al. Enhanced H2/CH4 and H2/CO2 separation by carbon molecular sieve membrane coated on titania modified alumina support: Effects of TiO2 intermediate layer preparation variables on interfacial adhesion[J]. Journal of Membrane Science,2016,510:391-404. doi: 10.1016/j.memsci.2016.02.036
    [101] Wey M Y, Wang C T, Lin Y T, et al. Interfacial interaction between CMS layer and substrate: Critical factors affecting membrane microstructure and H2 and CO2 separation performance from CH4[J]. Journal of Membrane Science,2019,580:49-61. doi: 10.1016/j.memsci.2019.02.070
    [102] Setnickova K, Huang T C, Wang C T, et al. Realizing the impact of the intermediate layer structure on the CO2/CH4 separation performance of carbon molecular sieving membranes: Insights from experimental synthesis and molecular simulation[J]. Separation and Purification Technology,2021,269:118627. doi: 10.1016/j.seppur.2021.118627
    [103] Rao P S, Wey M Y, Tseng H H, et al. A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application[J]. Microporous and Mesoporous Materials,2008,113(1-3):499-510.
    [104] Salleh W N W, Ismail A F. Carbon hollow fiber membranes derived from PEI/PVP for gas separation[J]. Separation and Purification Technology,2011,80(3):541-548. doi: 10.1016/j.seppur.2011.06.009
    [105] Tseng H H, Itta A K. Modification of carbon molecular sieve membrane structure by self-assisted deposition carbon segment for gas separation[J]. Journal of Membrane Science,2012,389:223-233. doi: 10.1016/j.memsci.2011.10.031
    [106] Zhang B, Wu Y, Lu Y, et al. Preparation and characterization of carbon and carbon/zeolite membranes from ODPA–ODA type polyetherimide[J]. Journal of Membrane Science,2015,474:114-121. doi: 10.1016/j.memsci.2014.09.054
    [107] Haider S, Lindbråthen A, Lie J A, et al. Regenerated cellulose based carbon membranes for CO2 separation: Durability and aging under miscellaneous environments[J]. Journal of Industrial and Engineering Chemistry,2019,70:363-371. doi: 10.1016/j.jiec.2018.10.037
    [108] Sedigh M G, Jahangiri M, Liu P K T, et al. Structural characterization of polyetherimide based carbon molecular sieve membranes[J]. AIChE Journal,2000,46(11):2245-2255. doi: 10.1002/aic.690461116
    [109] Sedigh M G, Xu L, Tsotsis T T, et al. Transport and morphological characteristics of polyetherimide-based carbon molecular sieve membranes[J]. Industrial & Engineering Chemistry Research,1999,38:3367-3380.
    [110] Fuertes A B, Centeno T A. Preparation of supported asymmetric carbon molecular sieve membranes[J]. Journal of Membrane Science,1999,144:105-111.
    [111] Fuertes A B, Centeno T A. Carbon molecular sieve membranes from polyetherimide[J]. Microporous Mesoporous Mater,1998,26:23-26. doi: 10.1016/S1387-1811(98)00204-2
    [112] Wey M Y, Tseng H H, Chiang C K. Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of α-Al2O3 support[J]. Journal of Membrane Science,2014,453:603-613. doi: 10.1016/j.memsci.2013.11.039
    [113] Wey M Y, Tseng H H, Chiang C K. Effect of MFI zeolite intermediate layers on gas separation performance of carbon molecular sieve (CMS) membranes[J]. Journal of Membrane Science,2013,446:220-229. doi: 10.1016/j.memsci.2013.06.051
    [114] Tseng H H, Shiu P T, Lin Y S. Effect of mesoporous silica modification on the structure of hybrid carbon membrane for hydrogen separation[J]. International Journal of Hydrogen Energy,2011,36(23):15352-15363. doi: 10.1016/j.ijhydene.2011.08.060
    [115] Itta A K, Tseng H H, Wey M Y. Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived CMS membrane for H2/N2 separation[J]. International Journal of Hydrogen Energy,2010,35(4):1650-1658. doi: 10.1016/j.ijhydene.2009.12.069
    [116] Li K, Zhu Z, Dong H, et al. Bottom up approach to study the gas separation properties of PIM-PIs and its derived CMSMs by isomer monomers[J]. Journal of Membrane Science,2021,635:119519. doi: 10.1016/j.memsci.2021.119519
    [117] Ma Y, Jue M L, Zhang F, et al. Creation of well-defined "mid-sized" micropores in carbon molecular sieve membranes[J]. Angewandte Chemie-International Edition,2019,58(38):13259-13265. doi: 10.1002/anie.201903105
    [118] Cosey W K, Balkus K J, Ferraris J P, et al. Reduced aging in carbon molecular sieve membranes derived from PIM-1 and MOP-18[J]. Industrial & Engineering Chemistry Research,2021,60(27):9962-9970.
    [119] Hazazi K, Ma X, Wang Y, et al. Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor[J]. Journal of Membrane Science,2019,585:1-9. doi: 10.1016/j.memsci.2019.05.020
    [120] Salleh W N W, Ismail A F. Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and CO2/N2 separation[J]. AIChE Journal,2012,58(10):3167-3175. doi: 10.1002/aic.13711
    [121] Salleh W N W, Ismail A F. Effects of carbonization heating rate on CO2 separation of derived carbon membranes[J]. Separation and Purification Technology,2012,88:174-183. doi: 10.1016/j.seppur.2011.12.019
    [122] Tseng H H, Zhuang G L, Lin M D, et al. The influence of matrix structure and thermal annealing-hydrophobic layer on the performance and durability of carbon molecular sieving membrane during physical aging[J]. Journal of Membrane Science,2015,495:294-304. doi: 10.1016/j.memsci.2015.08.009
    [123] Ma X, Swaidan R, Teng B, et al. Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor[J]. Carbon,2013,62:88-96. doi: 10.1016/j.carbon.2013.05.057
    [124] Swaidan R, Ma X, Litwiller E, et al. High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity[J]. Journal of Membrane Science,2013,447:387-394. doi: 10.1016/j.memsci.2013.07.057
    [125] Salinas O, Ma X, Wang Y, et al. Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity[J]. RSC Advances,2017,7(6):3265-3272. doi: 10.1039/C6RA24699K
    [126] Liao K S, Japip S, Lai J Y, et al. Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification[J]. Journal of Membrane Science,2017,534:92-99. doi: 10.1016/j.memsci.2017.04.017
    [127] Salinas O, Ma X, Litwiller E, et al. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1)[J]. Journal of Membrane Science,2016,504:133-140. doi: 10.1016/j.memsci.2015.12.052
    [128] Ogieglo W, Puspasari T, Hota M K, et al. Nanohybrid thin-film composite carbon molecular sieve membranes[J]. Materials Today Nano,2020,9:100065. doi: 10.1016/j.mtnano.2019.100065
    [129] Salinas O, Ma X, Litwiller E, et al. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide[J]. Journal of Membrane Science,2016,500:115-123. doi: 10.1016/j.memsci.2015.11.013
    [130] Swaidan R J, Ma X, Pinnau I. Spirobisindane-based polyimide as efficient precursor of thermally-rearranged and carbon molecular sieve membranes for enhanced propylene/propane separation[J]. Journal of Membrane Science,2016,520:983-989. doi: 10.1016/j.memsci.2016.08.057
    [131] Ma Y, Zhang F, Yang S, et al. Evidence for entropic diffusion selection of xylene isomers in carbon molecular sieve membranes[J]. Journal of Membrane Science,2018,564:404-414. doi: 10.1016/j.memsci.2018.07.040
    [132] Rao M B, Sircar S. Nanoporous carbon membranes for separation of gas mixtures by selective surface flow[J]. Journal of Membrane Science,1993,85(3):253-264. doi: 10.1016/0376-7388(93)85279-6
    [133] Thaeron C, Parrillo D J, Sircar S, et al. Separation of hydrogen sulfide–methane mixtures by selective surface flow membrane[J]. Separation and Purification Technology,1999,15:121-129. doi: 10.1016/S1383-5866(98)00089-6
    [134] Paranjape M, Clarke P F, Pruden B B, et al. Separation of bulk carbon dioxide-hydrogen mixtures by selective surface flow membrane[J]. Adsorption,1998,4:355-360. doi: 10.1023/A:1008802320863
    [135] Parrillo D J, Thaeron C, Sircar S. Separation of bulk hydrogen sulfide-hydrogen mixtures by selective surface flow membrane[J]. AIChE Journal,1997,43(9):2239-2245. doi: 10.1002/aic.690430910
    [136] Rao M B, Sircar S. Performance and pore characterization of nanoporous carbon membranes for gas separationv[J]. Journal of Membrane Science,1996,110:109-118. doi: 10.1016/0376-7388(95)00241-3
    [137] Liu J, Goss J, Calverley T, et al. Carbon molecular sieve fiber with 3.4–4.9 Angstrom effective micropores for propylene/propane and other gas separations[J]. Microporous Mesoporous Materials,2020,305:110341. doi: 10.1016/j.micromeso.2020.110341
    [138] Liu J, Calverley E M, McAdon M H, et al. New carbon molecular sieves for propylene/propane separation with high working capacity and separation factor[J]. Carbon,2017,123:273-282. doi: 10.1016/j.carbon.2017.07.068
    [139] Centeno T A, Fuertes A B. Carbon molecular sieve gas separation membranes based on poly(vinylidene chloride-co-vinyl chloride)[J]. Carbon,2000,38:1067-1073. doi: 10.1016/S0008-6223(99)00214-6
    [140] Joseph R M, Merrick M M, Liu R, et al. Synthesis and characterization of polybenzimidazole membranes for gas separation with improved gas permeability: A grafting and blending approach[J]. Journal of Membrane Science,2018,564:587-597. doi: 10.1016/j.memsci.2018.07.064
    [141] Berchtold K A, Singh R P, Young J S, et al. Polybenzimidazole composite membranes for high temperature synthesis gas separations[J]. Journal of Membrane Science,2012,415-416:265-270. doi: 10.1016/j.memsci.2012.05.005
    [142] Zhu L, Swihart M T, Lin H. Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H2/CO2 separation[J]. Energy & Environmental Science,2018,11(1):94-100.
    [143] Zhu L, Swihart M T, Lin H. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H2/CO2 separation[J]. Journal of Materials Chemistry A,2017,5(37):19914-19923. doi: 10.1039/C7TA03874G
    [144] Omidvar M, Nguyen H, Liang H, et al. Unexpectedly strong size-sieving ability in carbonized polybenzimidazole for membrane H2/CO2 separation[J]. ACS Applied Materials & Interfaces,2019,11(50):47365-47372.
    [145] Pérez-Francisco J M, Santiago-García J L, Loría-Bastarrachea M I, et al. CMS membranes from PBI/PI blends: Temperature effect on gas transport and separation performance[J]. Journal of Membrane Science,2020,597:117703. doi: 10.1016/j.memsci.2019.117703
    [146] Pirouzfar V, Moghaddam A Z, Omidkhah M R, et al. Investigating the effect of dianhydride type and pyrolysis condition on the gas separation performance of membranes derived from blended polyimides through statistical analysis[J]. Journal of Industrial and Engineering Chemistry,2014,20(3):1061-1070. doi: 10.1016/j.jiec.2013.06.043
    [147] Hosseini S S, Chung T S. Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification[J]. Journal of Membrane Science,2009,328(1-2):174-185. doi: 10.1016/j.memsci.2008.12.005
    [148] Yang Y, Li H, Chen S, et al. Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber[J]. Langmuir,2010,26(17):13897-13902. doi: 10.1021/la101281v
    [149] Song C, Wang T, Qiu Y, et al. Effect of carbonization atmosphere on the structure changes of PAN carbon membranes[J]. Journal of Porous Materials,2008,16(2):197-203.
    [150] Hamm J B S, Muniz A R, Pollo L D, et al. Experimental and computational analysis of carbon molecular sieve membrane formation upon polyetherimide pyrolysis[J]. Carbon,2017,119:21-29. doi: 10.1016/j.carbon.2017.04.011
    [151] Pan Y, He L, Wang W, et al. Zigzag pore based molecular simulation on the separation of CO2/CH4 mixture by carbon membrane[J]. The Canadian Journal of Chemical Engineering,2019,97(3):727-733. doi: 10.1002/cjce.23235
    [152] LIB David, AF Ismail. Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation[J]. Journal of Membrane Science,2003,213:285-291. doi: 10.1016/S0376-7388(02)00513-6
    [153] Kim D, Kwon Y, Lee J H, et al. Tailoring the Stabilization and pyrolysis processes of carbon molecular sieve membrane derived from polyacrylonitrile for ethylene/ethane separation[J]. Membranes (Basel), 2022, 12(1).
    [154] Zhang B, Wang T, Zhang S, et al. Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone)[J]. Carbon,2006,44(13):2764-2769. doi: 10.1016/j.carbon.2006.03.039
    [155] Wang T, Zhang B, Qiu J, et al. Effects of sulfone/ketone in poly(phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes[J]. Journal of Membrane Science,2009,330(1-2):319-325. doi: 10.1016/j.memsci.2009.01.006
    [156] Liu S, Wang T, Liu Q, et al. Gas permeation properties of carbon molecular sieve membranes derived from novel poly(phthalazinone ether sulfone ketone)[J]. Industrial & Engineering Chemistry Research,2008,47:876-880.
    [157] Xu R, He L, Li L, et al. Ultraselective carbon molecular sieve membrane for hydrogen purification[J]. Journal of Energy Chemistry,2020,50:16-24. doi: 10.1016/j.jechem.2020.03.008
    [158] Singh R, Koros W J. Carbon molecular sieve membrane performance tuning by dual temperature secondary oxygen doping (DTSOD)[J]. Journal of Membrane Science,2013,427:472-478. doi: 10.1016/j.memsci.2012.10.004
    [159] Lagorsse S, Magalhães F D, Mendes A. Aging study of carbon molecular sieve membranes[J]. Journal of Membrane Science,2008,310(1-2):494-502. doi: 10.1016/j.memsci.2007.11.025
    [160] Wenz G B, Koros W J. Tuning carbon molecular sieves for natural gas separations: A diamine molecular approach[J]. AIChE Journal,2017,63(2):751-760. doi: 10.1002/aic.15405
    [161] Qiu W, Vaughn J, Liu G, et al. Hyperaging tuning of a carbon molecular-sieve hollow fiber membrane with extraordinary gas-separation performance and stability[J]. Angewandte Chemie - International Edition,2019,58(34):11700-11703. doi: 10.1002/anie.201904913
    [162] Xu L, Rungta M, Hessler J, et al. Physical aging in carbon molecular sieve membranes[J]. Carbon,2014,80:155-166. doi: 10.1016/j.carbon.2014.08.051
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  643
  • HTML全文浏览量:  258
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 修回日期:  2022-04-21
  • 网络出版日期:  2022-04-27
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回