留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries

LONG Xiang ZHU Shao-kuan SONG Ya ZHENG Min SHAO Jiao-jing SHI Bin

龙翔, 朱绍宽, 宋娅, 郑敏, 邵姣婧, 石斌. 抑制锂硫电池多硫化物穿梭的隔膜界面工程. 新型炭材料(中英文), 2022, 37(3): 527-543. doi: 10.1016/S1872-5805(22)60614-0
引用本文: 龙翔, 朱绍宽, 宋娅, 郑敏, 邵姣婧, 石斌. 抑制锂硫电池多硫化物穿梭的隔膜界面工程. 新型炭材料(中英文), 2022, 37(3): 527-543. doi: 10.1016/S1872-5805(22)60614-0
LONG Xiang, ZHU Shao-kuan, SONG Ya, ZHENG Min, SHAO Jiao-jing, SHI Bin. Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries. New Carbon Mater., 2022, 37(3): 527-543. doi: 10.1016/S1872-5805(22)60614-0
Citation: LONG Xiang, ZHU Shao-kuan, SONG Ya, ZHENG Min, SHAO Jiao-jing, SHI Bin. Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries. New Carbon Mater., 2022, 37(3): 527-543. doi: 10.1016/S1872-5805(22)60614-0

抑制锂硫电池多硫化物穿梭的隔膜界面工程

doi: 10.1016/S1872-5805(22)60614-0
基金项目: 国家自然科学基金 (51972070, 52062004); 贵州省科技基金重点项目([2020]1Z042);贵州大学培育计划项目(GDPY[2019]01);贵州省科技支撑项目(QKHZC[2021]YB317);贵州省研究生创新研究基金(YJSCXJH[2020]028)
详细信息
    通讯作者:

    邵姣婧,博士,教授. E-mail:xjshao@gzu.edu.cn

  • 中图分类号: TQ127.1+1;TB33

Engineering the interface between separators and cathodes to suppress polysulfide shuttling in lithium-sulfur batteries

Funds: This work was financially supported by National Natural Science Foundation of China (51972070 and 52062004), Key Project of Guizhou Provincial Science and Technology Foundation ([2020]1Z042), Cultivation Project of Guizhou University (GDPY[2019]01), Science and Technology Support Project of Guizhou Province (QKHZC[2021]YB317), and Graduate Innovation Research Fund of Guizhou Province (YJSCXJH[2020]028)
More Information
  • 摘要: 锂硫电池由于具有较高的理论比容量和能量密度而受到广泛的关注。然而,多硫化物的穿梭效应极大地阻碍了其实际应用,许多研究表明,电池隔膜界面工程是解决多硫穿梭问题的有效策略之一。隔膜界面工程的主要功能可分为物理阻隔、化学吸附和催化作用。在这个界面工程过程中,炭材料因其导电率高、比表面积大、孔容大而备受关注,而炭材料的非极性难以紧密结合多硫化物;使用高极性的材料能够对多硫化物起到很好的化学结合作用,可有效吸附多硫化物。因此,人们常采用高极性材料与炭材料复合,或者在炭材料设计过程中掺杂异原子或引入官能团。此外,具有多硫催化转化作用的材料对于有效抑制多硫穿梭也十分重要。本文重点介绍了隔膜界面工程的具体实施策略及其主要功能,并对锂硫电池商用化中所面临的问题和挑战进行了总结。最后,结合目前电池性能改善的各种措施,对锂硫电池实用化的光明前景进行了展望。
  • FIG. 1536.  FIG. 1536.

    FIG. 1536.. 

    Figure  1.  Theoretical energy density of different rechargeable battery systems based on the active materials[7]. Reprinted with permission.

    Figure  2.  (a) A typical charge/discharge profile for a Li-S battery[36] and (b) Electrochemical mechanism of Li-S batteries[37]. Reproduced with permission.

    Figure  3.  (a) Schematic of (left) Li–S battery with traditional configuration and (right) with the MWCNT interlayer inserted between the cathode and commercial separator[30]. (b) Schematic of the Li-S batteries with the CFs@PP separator[58]. (c) Schematic illustration of the MMMS for regulating Li deposition and blocking polysulfide shuttle in Li–S batteries[59]. (d) Schematic configuration of the Li–S cells with (up) pristine separator and (down) meso C-coated separator[51]. Reproduced with permission.

    Figure  4.  (a) Schematic cell configuration of the Li–S battery with N–P–PC/G-modified separator[72]. (b) Schematic of a Li–S battery with electrode configuration. The paler yellow color represents the reduced shuttle effect[73]. (c) Schematic illustrationin of a combined strategy of integrating SPEEK into the cathode and inserting a SWCNT/rGO interlayer between the cathode and the separator[74]. (d) VGCF/PPY composite[75]. Reproduced with permission.

    Figure  5.  (a) Schematic of the fabrication of a porous VN/G composite and the cell assembly with corresponding optical images of the material obtained. Scale bar, 500 nm[91]. (b) Schematic diagrams of Li-S battery with (left) the pristine Celgard and (right) LBL-separator[92]. (c) Schematic representation of Li-S battery using the TiO/MWCNT-coated separator[94]. (d) Schematic of Li-S battery employing the SMO modified separators[95]. Reproduced with permission.

    Figure  6.  (a) Schematic configuration of Li-S batteries with PP separator; PG @ PP; and PG-Fe3O4 @ PP interlayer[53]. (b) Comparison of the LiPS migration and lithium-ion transport between pristine (left) and VN modified separators (right)[96]. (c) Schematic illustration of Li-S batteries with PP separator (left) and BTS/PP separator (right)[97]. (d) Schematic illustration of 3-D structure of CSUST-1[98]. Reproduced with permission.

    Figure  7.  (a) Schematic diagram of electrode structure with the functional G/M@CNT interlayer[104]. (b) Schematic illustration of the preparation procedure of Co9S8-Celgard[105]. (c) Schematic for Li–S batteries with different separators: with a routine separator (left) and with an NbN/NG modified separator (right)[106]. (d) Conceptual diagram to produce functionalized NGN (pyrolic, pyridinic, graphitic) N and -SO3- through NH3 treatment of OHGN and Nafion mixing (up), and N-NGN coated Celgard PP separator and their mechanism to chemically bind the PS through multifunctional effects (down)[107]. (e) Schematic illustration of the synthesis route of Ni/SiO2[60]. Reproduced with permission.

    Table  1.   Comparison of some previously reported literatures involving the separator interfacial engineering in the Li-S batteries (1 C=1675 mA g−1).

    MaterialsMorphologyAreal
    density
    (mg cm−2)
    Sulfur loading
    (mg cm−2) &content
    Preparation
    method
    Rate capability
    (mA h g−1)
    Cycling
    performance
    (mA h g−1)
    (Cycles, Rate)
    Gravimetric
    energy
    densities
    (wh kg−1)
    Ref.
    CarbonMWCNTNanotubes0.4N.A. & 70%Vacuum filtration1446 (0.1C), 855 (0.5C),
    804 (1C)
    804(100, 1C)[1]
    Mesoporous carbon0.53.5 & 70%Blade coating1359 (0.1C), 1281 (0.2C),
    1216 (0.5C), 1060 (1C),
    881 (2C), 443 (5C)
    723(500, 0.5C)683(500, 1C) 3.24[2]
    Microporous carbon paperParticle-N.A. & 70%Vacuum filtration1367 (0.1C), 1000 (1C),
    846 (2C)
    850(100, 1C)[3]
    Carbon-based materialSWCNT/rGONanotubes & sheet0.1(Li2S)1.0 & 60%Vacuum filtration773 (0.5A g−1), 660 (1A g−1),
    440 (10A g−1)
    362(200, 1A g−1)[4]
    N, P-doped porous carbon/RGOHomogeneous reticular0.31.5 & 70%Blade coating1416 (0.2C), 1168 (0.5C),
    1009 (1C), 857 (2C),
    639 (5C)
    733(500, 0.5C)661(500, 1C)2.76[5]
    Mesoporous Ni/SiO2 hollow sphere/RGOParticle/hollow spheres0.241.2 & 80%Vacuum filtration1456 (0.1C), 1080 (0.2C),
    882 (0.5C), 826 (1C),
    782 (2C)
    782(300, 2C)1.25[6]
    PolymersCTF@PDDA/PEDOT: PSSLamellar0.0282 & 60%LBL 1038.4 (0.1C), 899.2 (0.2C),
    795.7 (0.5C), 640.2 (1C),
    191 (2C)
    577(1000, 1C)1.78[7]
    N-doped mesoporous carbonSphere-like mesoporous0.53.95 & 70%Blade coating1364 (0.1C), 1062 (0.2C),
    914 (0.5C), 838 (1C),
    689 (2C)
    566(500, 0.5C)1.51[8]
    Metal oxidesMnO2Particle0.021.2 & 70%LBL 733 (0.5C), 633 (1C),
    494 (2C)
    494(500, 0.5C)0.76[9]
    TiO/MWCNTParticle/ Nanotubes0.71.6 & 60%Blade coating1354.3 (0.2C), 1247.2 (0.5C),
    1073.3 (1C),893 (2C),
    715.2 (3C)
    385.3(2000, 2C)1.99[10]
    MnO2/GO/
    CNT
    Vein-membrane0.1042.37 & 80%CVD1259 (0.2C), 1055 (0.5C),
    960 (1C), 829 (5C),
    747 (10C)
    293(2500, 1C)1.842[11]
    PG-Fe3O4Particle0.4780.9 & 60%Vacuum filtration1423 (0.1C), 887 (0.3C),
    789 (0.5C), 673 (1C) ,
    589 (2C)
    356(2000, 1C)0.95[12]
    MnO-KBParticle0.152 & 75%Blade coating1200 (0.1C), 950 (2C),901(200, 1C)1.1[13]
    Metal nitridesVN nanobeltsFiber1.521.6 & 70%Vacuum filtration1280 (0.1C), 1043 (0.5C),
    895 (1C), 760 (2C)
    369(800, 1C)1.14[14]
    DopingBi2Te2.7Se0.3Particle0.034 & 70%Magnetron sputtering1284 (0.1C), 1061 (0.2C),
    932 (0.5C), 847 (1C),
    756 (2C)
    560(300, 2C)3.17[15]
    Sb2Se3−xParticle0.51.8 & 70%Blade coating1387 (0.1C), 1249 (0.2C),
    787 (8C)
    874(500, 1C)1.74[16]
    下载: 导出CSV
  • [1] Hong X, Wang R, Liu Y, et al. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries[J]. Journal of Energy Chemistry,2020,42:144-168. doi: 10.1016/j.jechem.2019.07.001
    [2] Zhou G, Wang D W, Li F, et al. A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & environmental science,2012,5(10):8901-8906.
    [3] Lin Z, Liang C. Lithium–sulfur batteries: From liquid to solid cells[J]. Journal of Materials Chemistry A,2015,3(3):936-958. doi: 10.1039/C4TA04727C
    [4] He Y, Qiao Y, Chang Z, et al. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium-sulfur batteries[J]. Angewandte Chemie,2019,131(34):11900-11904. doi: 10.1002/ange.201906055
    [5] Yang Y, Wang W, Li L, et al. Stable cycling of Li-S batteries by simultaneously suppressing Li-dendrite growth and polysulfide shuttling enabled by a bioinspired separator[J]. Journal of Materials Chemistry A,2020,8(7):3692-3700. doi: 10.1039/C9TA12921A
    [6] Marmorstein D, Yu T H, Striebel K A, et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes[J]. Journal of Power Sources,2000,89(2):219-226. doi: 10.1016/S0378-7753(00)00432-8
    [7] Yang Y, Zheng G, Cui Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews,2013,42(7):3018-3032. doi: 10.1039/c2cs35256g
    [8] Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li-S batteries[J]. Advanced Energy Materials,2015,5(16):1500408. doi: 10.1002/aenm.201500408
    [9] Seh Z W, Sun Y, Zhang Q, et al. Designing high-energy lithium–sulfur batteries[J]. Chemical society reviews,2016,45(20):5605-5634. doi: 10.1039/C5CS00410A
    [10] Liu D, Zhang C, Zhou G, et al. Catalytic effects in lithium–sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Advanced Science,2018,5(1):1700270. doi: 10.1002/advs.201700270
    [11] Hencz L, Chen H, Ling H Y, et al. Housing sulfur in polymer composite frameworks for Li-S batteries[J]. Nano-Micro Letters,2019,11(1):17. doi: 10.1007/s40820-019-0249-1
    [12] Chen H, Wu Z, Su Z, et al. A hydrophilic poly(methyl vinyl ether-alt-maleic acid) polymer as a green, universal, and dual-functional binder for high-performance silicon anode and sulfur cathode[J]. Journal of Energy Chemistry,2021,62:127-135. doi: 10.1016/j.jechem.2021.03.015
    [13] Jeong Y C, Kim J H, Nam S, et al. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries[J]. Advanced Functional Materials,2018,28(38):1707411. doi: 10.1002/adfm.201707411
    [14] Zhang S S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems and solutions[J]. Journal of Power Sources,2013,231:153-162. doi: 10.1016/j.jpowsour.2012.12.102
    [15] Lagadec M F, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy,2019,4(1):16-25. doi: 10.1038/s41560-018-0295-9
    [16] He Y, Qiao Y, Zhou H. Recent advances in functional modification of separators in lithium–sulfur batteries[J]. Dalton Transactions,2018,47(20):6881-6887. doi: 10.1039/C7DT04717G
    [17] Xin S, Gu L, Zhao N H, et al. Smaller sulfur molecules promise better lithium–sulfur batteries[J]. Journal of the American Chemical Society,2012,134(45):18510-18513. doi: 10.1021/ja308170k
    [18] Sun H, Li Z, Xia S, et al. High-performance lithium-sulfur battery enabled by jointing cobalt decorated interlayer and polyethyleneimine functionalized separator[J]. Journal of Alloys and Compounds,2021,888:161459. doi: 10.1016/j.jallcom.2021.161459
    [19] Sun H, Pang Y P, Zheng S Y, et al. Functional design of separator for Li-S batteries[J]. Progress in Chemistry,2020,32(9):1402-1411.
    [20] Ruan J, Sun H, Song Y, et al. Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery[J]. Energy Materials,2021,1(2):100018.
    [21] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries[J]. Nature Materials,2009,8(6):500-506. doi: 10.1038/nmat2460
    [22] Seh Z W, Wang H, Liu N, et al. High-capacity Li2S–graphene oxide composite cathodes with stable cycling performance[J]. Chemical Science,2014,5(4):1396-1400. doi: 10.1039/c3sc52789a
    [23] Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters,2016,16(1):519-527. doi: 10.1021/acs.nanolett.5b04166
    [24] Zheng G, Zhang Q, Cha J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters,2013,13(3):1265-1270. doi: 10.1021/nl304795g
    [25] Zhang Q, Wang Y, Seh Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries[J]. Nano Letters,2015,15(6):3780-3786. doi: 10.1021/acs.nanolett.5b00367
    [26] Tao X, Wang J, Ying Z, et al. Strong sulfur binding with conducting magnéli-phase TinO2n–1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters,2014,14(9):5288-5294. doi: 10.1021/nl502331f
    [27] Seh Z W, Yu J H, Li W, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nature Communications,2014,5(1):5017. doi: 10.1038/ncomms6017
    [28] Yao S S, He Y P, Arslan M, et al. The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries[J]. New Carbon Materials,2021,36(3):606. doi: 10.1016/S1872-5805(21)60032-X
    [29] Su Y S, Manthiram A. Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nature Communications,2012,3(1):1166. doi: 10.1038/ncomms2163
    [30] Su Y S, Manthiram A. A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer[J]. Chemical communications,2012,48(70):8817-8819. doi: 10.1039/c2cc33945e
    [31] Chung S H, Manthiram A. High-performance Li–S batteries with an ultra-lightweight MWCNT-coated separator[J]. The Journal of Physical Chemistry Letters,2014,5(11):1978-1983. doi: 10.1021/jz5006913
    [32] Han X, Xu Y, Chen X, et al. Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth[J]. Nano Energy,2013,2(6):1197-1206. doi: 10.1016/j.nanoen.2013.05.003
    [33] Shao J J, Zheng D Y, Li Z J, et al. Top-down fabrication of two-dimensional nanomaterials: Controllable liquid phase exfoliation[J]. New Carbon Materials,2016,31(2):97.
    [34] Peng H J, Huang J Q, Cheng X B, et al. Lithium-sulfur batteries: Review on high-loading and high-energy lithium–sulfur batteries[J]. Advanced Energy Materials,2017,7(24):1770141. doi: 10.1002/aenm.201770141
    [35] Moy D, Manivannan A, Narayanan S R. Direct measurement of polysulfide shuttle current: A window into understanding the performance of lithium-sulfur cells[J]. Journal of The Electrochemical Society,2014,162(1):A1-A7.
    [36] Zhang L, Wang Y, Niu Z, et al. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries[J]. Carbon,2019,141:400-416. doi: 10.1016/j.carbon.2018.09.067
    [37] Fang R, Zhao S, Sun Z, et al. More reliable lithium-sulfur batteries: Status, solutions and prospects[J]. Advanced Materials,2017,29(48):1606823. doi: 10.1002/adma.201606823
    [38] Palacín M R, De Guibert A. Why do batteries fail? [J]. Science, 2016, 351(6273):
    [39] Woo J J, Zhang Z, Amine K. Separator/electrode assembly based on thermally stable polymer for safe lithium-ion batteries[J]. Advanced Energy Materials,2014,4(5):1301208. doi: 10.1002/aenm.201301208
    [40] Yan L, Li Y S, Xiang C B. Preparation of poly(vinylidene fluoride)(pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research[J]. Polymer,2005,46(18):7701-7706. doi: 10.1016/j.polymer.2005.05.155
    [41] Qiu L, Zhang S, Zhang L, et al. Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries[J]. Electrochimica Acta,2010,55(15):4632-4636. doi: 10.1016/j.electacta.2010.03.030
    [42] Jung Y, Kim S. New approaches to improve cycle life characteristics of lithium–sulfur cells[J]. Electrochemistry Communications,2007,9(2):249-254. doi: 10.1016/j.elecom.2006.09.013
    [43] Song H, Wu K J, Zhang T W, et al. A nacre-inspired separator coating for impact-tolerant lithium batteries[J]. Advanced Materials,2019,31(51):1905711. doi: 10.1002/adma.201905711
    [44] Yu X, Wu H, Koo J H, et al. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium–sulfur batteries[J]. Advanced Energy Materials,2020,10(1):1902872. doi: 10.1002/aenm.201902872
    [45] Lee Y, Ryou M H, Seo M, et al. Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li-ion batteries[J]. Electrochimica Acta,2013,113:433-438. doi: 10.1016/j.electacta.2013.09.104
    [46] Ryou M H, Lee Y M, Park J K, et al. Mussel-inspired polydopamine-treated polyethylene separators for high-power li-ion batteries[J]. Advanced Materials,2011,23(27):3066-3070. doi: 10.1002/adma.201100303
    [47] Ryou M H, Lee D J, Lee J N, et al. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators[J]. Advanced Energy Materials,2012,2(6):645-650. doi: 10.1002/aenm.201100687
    [48] Cao C, Tan L, Liu W, et al. Polydopamine coated electrospun poly(vinyldiene fluoride) nanofibrous membrane as separator for lithium-ion batteries[J]. Journal of Power Sources,2014,248:224-229. doi: 10.1016/j.jpowsour.2013.09.027
    [49] Peng H J, Wang D W, Huang J Q, et al. Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries[J]. Advanced Science,2016,3(1):1500268. doi: 10.1002/advs.201500268
    [50] Abbas S A, Ibrahem M A, Hu L H, et al. Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries[J]. Journal of Materials Chemistry A,2016,4(24):9661-9669. doi: 10.1039/C6TA02272C
    [51] Balach J, Jaumann T, Klose M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium–sulfur batteries[J]. Advanced Functional Materials,2015,25(33):5285-5291. doi: 10.1002/adfm.201502251
    [52] Gu X, Lai C, Liu F, et al. A conductive interwoven bamboo carbon fiber membrane for Li–S batteries[J]. Journal of Materials Chemistry A,2015,3(18):9502-9509. doi: 10.1039/C5TA00681C
    [53] Liu Y, Qin X, Zhang S, et al. Fe3O4-decorated porous graphene interlayer for high-Performance lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10(31):26264-26273.
    [54] Sun Y N, Sui Z Y, Li X, et al. Nitrogen-doped porous carbons derived from polypyrrole-based aerogels for gas uptake and supercapacitors[J]. ACS Applied Nano Materials,2018,1(2):609-616. doi: 10.1021/acsanm.7b00089
    [55] Zhu Q, Zhao Q, An Y, et al. Ultra-microporous carbons encapsulate small sulfur molecules for high performance lithium-sulfur battery[J]. Nano Energy,2017,33:402-409. doi: 10.1016/j.nanoen.2017.01.060
    [56] Qian X, Jin L, Zhao D, et al. Ketjen black-MnO composite coated separator for high performance rechargeable lithium-sulfur battery[J]. Electrochimica Acta,2016,192:346-356. doi: 10.1016/j.electacta.2016.01.225
    [57] Sun W, Sun X, Peng Q, et al. Nano-MgO/AB decorated separator to suppress shuttle effect of lithium–sulfur battery[J]. Nanoscale Advances,2019,1(4):1589-1597. doi: 10.1039/C8NA00420J
    [58] Zheng B, Yu L, Zhao Y, et al. Ultralight carbon flakes modified separator as an effective polysulfide barrier for lithium-sulfur batteries[J]. Electrochimica Acta,2019,295:910-917. doi: 10.1016/j.electacta.2018.11.145
    [59] Wang Z, Huang W, Hua J, et al. An anionic-MOF-based bifunctional separator for regulating lithium deposition and suppressing polysulfides shuttle in Li–S batteries[J]. Small Methods,2020,4(7):2000082. doi: 10.1002/smtd.202000082
    [60] Chen C, Jiang Q, Xu H, et al. Ni/SiO2/Graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries[J]. Nano Energy,2020,76:105033. doi: 10.1016/j.nanoen.2020.105033
    [61] Chung S H, Manthiram A. A Polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries[J]. Advanced Materials,2014,26(43):7352-7357. doi: 10.1002/adma.201402893
    [62] Niu S, Zhou G, Lv W, et al. Sulfur confined in nitrogen-doped microporous carbon used in a carbonate-based electrolyte for long-life, safe lithium-sulfur batteries[J]. Carbon,2016,109:1-6. doi: 10.1016/j.carbon.2016.07.062
    [63] Xu Y, Wen Y, Zhu Y, et al. Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries[J]. Advanced Functional Materials,2015,25(27):4312-4320. doi: 10.1002/adfm.201500983
    [64] Oh C, Yoon N, Choi J, et al. Enhanced Li–S battery performance based on solution-impregnation-assisted sulfur/mesoporous carbon cathodes and a carbon-coated separator[J]. Journal of Materials Chemistry A,2017,5(12):5750-5760. doi: 10.1039/C7TA01161J
    [65] Bao W, Su D, Zhang W, et al. 3D Metal Carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries[J]. Advanced Functional Materials,2016,26(47):8746-8756. doi: 10.1002/adfm.201603704
    [66] Lee J S, Jun J, Jang J, et al. Sulfur-immobilized, activated porous carbon nanotube composite based cathodes for lithium–sulfur batteries[J]. Small,2017,13(12):1602984. doi: 10.1002/smll.201602984
    [67] Zhang C, Zhang Z, Wang D, et al. Three-dimensionally ordered macro-/mesoporous carbon loading sulfur as high-performance cathodes for lithium/sulfur batteries[J]. Journal of Alloys and Compounds,2017,714:126-132. doi: 10.1016/j.jallcom.2017.04.194
    [68] Wang H, Chen Z, Liu H K, et al. A facile synthesis approach to micro–macroporous carbon from cotton and its application in the lithium–sulfur battery[J]. RSC Advances,2014,4(110):65074-65080. doi: 10.1039/C4RA12260G
    [69] Shan Y H, Li L B, Du J T, et al. High performance lithium-sulfur batteries using three-dimensional hierarchical porous carbons to host the sulfur[J]. New Carbon Materlals,2021,36(6):1094. doi: 10.1016/S1872-5805(21)60063-X
    [70] Shan Y H, Li L B, Du J T, et al. High performance lithium-sulfur batteries using threedimensional hierarchical porous carbons to host the sulfur[J]. New Carbon Materials,2021,36(6):1094-1101. doi: 10.1016/S1872-5805(21)60063-X
    [71] Niu S, Zhang S W, Shi R, et al. Freestanding agaric-like molybdenum carbide/graphene/N-doped carbon foam as effective polysulfide anchor and catalyst for high performance lithium sulfur batteries[J]. Energy Storage Materials,2020,33:73-81. doi: 10.1016/j.ensm.2020.05.033
    [72] Zhou X, Liao Q, Bai T, et al. Rational design of graphene @ nitrogen and phosphorous dual-doped porous carbon sandwich-type layer for advanced lithium–sulfur batteries[J]. Journal of Materials Science,2017,52(13):7719-7732. doi: 10.1007/s10853-017-1029-2
    [73] Zhou G, Pei S, Li L, et al. A Graphene–pure-sulfur sandwich structure for ultrafast, long-life lithium–sulfur batteries[J]. Advanced Materials,2014,26(4):625-631. doi: 10.1002/adma.201302877
    [74] Hao J, Pan Y, Chen W, et al. Improving the Li-S battery performance by applying a combined interface engineering approach on the Li2S cathode[J]. Journal of Materials Chemistry A,2019,7(48):27247-27255. doi: 10.1039/C9TA10301E
    [75] Deng J, Guo J, Li J, et al. Functional separator with VGCF/PPY coating for high cyclic stability lithium–sulfur battery[J]. Materials Letters,2019,234:35-37. doi: 10.1016/j.matlet.2018.09.059
    [76] Li L B, Shan Y H. The use of graphene and its composites to suppress the shuttle effect in lithium-sulfur batteries[J]. New Carbon Materials,2021,36(2):336-349. doi: 10.1016/S1872-5805(21)60023-9
    [77] Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society,1958,80(6):1339-1339. doi: 10.1021/ja01539a017
    [78] Tang X N, Liu C Z, Chen X R, et al. Graphene aerogel derived by purification-free graphite oxide for high performance supercapacitor electrodes[J]. Carbon,2019,146:147-154. doi: 10.1016/j.carbon.2019.01.096
    [79] Wu D Y, Zhou W H, He L Y, et al. Micro-corrugated graphene sheet enabled high-performance all-solid-state film supercapacitor[J]. Carbon,2020,160:156-163. doi: 10.1016/j.carbon.2020.01.019
    [80] Wu D Y, Shao J J. Graphene-based flexible all-solid-state supercapacitors[J]. Materials Chemistry Frontiers,2021,5(2):557-583. doi: 10.1039/D0QM00291G
    [81] Yao S S, He Y P, Arslan M, et al. The electrochemical behavior of nitrogen-doped carbon nanofibers derived from a polyacrylonitrile precursor in lithium sulfur batteries[J]. New Carbon Materials,2021,36(3):606-615. doi: 10.1016/S1872-5805(21)60032-X
    [82] Zheng B, Yu L, Li N, et al. Efficiently immobilizing and converting polysulfide by a phosphorus doped carbon microtube textile interlayer for high-performance lithium-sulfur batteries[J]. Electrochimica Acta,2020,345:136186. doi: 10.1016/j.electacta.2020.136186
    [83] Zhang J, Li H, Pan Y, et al. Advanced-performance lithium-sulfur batteries with functional carbon interlayers modified by magnetron sputtering[J]. Ionics,2019,25(2):513-521. doi: 10.1007/s11581-018-2634-z
    [84] Zhu J, Pitcheri R, Kang T, et al. A polysulfide-trapping interlayer constructed by boron and nitrogen co-doped carbon nanofibers for long-life lithium sulfur batteries[J]. Journal of Electroanalytical Chemistry,2019,833:151-159. doi: 10.1016/j.jelechem.2018.11.010
    [85] Mo Y X, Lin J X, Wu Y J, et al. Core-shell structured S@Co(OH)2 with a carbon-nanofiber interlayer: A conductive cathode with suppressed shuttling effect for high-performance lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces,2019,11(4):4065-4073.
    [86] Chen L, Yu H, Li W, et al. Interlayer design based on carbon materials for lithium–sulfur batteries: a review[J]. Journal of Materials Chemistry A,2020,8(21):10709-10735. doi: 10.1039/D0TA03028G
    [87] Wu K, Hu Y, Shen Z, et al. Highly efficient and green fabrication of a modified C nanofiber interlayer for high-performance Li–S batteries[J]. Journal of Materials Chemistry A,2018,6(6):2693-2699. doi: 10.1039/C7TA09641K
    [88] Wutthiprom J, Phattharasupakun N, Khuntilo J, et al. Collaborative design of Li–S batteries using 3D N-doped graphene aerogel as a sulfur host and graphitic carbon nitride paper as an interlayer[J]. Sustainable Energy & Fuels,2017,1(8):1759-1765.
    [89] Li Y, Wang W, Liu X, et al. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries[J]. Energy Storage Materials,2019,23:261-268. doi: 10.1016/j.ensm.2019.05.005
    [90] Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium–sulfur batteries[J]. Advanced Materials,2017,29(20):1601759. doi: 10.1002/adma.201601759
    [91] Sun Z, Zhang J, Yin L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications,2017,8(1):14627. doi: 10.1038/ncomms14627
    [92] Shi Q X, Yang C Y, Pei H J, et al. Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery[J]. Chemical Engineering Journal,2021,404:127044. doi: 10.1016/j.cej.2020.127044
    [93] Kong Z K, Chen Y, Hua J Z, et al. Ultra-thin 2D MoO2 nanosheets coupled with CNTs as efficient separator coating materials to promote the catalytic conversion of lithium polysulfides for advanced lithium-sulfur batteries[J]. New Carbon Materials,2021,36(4):810-820. doi: 10.1016/S1872-5805(21)60080-X
    [94] Li Z, Tang L, Liu X, et al. A polar TiO/MWCNT coating on a separator significantly suppress the shuttle effect in a lithium-sulfur battery[J]. Electrochimica Acta,2019,310:1-12. doi: 10.1016/j.electacta.2019.04.057
    [95] Wang X, Yang L, Wang Y, et al. Novel functional separator with self-assembled MnO2 layer via a simple and fast method in lithium-sulfur battery[J]. Journal of Colloid and Interface Science,2022,606:666-676. doi: 10.1016/j.jcis.2021.08.062
    [96] Song Y, Zhao S, Chen Y, et al. Enhanced sulfur redox and polysulfide regulation via porous VN-modified separator for Li–S batteries[J]. ACS Applied Materials & Interfaces,2019,11(6):5687-5694.
    [97] He D, Meng J, Chen X, et al. Ultrathin conductive interlayer with high-density antisite defects for advanced lithium–sulfur batteries[J]. Advanced Functional Materials,2021,31(2):2001201. doi: 10.1002/adfm.202001201
    [98] Jin H G, Wang M, Wen J X, et al. Oxygen vacancy-rich mixed-valence cerium MOF: An efficient separator coating to high-performance lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces,2021,13(3):3899-3910.
    [99] Huang J Q, Zhang Q, Wei F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy Storage Materials,2015,1:127-145. doi: 10.1016/j.ensm.2015.09.008
    [100] Hwang J Y, Kim H M, Shin S, et al. Designing a high-performance lithium–sulfur batteries based onlayered double hydroxides–carbon nanotubes composite Ccathode and a dual-functional graphene–polypropylene–Al2O3 separator[J]. Advanced Functional Materials,2018,28(3):1704294. doi: 10.1002/adfm.201704294
    [101] Wang Y, Yang L, Chen Y, et al. Novel bifunctional separator with a self-assembled FeOOH/coated g-C3N4/KB bilayer in lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces,2020,12(52):57859-57869.
    [102] Shao H, Wang W, Zhang H, et al. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. Journal of Power Sources,2018,378:537-545. doi: 10.1016/j.jpowsour.2017.12.067
    [103] Guo Y, Zhang Y, Zhang Y, et al. Interwoven V2O5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries[J]. Journal of Materials Chemistry A,2018,6(40):19358-19370. doi: 10.1039/C8TA06610H
    [104] Kong W, Yan L, Luo Y, et al. Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li-S batteries[J]. Advanced Functional Materials,2017,27(18):1606663. doi: 10.1002/adfm.201606663
    [105] He J, Chen Y, Manthiram A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li–S batteries[J]. Energy & Environmental Science,2018,11(9):2560-2568.
    [106] Fan S, Huang S, Pam M E, et al. Design multifunctional catalytic interface: toward regulation of polysulfide and Li2S redox conversion in Li–S batteries[J]. Small,2019,15(51):1906132. doi: 10.1002/smll.201906132
    [107] Rana M, He Q, Luo B, et al. Multifunctional effects of sulfonyl-anchored, dual-doped multilayered graphene for high areal capacity lithium sulfur batteries[J]. ACS Central Science,2019,5(12):1946-1958. doi: 10.1021/acscentsci.9b01005
    [108] Balach J, Jaumann T, Klose M, et al. Improved cycling stability of lithium–sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent[J]. Journal of Power Sources,2016,303:317-324. doi: 10.1016/j.jpowsour.2015.11.018
    [109] Tian Y, Li G, Zhang Y, et al. Low-Bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–Sulfur batteries[J]. Advanced Materials,2020,32(4):1904876. doi: 10.1002/adma.201904876
    [110] Jovanović P, Mirshekarloo M S, Hill M R, et al. Separator design variables and recommended characterization methods for viable lithium–sulfur batteries[J]. Advanced Materials Technologies,2021,6(10):2001136. doi: 10.1002/admt.202001136
    [111] Geng C, Hua W, Wang D, et al. Demystifying the catalysis in lithium–sulfur batteries: Characterization methods and techniques[J]. SusMat,2021,1(1):51-65. doi: 10.1002/sus2.5
    [112] Park J, Yu S H, Sung Y E. Design of structural and functional nanomaterials for lithium-sulfur batteries[J]. Nano Today,2018,18:35-64. doi: 10.1016/j.nantod.2017.12.010
    [113] Bhargav A, He J, Gupta A, et al. Lithium-sulfur batteries: Attaining the critical metrics[J]. Joule,2020,4(2):285-291. doi: 10.1016/j.joule.2020.01.001
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  278
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 修回日期:  2022-04-21
  • 网络出版日期:  2022-04-27
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回