Construction of a flexible, integrated rechargeable Li battery based on a coaxial anode with a carbon fiber core encapsulated in FeNiMnO4 and a nitrogen-doped carbon sheath
-
摘要: 柔性的电池构型很大程度上取决于电极结构设计的独特性,即在动力载荷下精确控制电极结构稳定性、成分兼容性与形状一致性。在本研究中,作者开发了在炭布上负载的四元氧化物纳米晶的同轴阵列柔性负极(CC@FeNiMnO4-600),并进一步借助负极设计中准凝胶三元共聚物来有效调控同轴阵列表面包覆的 N 掺杂炭涂层。恒流充放电研究表明,CC@FeNiMnO4-600 负极表现出~1.40 mAh cm−2 的高面积容量和良好的循环效率(1 mA cm−2)。将柔性负极与少层氮化硼改性聚环氧乙烷固体电解质相匹配,所构建的柔性器件也同时展现出良好的界面电化学相容性和柔韧性。这种优异的性能得益于上述柔性负极各组分的协同效应,即有效平衡了四元氧化物高活性储能位点与柔韧的同轴结构;此外,紧密的 PEO //负极界面结合能够实现良好、连续的离子传输,本工作有望促进固态原型在可穿戴电子设备中的实际应用。Abstract: A coaxial anode with a carbon fiber core encapsulated in nanocrystalline FeNiMnO4 with a nitrogen-doped carbon sheath was prepared using carbon fiber cloth as the core, FeNiMnO4 nanocrystallite arrays as the first coating layer and nitrogen-doped carbon derived from F127 (a kind of triblock copolymer)-resorcinol-melamine gel as the outer layer. After annealing at 600 °C it was used as the anode material of an all solid flexible lithium ion battery using LiFePO4 as the cathode material and boron nitride modified polyethylene oxide as the electrolyte. The battery had a large areal capacity of ~1.40 mAh cm−2 and satisfactory cycling stability under different bending and strain states. Annealing below 600 °C leads to incomplete carbonization of the nitrogen-doped carbon and thus a low electrical conductivity while above 600 °C aggregation of FeNiMnO4 nanocrystallites and their detachment during cycling are observed under bending and strain.
-
Figure 1. SEM images of CC@FeNiMnO4-600 composite at (a) low and (b) high magnifications. (c) TEM image of the carbon encapsulation of the FeNiMnO4 nanocrystals and high resolution TEM image (inset) of the edge of the representative FeNiMnO4 nanocrystal with the highlighted lattice fringes. (d) TEM image of the representative region of the FeNiMnO4 nanocrystals and corresponding EDX elemental maps of (e) C, (f) Fe, (g) N, (h) Mn and (i) Ni. (j) Line scan elemental mapping of the CC@FeNiMnO4-600 composite
Figure 4. (a) The 1st, 2nd, 10th, 50th and 100th discharge-charge curves of CC@FeNiMnO4-600 electrode and the 1st discharge-charge curve of CC@FeNiMnO4-600 w/o NC electrode. (b) Long-term cycling performance of CC@FeNiMnO4-600 and CC@FeNiMnO4-600 w/o NC electrode at a current density of 1 mAh cm−2.(c) Rate performance of CC@FeNiMnO4-600 and CC@FeNiMnO4-600 w/o NC electrode at different current densities. (d) The reversible capacities of the CC@FeNiMnO4-600, CC@FeNiMnO4-650, CC@FeNiMnO4-550 and CC@FeNiMnO4-600 w/o NC electrode at different current densities
Figure 5. The post-mortem SEM characterizations of (a) CC@FeNiMnO4-600 electrode after 100 cycles and (b) CC@FeNiMnO4-600 w/o NC after 100 cycles at 1 mA cm-2 and corresponding elemental maps of O, C, Mn, Fe, P, and F. (c) Sum of irreversible capacity loss during the cycling of CC@FeNiMnO4-600 and CC@FeNiMnO4-600 w/o NC electrode.
Figure 6. (a) Conductivity of the CC@FeNiMnO4-500, 550, 600 and 650 electrodes at various strain states. (b) Resistance of the CC@FeNiMnO4-500, 550, 600, 650 and CC electrodes at various bending states. (c) The cycle performance of the CC@FeNiMnO4-600//liquid electrolyte//LiFePO4 pouch cell at the repetitive flat, and bended states. (d) The integrated configuration of the CC@FeNiMnO4-600//liquid electrolyte//LiFePO4 pouch cell.
Figure 7. (a) SEM and TEM images of few-layer boron nitride (FL-BN). (b) The optical photographs of the FL-BN/PEO SPE and schematic illustration of mechanical property test. (c-f) The optical photographs of the CC@FeNiMnO4-600ǁFL-BN/PEO SPEǁLiFePO4 pouch cell at the flat, bending, and cut states, the cut pouch cell can light up a LED light.
-
[1] Ban X, Zhang W, Chen N, et al. A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery[J]. The Journal of Physical Chemistry C,2018,122(18):9852-9858. doi: 10.1021/acs.jpcc.8b02556 [2] Armand M, Tarascon J M, Building better batteries [J]. Nature, 2008, 451(7179): 652-657. [3] Song J Y, Wang Y Y, Wan C C Review of gel-type polymer electrolytes for lithium-ion batteries [J]. Journal of Power Sources, 1999, 77(2): 183-197. [4] Chen Z, Kim G T, Wang Z, et al. 4-V flexible all-solid-state lithium polymer batteries[J]. Nano Energy,2019,64:103986. doi: 10.1016/j.nanoen.2019.103986 [5] Wan J, Xie J, Kong X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries[J]. Nat Nanotechnol,2019,14(7):705-711. doi: 10.1038/s41565-019-0465-3 [6] Zhao W, Bai M, Li S, et al. Integrated thin film battery design for flexible lithium ion storage: Optimizing the compatibility of the current collector‐free electrodes[J]. Advanced Functional Materials,2019,29(43):1903542. doi: 10.1002/adfm.201903542 [7] Zhang X Q, Cheng X B, Zhang Q. Advances in interfaces between Li metal anode and electrolyte[J]. Advanced Materials Interfaces,2018,5(2):1701097. [8] Wang W, Liao C, Liew K M, et al. A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries[J]. Journal of Materials Chemistry A,2019,7(12):6859-6868. doi: 10.1039/C8TA11795K [9] Zhang S Z, Wang X L, Xia X H, et al. Smart construction of intimate interface between solid polymer electrolyte and 3D-array electrode for quasi-solid-state lithium ion batteries[J]. Journal of Power Sources,2019,434:226726. doi: 10.1016/j.jpowsour.2019.226726 [10] Jing L, Lian G, Han S, et al. A self-etched template method to prepare CHS@MoS2 hollow microspheres for lithium-ion storage[J]. Journal of Alloys and Compounds,2019,801:367-374. doi: 10.1016/j.jallcom.2019.05.354 [11] Shen B, Zhang T W, Yin Y C, et al. Chemically exfoliated boron nitride nanosheets form robust interfacial layers for stable solid-state Li metal batteries[J]. Chemical Communication,2019,55(53):7703-7706. doi: 10.1039/C9CC02124H [12] Wang Y, Zhang D, Wang Y, et al. Self-limiting electrode with double-carbon layers as walls for efficient sodium storage performance[J]. Nanoscale,2019,11(22):11025-11032. doi: 10.1039/C9NR02449B [13] Li Y, Mu L, Hu Y S, et al. Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries[J]. Energy Storage Materials,2016,2:139-145. doi: 10.1016/j.ensm.2015.10.003 [14] Salhabi E H M, Zhao J, Wang J, et al. Hollow multi-shelled structural TiO2-x with multiple spatial confinement for long-life lithium-sulfur batteries[J]. Angewandate Chemie Internatioanal Ed in English,2019,58(27):9078-9082. doi: 10.1002/anie.201903295 [15] Wang B, Ryu J, Choi S, et al. Folding graphene film yields high areal energy storage in lithium-ion batteries[J]. ACS Nano,2018,12(2):1739-1746. doi: 10.1021/acsnano.7b08489 [16] Bai M, Tang X, Sun C, et al. Ternary anode design for sustainable battery technology: An off-stoichiometric Sn/SnSiOx+2@C composite recycled from biomass[J]. ACS Sustainable Chemistry & Engineering,2019,7(14):12563-12573. [17] Wu Z S, Ren W, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. ACS Nano,2010,4(6):3187-3194. doi: 10.1021/nn100740x [18] Chen D, Ji G, Ma Y, et al. Graphene-encapsulated hollow Fe3O4 nanoparticle aggregates as a high-performance anode material for lithium ion batteries[J]. ACS & Applied Materials Interfaces,2011,3(8):3078-3083. doi: 10.1021/am200592r [19] Zhao N, Liu Y, Zhao X, et al. Liquid crystal self-assembly of halloysite nanotubes in ionic liquids: a novel soft nanocomposite ionogel electrolyte with high anisotropic ionic conductivity and thermal stability[J]. Nanoscale,2016,8(3):1545-1554. doi: 10.1039/C5NR06888F [20] Chou S L, Lu L, Wang J Z, et al. The compatibility of transition metal oxide/carbon composite anode and ionic liquid electrolyte for the lithium-ion battery[J]. Journal of Applied Electrochemistry,2011,41(11):1261-1267. doi: 10.1007/s10800-011-0330-z [21] Xue Y, Wang Y. A review of the alpha-Fe2O3 (hematite) nanotube structure: Recent advances in synthesis, characterization, and applications[J]. Nanoscale,2020,12(20):10912-10932. [22] Yang S, Han Z, Zheng F, et al. ZnFe2O4 nanoparticles-cotton derived hierarchical porous active carbon fibers for high rate-capability supercapacitor electrodes[J]. Carbon,2018,134:15-21. doi: 10.1016/j.carbon.2018.03.071 [23] Huang J, Wang W, Lin X, et al. Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes[J]. Journal of Power Sources,2018,378:677-684. doi: 10.1016/j.jpowsour.2018.01.029 [24] Hou X, Zhu G, Niu X, et al. Ternary transition metal oxide derived from Prussian blue analogue for high-performance lithium ion battery[J]. Journal of Alloys and Compounds,2017,729:518-525. doi: 10.1016/j.jallcom.2017.09.203 [25] Ma Y, Tai C W, Li S, et al. Multiscale interfacial strategy to engineer mixed metal-oxide anodes toward enhanced cycling efficiency[J]. ACS & Applied Materials Interfaces,2018,10(23):20095-20105. doi: 10.1021/acsami.8b02908 [26] Kim D, Kang S H, Slater M, et al. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes[J]. Advanced Energy Materials,2011,1(3):333-336. doi: 10.1002/aenm.201000061 [27] Casanovas J, Ricart J M, Rubio J, et al. Origin of the large N 1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials[J]. Journal of the American Chemical Society,1996,118:8071-8076. doi: 10.1021/ja960338m -