留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳包覆磁性纳米粒子吸波机制及研究进展

李红盛 吴爱民 曹暾 黄昊

李红盛, 吴爱民, 曹暾, 黄昊. 碳包覆磁性纳米粒子吸波机制及研究进展. 新型炭材料(中英文), 2022, 37(4): 695-706. doi: 10.1016/S1872-5805(22)60624-3
引用本文: 李红盛, 吴爱民, 曹暾, 黄昊. 碳包覆磁性纳米粒子吸波机制及研究进展. 新型炭材料(中英文), 2022, 37(4): 695-706. doi: 10.1016/S1872-5805(22)60624-3
LI Hong-sheng, WU Ai-min, CAO Tun, HUANG Hao. The absorption mechanism for magnetic waves and research progress on carbon-coated magnetic nanoparticles. New Carbon Mater., 2022, 37(4): 695-706. doi: 10.1016/S1872-5805(22)60624-3
Citation: LI Hong-sheng, WU Ai-min, CAO Tun, HUANG Hao. The absorption mechanism for magnetic waves and research progress on carbon-coated magnetic nanoparticles. New Carbon Mater., 2022, 37(4): 695-706. doi: 10.1016/S1872-5805(22)60624-3

碳包覆磁性纳米粒子吸波机制及研究进展

doi: 10.1016/S1872-5805(22)60624-3
基金项目: 中央高校基本科研业务费(DUT20LAB123和DUT20LAB307);江苏省自然科学基金(BK20191167)。
详细信息
    作者简介:

    李红盛,博士研究生. E-mail:1367717320@mail.dlut.edu.cn

    通讯作者:

    吴爱民,博士,副教授. E-mail:aimin@dlut.edu.cn

  • 中图分类号: TB33

The absorption mechanism for magnetic waves and research progress on carbon-coated magnetic nanoparticles

Funds: Fundamental Research Funds for the Central Universities (DUT20LAB123 and DUT20-LAB307) Natural Science Foundation of Jiangsu Province (BK20191167)
More Information
    Corresponding author: WU Ai-min, Ph. D. Associate Professor. E-mail: aimin@dlut.edu.cn
  • 摘要: 电磁波通讯技术的快速发展,为信息高效传输提供了很大便利,但随之而来高频电子辐射问题日益严重,电磁波吸收材料成为解决电磁辐射的关键。开发“薄、轻、宽、强”的高性能电磁波吸收材料是目前吸波领域研究的重点和热点。本文主要依据传输线理论,介绍了吸波材料的隐身机理,同时总结了吸波材料的制备方法。重点阐述了碳包覆磁性纳米粒子微波隐身材料的研究进展,并讨论了该类吸波材料的未来应用前景以及发展趋势,最后对碳包覆磁性纳米隐身材料的应用以及研发方向提出了几点建议。
  • FIG. 1653.  FIG. 1653.

    FIG. 1653..  FIG. 1653.

    图  1  电磁波传播路径

    Figure  1.  The propagation path of electromagnetic waves.

    图  2  碳包覆磁性纳米粒子透射图:(a)C@Fe,(b)C@Ni,(c)C@SiC@Ni,(d)C@SiC@Ni,(c)C@Sn[13, 14]

    Figure  2.  TEM images of the carbon-coated magnetic nanoparticless[13, 14]: (a) C@Fe, (b) C@Ni, (b) C@SiC@Ni, (d) C@Sn. Reprinted with permission.

    图  3  不同形貌的碳包覆复合材料[1, 21-23]

    Figure  3.  Carbon-coated composite materials with different morphologies[1, 21-23]. Reprinted with permission.

    图  4  MOFs衍生法制备的不同结构的材料[25]

    Figure  4.  Materials with different structures prepared by MOFs method[25]. Reprinted with permission.

    图  5  C@Fe纳米粒子的(a)透射图,(b)反射损耗图[37];(c)Fe、Fe/C纳米胶囊对比XRD和TEM图[38];(d)Fe/C的反射损耗图[39]

    Figure  5.  (a) HRTEM images and (b) reflection loss curves of C@Fe nanoparticles[37]; (c) XRD and TEM images of Fe and Fe/C nanocapsules[38]; (d) reflection loss curves of Fe/C[39]. Reprinted with permission.

    图  6  (a)C@Co纳米粒子的透射图[13],(b)Co@CNTs的反射损耗图[61],(c)Co/C纳米粒子的透射图[62],(d)Co/C的反射损耗图[63]

    Figure  6.  (a) HRTEM images of C@Co nanoparticles[13], (b) reflection loss curves of C@CNTs[61], (c) TEM images of Co/C nanoparticles[62], (d) reflection loss curves of Co/C[63]. Reprinted with permission.

    图  7  (a)Co20Ni80合金材料合成和形态演变示意图,(b)Co20Ni80合金材料的反射损耗图[75];FeCoNi@C复合材料的(c)反射损耗图与(d)微波吸收机制的示意图[73];(e)NiCo@C/ZnO纳米粒子的反射损耗图[6]

    Figure  7.  (a) Schematic illustrations of the formation and morphology evolution of the Co20Ni80 alloy in the whole synthetic process, (b) reflection loss curves of Co20Ni80 alloy[75]; (c) reflection loss curves and (d) schematic view of microwave absorption mechanisms of FeCoNi@C composites[73]; (e) reflection loss curves for the NiCo@C/ZnO[6]. Reprinted with permission.

    表  1  不同碳包覆磁性纳米粒子吸波性能对比表

    Table  1.   Comparison of electromagnetic wave absorption performance of different carbon-coated magnetic nanoparticles.

    Carbon coated magnetic
    nanoparticles particle
    RLmax
    (dB)
    Optimal reflection
    loss band(f, GHz)
    Effective absorption band
    (GHz,RL<−10 dB)
    References
    Fe@C−22.615.05.3[39]
    Ni@C−32134.3[43]
    Co@C−8.54.8[13]
    CoFe@C−44.14.085.20[64]
    FeNi@C−46.73.17[72]
    Ni1−xCox@C−59.56.34.7[42]
    FeCoNi@C−69.035.528.08[73]
    下载: 导出CSV
  • [1] Wei S, Wang X, Zhang B, et al. Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance[J]. Chemical Engineering Journal,2017,314:477-487. doi: 10.1016/j.cej.2016.12.005
    [2] Wang Y, Bo J, Sai C, et al. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms[J]. New Carbon Materials,2021,36:1016-1033. doi: 10.1016/S1872-5805(21)60095-1
    [3] Yang X, Duan Y, Li S, et al. Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance[J]. Carbon,2022,188:376-384. doi: 10.1016/j.carbon.2021.12.044
    [4] Guo R, Su D, Chen F, et al. Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption[J]. ACS Applied Materials & Interfaces,2022,14(2):3084-3094.
    [5] Yang Y, Xia L, Zhang T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance[J]. Chemical Engineering Journal,2018,352:510-518. doi: 10.1016/j.cej.2018.07.064
    [6] Wang J, Jia Z, Liu X, et al. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption[J]. Nano-Micro Letters,2021,13(1):175. doi: 10.1007/s40820-021-00704-5
    [7] Wang C, Chen P, Li X, et al. Enhanced electromagnetic wave absorption for Y2O3-doped SiBCN ceramics[J]. ACS Applied Materials & Interfaces,2021,13(46):55440-55453.
    [8] Tian W, Li J, Liu Y, et al. Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands[J]. Nano-Micro Letters,2021,13(1):161. doi: 10.1007/s40820-021-00678-4
    [9] Wang L, Yu X, Huang M, et al. Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption[J]. Carbon,2021,172:516-28. doi: 10.1016/j.carbon.2020.09.050
    [10] 邓钏, 张卫珂, 杨艳青等. 磁性纳米洋葱碳基复合材料的制备及其吸波性能[J]. 新型炭材料, 2019, 34: 170-180. doi: 10.1016/S1872-5805(21)60023-15

    JIN H, SUN Q, WANG J, et al. Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure[J]. New Carbon Materials,2021,36:390-400. doi: 10.1016/S1872-5805(21)60023-15
    [11] LIU S, LIU J, DONG X. Electromagnetic wave shielding and absorption materials. Chemical Industry Press , 2003.
    [12] Zhu H, Liang J, Chen J, et al. Rational construction of yolk-shell structured Co3Fe7/FeO@carbon composite and optimization of its microwave absorption. Journal of Colloid and Interface Science[J]. Journal of Colloid and Interface Science,2022,626:775-786.
    [13] Huang H, Zhang XF, Lv B, et al. Characterization and microwave absorption of “core/shell” type nanoparticles[J]. Materials Science Forum,2007,561:1097-100.
    [14] Li H, Gao S, Tong H, et al. The capacitive loss of microwave energy in Ni@SiC@C core/bi-shell nanoparticles[J]. Chemical Engineering Journal,2022:434.
    [15] Wu N, Liu X, Zhao C, et al. Effects of particle size on the magnetic and microwave absorption properties of carbon-coated nickel nanocapsules[J]. Journal of Alloys and Compounds,2016,656:628-634. doi: 10.1016/j.jallcom.2015.10.027
    [16] Han B, Chu W, Han X, et al. Dual functions of glucose induced composition-controllable Co/C microspheres as high-performance microwave absorbing materials[J]. Carbon,2020,168:404-414. doi: 10.1016/j.carbon.2020.07.005
    [17] Li G, Wang L, Li W, et al. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous and Mesoporous Materials 2015, 211: 97-104.
    [18] Lv H, Ji G, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features[J]. Journal of Materials Chemistry C,2015,3(39):10232-10241. doi: 10.1039/C5TC02512E
    [19] Zhou X, Wang B, Jia Z, et al. Dielectric behavior of Fe3N@C composites with green synthesis and their remarkable electromagnetic wave absorption performance[J]. Journal of Colloid and Interface Science,2021,582:515-525. doi: 10.1016/j.jcis.2020.08.087
    [20] Zhang J, Sun J, Hu Y, et al. Electrochemical capacitive properties of all-solid-state supercapacitors based on ternary MoS2/CNTs-MnO2 hybrids and ionic mixture electrolyte[J]. Journal of Alloys and Compounds,2019,780:276-283. doi: 10.1016/j.jallcom.2018.11.332
    [21] Zhou C, Wu C, Liu D, et al. Metal-organic framework derived hierarchical Co/C@V2O3 hollow spheres as a thin, lightweight, and high-efficiency electromagnetic wave absorber[J]. Chemistry,2019,25(9):2234-2241. doi: 10.1002/chem.201805565
    [22] Liao Z, Ma M, Tong Z, et al. Fabrication of one-dimensional ZnFe2O4@carbon@MoS2/FeS2 composites as electromagnetic wave absorber[J]. Journal of Colloid and Interface Science,2021,600:90-98. doi: 10.1016/j.jcis.2021.04.142
    [23] Xu J, Liu Z, Li Q, et al. Wrinkled Fe3O4@C magnetic composite microspheres: regulation of magnetic content and their microwave absorbing performance[J]. Journal of Colloid and Interface Science,2021,601:397-410. doi: 10.1016/j.jcis.2021.05.153
    [24] Zhang J, Hector AL, Soulé S, et al. Effects of ammonolysis and of sol-gel titanium oxide nitride coating on carbon fibres for use in flexible supercapacitors[J]. Journal of Materials Chemistry A,2018,6(12):5208-5216. doi: 10.1039/C7TA11142H
    [25] Zhao H, Wang F, Cui L, et al. Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers [J]: A Review. Nano-Micro Letters, 2021, 13(1): 208.
    [26] Pan F, Liu Z, Deng B, et al. Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance[J]. Nano-Micro Letters,2021,13(1):43. doi: 10.1007/s40820-020-00568-1
    [27] Xu C, Wang L, Li X, et al. Hierarchical magnetic network constructed by CoFe nanoparticles suspended within "tubes on rods" matrix toward enhanced microwave absorption[J]. Nano-Micro Letters,2021,13(1):47. doi: 10.1007/s40820-020-00572-5
    [28] Quan B, Liang X, Ji G, et al. Strong electromagnetic wave response derived from the construction of dielectric/magnetic media heterostructure and multiple interfaces[J]. ACS Applied Materials & Interfaces,2017,9(11):9964-9974.
    [29] Liu D, Du Y, Xu P, et al. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption[J]. Journal of Materials Chemistry A,2021,9(8):5086-5096. doi: 10.1039/D0TA10942H
    [30] Liu P, Gao S, Zhang G, et al. Hollow engineering to Co@N‐doped carbon nanocages via synergistic protecting‐etching strategy for ultrahigh microwave absorption [J]. Advanced Functional Materials, 2021, 31(27).
    [31] Miao P, Cao J, Kong J, et al. Bimetallic MOF-derived hollow ZnNiC nano-boxes for efficient microwave absorption[J]. Nanoscale,2020,12(25):13311-13315. doi: 10.1039/D0NR03104F
    [32] Liu X, Hao C, He L, et al. Yolk-shell structured Co-C/Void/Co9S8 composites with a tunable cavity for ultrabroadband and efficient low-frequency microwave absorption[J]. Nano Research,2018,11(8):4169-4182. doi: 10.1007/s12274-018-2006-z
    [33] Xiong J, Xiang Z, Deng B, et al. Engineering compositions and hierarchical yolk-shell structures of NiCo/GC/NPC nanocomposites with excellent electromagnetic wave absorption properties[J]. Applied Surface Science,2020:513.
    [34] Wang Y, Du Y, Qiang R, et al. Interfacially engineered sandwich-like rGO/carbon microspheres/rGO composite as an efficient and durable microwave absorber [J]. Advanced Materials Interfaces , 2016, 3(7).
    [35] Wang L, Li X, Li Q, et al. Enhanced polarization from hollow cube-like ZnSnO3 wrapped by multiwalled carbon nanotubes: as a lightweight and high-performance microwave absorber[J]. ACS Applied Materials & Interfaces,2018,10(26):22602-22610.
    [36] Xu H, Yin X, Li M, et al. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature[J]. Carbon,2018,132:343-351. doi: 10.1016/j.carbon.2018.02.040
    [37] Zhang XF, Dong XL, Huang H, et al. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules[J]. Journal of Physics D:Applied Physics,2007,40(17):5383-5387. doi: 10.1088/0022-3727/40/17/056
    [38] Liu X, Or SW, Sun Y, et al. Influence of a graphite shell on the thermal, magnetic and electromagnetic characteristics of Fe nanoparticles[J]. Journal of Alloys and Compounds,2013,548:239-244. doi: 10.1016/j.jallcom.2012.09.006
    [39] Qiang R, Du Y, Zhao H, et al. Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption[J]. Journal of Materials Chemistry A,2015,3(25):13426-13434. doi: 10.1039/C5TA01457C
    [40] Wang T, Wang H, Chi X, et al. Synthesis and microwave absorption properties of Fe-C nanofibers by electrospinning with disperse Fe nanoparticles parceled by carbon[J]. Carbon,2014,74:312-318. doi: 10.1016/j.carbon.2014.03.037
    [41] Luo W, Wang M, Wang K, et al. A robust hierarchical MXene/Ni/Aluminosilicate glass composite for high-performance microwave absorption[J]. Advance Science,2021:2104163.
    [42] Wang L, Huang M, Yu X, et al. MOF-derived Ni1-xCox@carbon with tunable nano-microstructure as lightweight and highly efficient electromagnetic wave absorber[J]. Nano-Micro Letters,2020,12(1):150. doi: 10.1007/s40820-020-00488-0
    [43] Zhang XF, Dong XL, Huang H, et al. Microwave absorption properties of the carbon-coated nickel nanocapsules[J]. Applied Physics Letters, 2006, 89(5).
    [44] Li N, Cao M, Hu C. A simple approach to spherical nickel-carbon monoliths as light-weight microwave absorbers[J]. Journal of Materials Chemistry, 2012, 22(35).
    [45] Tong G, Liu F, Wu W, et al. Rambutan-like Ni/MWCNT heterostructures: easy synthesis, formation mechanism, and controlled static magnetic and microwave electromagnetic characteristics[J]. Journal of Materials Chemistry A, 2014, 2(20).
    [46] Meng H, Zhao X, Yu L, et al. Island-like nickel/carbon nanocomposites as potential microwave absorbers-synthesis via in situ solid phase route and investigation of electromagnetic properties[J]. Journal of Alloys and Compounds,2015,644:236-241. doi: 10.1016/j.jallcom.2015.04.198
    [47] Chen T, Deng F, Zhu J, et al. Hexagonal and cubic Ni nanocrystals grown on graphene: phase-controlled synthesis, characterization and their enhanced microwave absorption properties [J]. Journal of Materials Chemistry, 2012, 22(30).
    [48] Liu D, Du Y, Xu P, et al. Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption[J]. Journal of Materials Chemistry C,2019,7(17):5037-5046. doi: 10.1039/C9TC00771G
    [49] Gu J, Li Q, Zeng P, et al. Facile solid-state synthesis of Ni@C nanosheet-assembled hierarchical network for high-performance lithium storage[J]. Journal of Power Sources,2017,358:69-75. doi: 10.1016/j.jpowsour.2017.05.029
    [50] Wang B, Wu Q, Fu Y, et al. Yolk-shell structured Co@SiO2@Void@C nanocomposite with tunable cavity prepared by etching of SiO2 as high-efficiency microwave absorber[J]. Journal of Colloid and Interface Science,2021,594:342-351. doi: 10.1016/j.jcis.2021.03.011
    [51] Liu L, He N, Wu T, et al. Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties[J]. Chemical Engineering Journal,2019,355:103-108. doi: 10.1016/j.cej.2018.08.131
    [52] Zheng Z, Xu B, Huang L, et al. Novel composite of Co/carbon nanotubes: synthesis, magnetism and microwave absorption properties[J]. Solid State Sciences,2008,10(3):316-320. doi: 10.1016/j.solidstatesciences.2007.09.016
    [53] Yin Y, Liu X, Wei X, et al. Magnetically aligned Co-C/MWCNTs composite derived from MWCNT-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber[J]. ACS Applied Materials & Interfaces,2017,9(36):30850-30861.
    [54] Miao P, Yu Z, Chen W, et al. Synergetic dielectric and magnetic losses of a core-shell Co/MnO/C nanocomplex toward highly efficient microwave absorption[J]. Inorganic Chemistry,2022,61(3):1787-1796. doi: 10.1021/acs.inorgchem.1c03749
    [55] Ma Z, Liu Q, Yuan J, et al. Analyses on multiple resonance behaviors and microwave reflection loss in magnetic Co microflowers[J]. Physica Status Solidi,2012,249(3):575-580. doi: 10.1002/pssb.201147382
    [56] Kong J, Wang F, Wan X, et al. Template-free synthesis of Co nanoporous structures and their electromagnetic wave absorption properties[J]. Materials Letters,2012,78:69-71. doi: 10.1016/j.matlet.2012.03.026
    [57] Wang C, Han X, Zhang X, et al. Controlled synthesis and morphology-dependent electromagnetic properties of hierarchical cobalt assemblies[J]. Journal of Physical Chemistry C,2010,114:14826-14830. doi: 10.1021/jp1050386
    [58] Li J, Huang J, Qin Y, et al. Magnetic and microwave properties of cobalt nanoplatelets[J]. Materials Science and Engineering:B,2007,138(3):199-204. doi: 10.1016/j.mseb.2006.12.001
    [59] Lv H, Liang X, Ji G, et al. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties[J]. ACS Applied Materials & Interfaces,2015,7(18):9776-9783.
    [60] He C, Qiu S, Wang X, et al. Facile synthesis of hollow porous cobalt spheres and their enhanced electromagnetic properties[J]. Journal of Materials Chemistry, 2012, 22(41).
    [61] Wen B, Yang H, Lin Y, et al. Novel bimetallic MOF derived hierarchical Co@C composites modified with carbon nanotubes and its excellent electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science,2022,605:657-666. doi: 10.1016/j.jcis.2021.07.118
    [62] Qiang R, Du Y, Wang Y, et al. Rational design of yolk-shell C@C microspheres for the effective enhancement in microwave absorption[J]. Carbon,2016,98:599-606. doi: 10.1016/j.carbon.2015.11.054
    [63] Liu T, Xie X, Pang Y, et al. Co/C nanoparticles with low graphitization degree: a high performance microwave-absorbing material[J]. Journal of Materials Chemistry C,2016,4(8):1727-1735. doi: 10.1039/C5TC03874J
    [64] Wei S, Chen T, Wang Q, et al. Metal-organic framework derived hollow CoFe@C composites by the tunable chemical composition for efficient microwave absorption[J]. Journal of Colloid and Interface Science,2021,593:370-379. doi: 10.1016/j.jcis.2021.02.120
    [65] He Z, Liu M, Liu L, et al. Distinct plasmon resonance enhanced microwave absorption of strawberry-like Co/C/Fe/C core-shell hierarchical flowers via engineering the diameter and interparticle spacing of Fe/C nanoparticles[J]. RSC Advances,2019,9(39):22644-22655. doi: 10.1039/C9RA04988F
    [66] Zhao X, Yan J, Huang Y, et al. Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2021,595:78-87. doi: 10.1016/j.jcis.2021.03.109
    [67] Wang Y L, Yang S H, Wang H Y, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber[J]. Carbon,2020,167:485-494. doi: 10.1016/j.carbon.2020.06.014
    [68] Liu Y, Chen Z, Xie W, et al. Enhanced microwave absorption performance of porous and hollow CoNi@C microspheres with controlled component and morphology[J]. Journal of Alloys and Compounds,2019:809.
    [69] Sun G, Wu H, Liao Q, et al. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene[J]. Nano Research,2018,11(5):2689-2704. doi: 10.1007/s12274-017-1899-2
    [70] Guo T, Huang B, Li C, et al. Magnetic sputtering of FeNi/C bilayer film on SiC fibers for effective microwave absorption in the low-frequency region[J]. Ceramics International,2021,47(4):5221-5226. doi: 10.1016/j.ceramint.2020.10.101
    [71] Liu X G, Li B, Geng D Y, et al. (Fe, Ni)/C nanocapsules for electromagnetic-wave-absorber in the whole Ku-band[J]. Carbon,2009,47(2):470-474. doi: 10.1016/j.carbon.2008.10.028
    [72] Feng C, Liu X, Sun Y, et al. Enhanced microwave absorption of flower-like FeNi@C nanocomposites by dual dielectric relaxation and multiple magnetic resonance[J]. RSC Advance,2014,4(43):22710-22715. doi: 10.1039/C4RA01437E
    [73] Ou Y J, He Z, Zhang Y, et al. Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability[J]. ACS Applied Materials & Interfaces,2019,11(42):39304-39314.
    [74] Wen F, Zhang F, Liu Z. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. The Journal of Physical Chemistry C,2011,115(29):14025-14030. doi: 10.1021/jp202078p
    [75] Liu Q, Xu X, Xia W, et al. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography[J]. Nanoscale,2015,7(5):1736-1743. doi: 10.1039/C4NR05547K
    [76] Yang H, Wen B, Wang L. Carbon nanotubes modified CoZn/C composites with rambutan-like applied to electromagnetic wave absorption[J]. Applied Surface Science,2020:509.
    [77] Wan Y, Cui T, Xiao J, et al. Engineering carbon fibers with dual coatings of FeCo and CuO towards enhanced microwave absorption properties[J]. Journal of Alloys and Compounds,2016,687:334-341. doi: 10.1016/j.jallcom.2016.06.147
    [78] Wang S, Peng S, Zhong S, et al. Construction of SnO2/Co3Sn2@C and SnO2/Co3Sn2@Air@C hierarchical heterostructures for efficient electromagnetic wave absorption[J]. Journal of Materials Chemistry C,2018,6(35):9465-9474. doi: 10.1039/C8TC03260B
    [79] Han M, Yin X, Hou Z, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces,2017,9(13):11803-11810.
    [80] Wang N, Han X, Liu D, et al. Core-shell FeCo@carbon nanoparticles encapsulated in polydopaminederived carbon nanocages for efficient microwave absorption[J]. Carbon,2019,145:701-711. doi: 10.1016/j.carbon.2019.01.082
    [81] Liu P, Gao S, Wang Y, et al. Core-shell CoNi@graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation[J]. ACS Applied Materials & Interfaces,2019,11(28):25624-25635.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  316
  • HTML全文浏览量:  96
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-06-16
  • 网络出版日期:  2022-06-20
  • 刊出日期:  2022-07-20

目录

    /

    返回文章
    返回