-
摘要: 近年来,微/纳米制造和集成微系统的快速发展受到越来越多的关注,因此对微型储能器件(MESDs),尤其是商业化的微型电池提出了更高的需求。锂离子微型电池(LIMBs)是研究最多的微型储能器件,但较低的负载和待提高的能量密度仍然阻碍了其进一步的应用。在此,通过基于挤出式的墨水直写和相应的后处理,设计并制备了3D打印的氮掺杂碳包覆ZnSe纳米颗粒的复合电极。高容量的ZnSe纳米颗粒被限制在氮掺杂的碳中,其中氮掺杂的碳不仅能增强电导率,还可以充当缓冲层以减轻纳米材料的体积膨胀,并为电化学反应提供额外的活性位点。此外,3D打印电极的互连设计有利于快速传质和离子传输。因此,通过直接墨水书写的自支撑3D打印电极实现了3.15 mg cm−2的高负载量,在锂离子微型电池中表现出优异的能量密度和良好的可逆性。该工作为设计高性能电极和高负载量电极提供新的思路与策略,有望构建优异的微型储能器件。
-
关键词:
- 微系统 /
- 微型电池 /
- ZnSe/NC微电极 /
- 高负载 /
- 3D打印
Abstract: The rapid development of micro/nanomanufacturing and integrated microsystems is attracting increasing attention in recent years, thus requiring higher demand for the micro energy storage devices (MESDs), especially the commercialized-based microbatteries. Li-ion microbatteries (LIMBs) are the most studied MESDs, but the low mass loading and less-than-perfect energy density still hinder the further application. Herein, a 3D printed ZnSe nanoparticles with N-doped carbon (ZnSe/NC) composite electrode is designed and fabricated by the extrusion-based 3D printing and post treatment for the anode of LIMBs. The high-capacity ZnSe nanoparticles are confined into the NC, where the NC not only enhances the conductivity but also acts as a buffer layer to alleviate the volume expansion, as well as provides additional active sites for electrochemical reactions. Besides, the interconnected design of 3D printed electrode is beneficial for the fast mass transfer and ion transport. As a result, the freestanding 3D printed ZnSe/NC electrode with high mass loading of 3.15 mg cm-2 is achieved by the direct ink writing, demonstrating superior energy density and decent reversibility in high-mass-loading and high-power LIMBs. This strategy can be applied for other high-performance electrode and high-mass-loading microbatteries, opening up a new road for constructing advanced MESDs.-
Key words:
- microsystems /
- microbatteries /
- ZnSe/NC microelectrode /
- high mass loading /
- 3D printing.
-
Figure 1. (a) Schematic illustration of the 3D printed freestanding ZnSe/NC microelectrode. (b) SEM images of the ZnSe/NC composite electrode. (c) Digital photographs of the 3D printed ZnSe/NC microelectrode with different patterns on Cu foil. (d) Digital photographs of 3D printed ZnSe/NC microelectrode onto various substrates.
Figure 2. (a) Digital photographs of printable ink and 3D printed freestanding microelectrode patterns. SEM images of 3D printed ZnSe/NC microelectrode from (b) top view, (c) cross-sectional view, and (d) magnified view. (e) XRD patterns of ZIF-8 precursor and ZnSe/NC composite. (f) TG curve of ZnSe/NC composite.
Figure 4. (a) CV curves of ZnSe/NC anode in the first three cycles. (b) Rate capability of ZnSe/NC anode at different current densities. (c) Cycling performance of ZnSe/NC anode over 1000 laps at the current density of 1000 mA g−1. (d) CV curves of ZnSe/NC anode from 0.1 to 10 mV s−1. (e) Scale diagram of pseudocapacitive capacitance and diffusion-controlled capacitance contribution of ZnSe/NC anode at various scan rates.
-
[1] H. Zhang, Z. Qu, H. Tang, et al. On-Chip Integration of a Covalent Organic Framework-Based Catalyst into a Miniaturized Zn–Air Battery with High Energy Density. ACS Energy Letters, 2021, 6: 2491-2498. [2] M. Zhu, O. G. Schmidt. Tiny robots and sensors need tiny batteries - here's how to do it. Nature, 2021, 589: 195-197. [3] J. Wang, C. Wang, P. Cai, et al. Artificial Sense Technology: Emulating and Extending Biological Senses. ACS Nano, 2021, 15: 18671-18678. [4] Z. Lv, C. Wang, C. Wan, et al. Strain-Driven Auto-Detachable Patterning of Flexible Electrodes. Adv. Mater. , 2022, 2202877. [5] Y. Zhang, L. Wang, L. Zhao, et al. Flexible Self-Powered Integrated Sensing System with 3D Periodic Ordered Black Phosphorus@MXene Thin-Films. Adv. Mater. , 2021, 33: 2007890. [6] Z. Lv, W. Li, L. Yang, et al. Custom-Made Electrochemical Energy Storage Devices. ACS Energy Letters, 2019, 4: 606-614. [7] S. Zheng, X. Shi, P. Das, et al. The Road Towards Planar Microbatteries and Micro-Supercapacitors: From 2D to 3D Device Geometries. Adv. Mater. , 2019, 31: 1900583. [8] N. A. Kyeremateng, T. Brousse, D. Pech. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. , 2017, 12: 7-15. [9] X. Mu, J. Du, Y. Li, et al. One-step laser direct writing of boron-doped electrolyte as all-solid-state microsupercapacitors. Carbon, 2019, 144: 228-234. [10] M. Beidaghi, Y. Gogotsi. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. , 2014, 7: 867-884. [11] G. H. Zhang, J. Hu, Y. Nie, et al. Integrating Flexible Ultralight 3D Ni Micromesh Current Collector with NiCo Bimetallic Hydroxide for Smart Hybrid Supercapacitors. Adv. Funct. Mater. , 2021, 31: 2100290. [12] X. Lv, Y. Zhang, X. Li, et al. High-performance magnesium ion asymmetric Ppy@FeOOH//Mn3O4 micro-supercapacitor. Journal of Energy Chemistry, 2022, 72: 352-360. [13] Q. Xu, C. Wu, X. Sun, et al. Flexible electrodes with high areal capacity based on electrospun fiber mats. Nanoscale, 2021, 13: 18391-18409. [14] L. Liu, Q. Weng, X. Lu, et al. Advances on Microsized On-Chip Lithium-Ion Batteries. Small, 2017, 13: 1701847. [15] L. Zhang, M. Liao, L. Bao, et al. The Functionalization of Miniature Energy-Storage Devices. Small Methods, 2017, 1: 1700211. [16] T. Chen, Z. Shuang, J. Hu, et al. Freestanding 3D Metallic Micromesh for High-Performance Flexible Transparent Solid-State Zinc Batteries. Small, 2022, 18: 2201628. [17] Y. Zhao, H. Liu, Y. Yan, et al. Flexible Transparent Electrochemical Energy Conversion and Storage: From Electrode Structures to Integrated Applications. ENERGY & ENVIRONMENTAL MATERIALS, 2021, 10.1002/eem2.12303. [18] H. Liu, G. Zhang, L. Wang, et al. Engineering 3D Architecture Electrodes for High-Rate Aqueous Zn–Mn Microbatteries. ACS Appl. Energy Mater. , 2021, 4, 9, 10414–10422. [19] H. Liu, G. Zhang, X. Zheng, et al. Emerging miniaturized energy storage devices for microsystem applications: from design to integration. International Journal of Extreme Manufacturing, 2020, 2: 042001. [20] Y. Wang, Q. Li, S. Cartmell, et al. Fundamental understanding and rational design of high energy structural microbatteries. Nano Energy, 2018, 43: 310-316. [21] H. Xia, Y. Tang, O. I. Malyi, et al. Deep Cycling for High-Capacity Li-Ion Batteries. Adv. Mater. , 2021, 33: 2004998. [22] X. Sun, L. Qiao. Synthesis and electrochemical properties of bioderived silicon particles for lithium ion battery anodes. Journal of Materials Science: Materials in Electronics, 2021, 32: 10277-10288. [23] X. Sun. Morphosynthesis of SnO2 nanocrystal networks as high-capacity anodes for lithium ion batteries. Ionics, 2020, 26: 3841-3851. [24] S. Zhong, H. Liu, D. Wei, et al. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem. Eng. J. , 2020, 395: 125054. [25] Q. Xia, H. Yang, M. Wang, et al. High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode. Adv. Energy Mater. , 2017, 7: 1701336. [26] L. Xue, Q. Zhang, Y. Huang, et al. Stabilizing Layered Structure in Aqueous Electrolyte via Dynamic Water Intercalation/Deintercalation. Adv Mater, 2022, 34: 2108541. [27] S. Zheng, H. Huang, Y. Dong, et al. Ionogel-based sodium ion micro-batteries with a 3D Na-ion diffusion mechanism enable ultrahigh rate capability. Energy Environ. Sci. , 2020, 13: 821-829. [28] M. Koo, K. -I. Park, S. H. Lee, et al. Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems. Nano Lett. , 2012, 12: 4810-4816. [29] S. G. Patnaik, D. Pech. Low Temperature Deposition of Highly Cyclable Porous Prussian Blue Cathode for Lithium-Ion Microbattery. Small, 2021, 17: 2101615. [30] C. Yue, S. Zhang, Y. Yu, et al. Laser-patterned Si/TiN/Ge anode for stable Si based Li-ion microbatteries. J. Power Sources, 2021, 493: 229697. [31] G. Zhang, X. Zhang, H. Liu, et al. 3D‐Printed Multi‐Channel Metal Lattices Enabling Localized Electric‐Field Redistribution for Dendrite‐Free Aqueous Zn Ion Batteries. Adv. Energy Mater. , 2021, 11: 2003927. [32] C. Zhang, M. P. Kremer, A. Seral-Ascaso, et al. Stamping of Flexible, Coplanar Micro-Supercapacitors Using MXene Inks. Adv. Funct. Mater. , 2018, 28: 1705506. [33] H. Shi, M. Yue, C. J. Zhang, et al. 3D Flexible, Conductive, and Recyclable Ti3C2Tx MXene-Melamine Foam for High-Areal-Capacity and Long-Lifetime Alkali-Metal Anode. ACS Nano, 2020, 14: 8678-8688. [34] Z. Fan, J. Jin, C. Li, et al. 3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti3C2 MXene Ink. ACS Nano, 2021, 15: 3098-3107. [35] Y. Yu, Z. Wang, Z. Hou, et al. 3D Printing of Hierarchical Graphene Lattice for Advanced Na Metal Anodes. ACS Appl. Energy Mater. , 2019, 2: 3869-3877. [36] H. Chao, H. Qin, M. Zhang, et al. Boosting the Pseudocapacitive and High Mass‐Loaded Lithium/Sodium Storage through Bonding Polyoxometalate Nanoparticles on MXene Nanosheets. Adv. Funct. Mater. , 2021, 31: 2007636. [37] H. Yang, Z. Feng, X. Teng, et al. Three‐dimensional printing of high‐mass loading electrodes for energy storage applications. InfoMat. , 2021, 3: 631-647. [38] W. Zhang, H. Liu, X. Zhang, et al. 3D Printed Micro‐Electrochemical Energy Storage Devices: From Design to Integration. Adv. Funct. Mater. , 2021, 31: 2104909. [39] Y. B. Zhang, G. Shi, J. D. Qin, et al. Recent Progress of Direct Ink Writing of Electronic Components for Advanced Wearable Devices. Acs Appl Electron Ma, 2019, 1: 1718-1734. [40] J. Zhao, Y. Zhang, X. Zhao, et al. Direct Ink Writing of Adjustable Electrochemical Energy Storage Device with High Gravimetric Energy Densities. Adv. Funct. Mater. , 2019, 29: 1900809. [41] S. Liang, Z. Yu, T. Ma, et al. Mechanistic Insights into the Structural Modulation of Transition Metal Selenides to Boost Potassium Ion Storage Stability. ACS Nano, 2021, 15: 14697-14708. [42] I. Hussain, S. Sahoo, C. Lamiel, et al. Research progress and future aspects: Metal selenides as effective electrodes. Energy Storage Mater. , 2022, 47: 13-43. [43] F. Kong, J. Zheng, J. Chen, et al. The lithium ion storage performance of ZnSe particles with stable electrochemical reaction interfaces improved by carbon coating. Journal of Physics and Chemistry of Solids, 2021, 152: 109987. [44] T. Zhang, D. Qiu, Y. Hou. Free-standing and consecutive ZnSe@carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries. Nano Energy, 2022, 94: 106909. [45] L. Wang, H. Liu, J. Zhao, et al. Enhancement of charge transport in porous carbon nanofiber networks via ZIF-8-enabled welding for flexible supercapacitors. Chem. Eng. J. , 2020, 382: 122979. [46] H. Mei, H. Zhang, Y. Bai, et al. Enabling the fabrication of advanced NiCo/Bi alkaline battery via MOF-hydrolyzing derived cathode and anode. Materials Today Physics, 2021, 21: 100499. [47] H. Dai, X. Yuan, L. Jiang, et al. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: Fabrication, applications and perspective. Coordination Chemistry Reviews, 2021, 441: 213985. [48] M. A. S. R. Saadi, A. Maguire, N. T. Pottackal, et al. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. , 2022, 2108855. [49] X. Peng, X. Kuang, D. J. Roach, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Additive Manufacturing, 2021, 40: 101911. [50] J. Ding, K. Shen, Z. Du, et al. 3D-Printed Hierarchical Porous Frameworks for Sodium Storage. ACS Appl Mater Interfaces, 2017, 9: 41871-41877. [51] T. Zhang, F. Ran. Design Strategies of 3D Carbon-Based Electrodes for Charge/Ion Transport in Lithium Ion Battery and Sodium Ion Battery. Adv. Funct. Mater. , 2021, 31: 2010041. [52] S. Zhang, G. Chen, T. Qu, et al. A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity. Nano Res. , 2021, 14: 2776-2782. [53] J. Ruan, J. Zang, J. Hu, et al. Respective Roles of Inner and Outer Carbon in Boosting the K+ Storage Performance of Dual-Carbon-Confined ZnSe. Adv. Sci. , 2022, 9: 2104822. [54] Z. Tang, G. Zhang, H. Zhang, et al. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Mater. , 2018, 10: 75-84. [55] Y. Li, F. Wu, S. Xiong. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage. Electrochim. Acta, 2019, 296: 582-589. [56] B. Wang, J. Tang, X. Zhang, et al. Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysis in zinc-air batteries. Chem. Eng. J. , 2022, 437: 135295. [57] M. Jing, Z. Chen, Z. Li, et al. Facile Synthesis of ZnS/N, S Co-doped Carbon Composite from Zinc Metal Complex for High-Performance Sodium-Ion Batteries. ACS Appl. Mater. Interfaces, 2018, 10: 704-712. [58] Y. He, L. Wang, C. Dong, et al. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. , 2019, 23: 35-45. [59] Z. Zhu, Z. Li, X. Xiong, et al. ZnO/ZnSe heterojunction nanocomposites with oxygen vacancies for acetone sensing. Journal of Alloys and Compounds, 2022, 906: 164316. [60] Q. Gu, L. Gao, Y. Guo, et al. Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release. Energy Environ. Sci. , 2012, 5: 7590-7600. [61] W. Zhang, J. Sheng, J. Zhang, et al. Hierarchical three-dimensional MnO nanorods/carbon anodes for ultralong-life lithium-ion batteries. J. Mater. Chem. A, 2016, 4: 16936-16945. [62] S. Zhong, H. Zhang, J. Fu, et al. In-Situ Synthesis of 3D Carbon Coated Zinc-Cobalt Bimetallic Oxide Networks as Anode in Lithium-Ion Batteries. ChemElectroChem, 2018, 5: 1708-1716. [63] H. Song, L. Shen, J. Wang, et al. Reversible lithiation–delithiation chemistry in cobalt based metal organic framework nanowire electrode engineering for advanced lithium-ion batteries. J. Mater. Chem. A, 2016, 4: 15411-15419. [64] G. Li, Q. Shen, H. Wang, et al. Alternative Layered-Structure SiCu Composite Anodes for High-Capacity Lithium-Ion Batteries. ACS Appl. Energy Mater. , 2021, 5: 740-749. [65] K. Wang, X. H. Zhang, J. W. Hang, et al. High-Performance Cable-Type Flexible Rechargeable Zn Battery Based on MnO2@CNT Fiber Microelectrode. ACS Appl. Mater. Interfaces, 2018, 10: 24573-24582. [66] Q. Xia, Q. Zhang, S. Sun, et al. Tunnel Intergrowth Lix MnO2 Nanosheet Arrays as 3D Cathode for High-Performance All-Solid-State Thin Film Lithium Microbatteries. Adv Mater, 2021, 33: 2003524. [67] H. Wang, R. Guo, H. Li, et al. 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries. Chem. Eng. J. , 2022, 429: 132196. [68] L. Hongliang, W. Kaiyuan, Y. Zi, et al. V2O5-Au nanocomposite film cathode with enhanced electrochemical performance for lithium-ion micro batteries. Chemical Physics, 2021, 544: 111111. [69] X. Wang, S. H. Zheng, F. Zhou, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety. National Science Review, 2020, 7: 64-72. [70] K. Jiang, Z. Y. Zhou, X. Wen, et al. Fabrications of High-Performance Planar Zinc-Ion Microbatteries by Engraved Soft Templates. Small, 2021, 17: 8. [71] V. Augustyn, P. Simon, B. Dunn. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. , 2014, 7: 1597-1614. [72] B. -H. Hou, Y. -Y. Wang, D. -S. Liu, et al. N-Doped Carbon-Coated Ni1.8Co1.2Se4 Nanoaggregates Encapsulated in N-Doped Carbon Nanoboxes as Advanced Anode with Outstanding High-Rate and Low-Temperature Performance for Sodium-Ion Half/Full Batteries. Adv. Funct. Mater. , 2018, 28: 1805444. [73] Q. Yang, S. Cui, Y. Ge, et al. Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy, 2018, 50: 623-631. [74] T. Chu, S. Park, K. Fu. 3D printing-enabled advanced electrode architecture design. Carbon Energy, 2021, 3: 424-439. -