留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-performance micro Zn battteries based NiCo-LDH@ITO NWs/carbon cloth composite

LI Xi-juan LIU Guo WU Qing-feng WANG Xu-Kun SUI Xin-yi WANG Xin-ge FAN Zi-ye XIE Er-qing ZHANG Zhen-xing

李喜娟, 刘国, 吴青峰, 王旭坤, 隋心翼, 王鑫格, 范紫烨, 谢二庆, 张振兴. 基于镍钴层状双氢氧化物生长在氧化铟锡纳米线和碳布复合物上的高性能微型锌电池. 新型炭材料. doi: 10.1016/S1872-5805(22)60629-2
引用本文: 李喜娟, 刘国, 吴青峰, 王旭坤, 隋心翼, 王鑫格, 范紫烨, 谢二庆, 张振兴. 基于镍钴层状双氢氧化物生长在氧化铟锡纳米线和碳布复合物上的高性能微型锌电池. 新型炭材料. doi: 10.1016/S1872-5805(22)60629-2
LI Xi-juan, LIU Guo, WU Qing-feng, WANG Xu-Kun, SUI Xin-yi, WANG Xin-ge, FAN Zi-ye, XIE Er-qing, ZHANG Zhen-xing. High-performance micro Zn battteries based NiCo-LDH@ITO NWs/carbon cloth composite. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60629-2
Citation: LI Xi-juan, LIU Guo, WU Qing-feng, WANG Xu-Kun, SUI Xin-yi, WANG Xin-ge, FAN Zi-ye, XIE Er-qing, ZHANG Zhen-xing. High-performance micro Zn battteries based NiCo-LDH@ITO NWs/carbon cloth composite. New Carbon Mater.. doi: 10.1016/S1872-5805(22)60629-2

基于镍钴层状双氢氧化物生长在氧化铟锡纳米线和碳布复合物上的高性能微型锌电池

doi: 10.1016/S1872-5805(22)60629-2
基金项目: 国家自然基金(No:51972154),甘肃省自然科学基金(No:20JR5RA244)
详细信息
    通讯作者:

    张振兴,教授. E-mail:zhangzx@lzu.edu.cn

High-performance micro Zn battteries based NiCo-LDH@ITO NWs/carbon cloth composite

Funds: This work was supported by the National Natural Science Foundation of China (No: 51972154), and the Natural Science Foundation of Gansu Province (No: 20JR5RA244)
More Information
  • 摘要: 人类需求推动了微型储能器件的快速发展,开发高性能、绿色和安全的小型化电子器件势在必行。近年来,平面叉指型可充电锌微电池(MB)因其易于串并联集成、机械灵活性和可去除传统隔膜而受到广泛关注。在这项工作中,我们使用激光蚀刻技术合成了一种水基高安全性的负极Zn、正极NiCo-LDH@ITO NWs@CC的微型锌电池。由于使用高导电性的ITO NWs@CC集流体,基于锌箔负极和NiCo-LDH正极的叉指型微型电池表现出令人满意的性能。平面叉指微型电池在碱性水系电解质中、电流密度1 mA cm−2 下具有453.5 mAh g−1(对应于0.56 mAh cm−2)的高比容量。值得注意的是,微型锌电池表现出优异的能量密度(798.4 μWh cm−2,对应于649.9 Wh kg−1)和功率密度(4.1 mW cm−2,对应于 3282.7 mW kg− 1)。微型电池也表现出非常好的长期循环稳定性(在5 mA cm−2 下经过4000次循环后容量保持率为216%)。此外,串并联测试进一步表明微型电池良好的一致性。因此,具有平面叉指形状的快速简单的微型锌电池制备技术为下一代高性能、绿色友好和可集成的平面微型储能系统提供了参考。
  • Figure  1.  Schematical illustration of the fabrication processes of Zn//NiCo-LDH@ITO NWs@CC MBs.

    Figure  2.  XRD patterns of (a) CC and ITO NWs@CC, (b) NiCo-LDH@ITO NWs@CC; XPS survey spectra of (c) CC and ITO NWs@CC, (d) NiCo-LDH@ITO NWs@CC; XPS fine spectra of (e) Ni 2p, (f) Co 2p of the NiCo-LDH@ITO NWs@CC.

    Figure  3.  SEM images: (a) CC, (b) ITO NWs@CC, (c) NiCo-LDH@ITO NWs@CC. (d-e) TEM and (f) HRTEM images, (g) HAADF-STEM, (h-j) STEM-EDS elemental mapping images of NiCo-LDH@ITO NWs@CC composite.

    Figure  4.  Zn//NiCo-LDH@ITO NWs@CC MBs: (a) CV profiles from 1 to 10 mV s−1. (b) Linear fitting of log (current) versus log (scan rate) at oxidation peaks. (c) Normalized contribution ratio of diffusion control and capacitance at various scan rates. (d) Charge/discharge profiles from 1.0 to 3.0 mA cm−2. (e) Rate performance and (f) Ragone plot. (g) CV and (h) GCD curves of two ZMBs in parallel and series. (i) Charge curve of two ZMBs in series at 3 mA cm−2 (inset: digital photo of two ZMBs in series lighting up 36 different parallel LEDs).

    Figure  5.  Cycling stability of Zn//NiCo-LDH@ITO NWs@CC MBs: (a) 1 mA cm−2, (b) 5 mA cm−2. (c) Charge-discharge curves of 1st, 1000th, 2000th, 3000th, and 4000th cycles at 5 mA cm−2. (d) GCD curve of the cycling process at 5 mA cm−2 (inset: charge-discharge curve (Ⅰ) from 210 h to 220 h and (Ⅱ) from 390 h to 400 h). (e-h) SEM images of the cathode after 4000 cycles.

  • [1] Y. Chen, M. Guo, L. Xu, et al. In-situ selective surface engineering of graphene micro-supercapacitor chips[J]. Nano Research,2021,15(2):1492-1499.
    [2] L. Chi, S. Zheng, J. Ma, et al. 1.6 V high-voltage aqueous symmetric micro-pseudocapacitors based on two-dimensional polypyrrole/graphene nanosheets[J]. Carbon,2022,194:240-247. doi: 10.1016/j.carbon.2022.03.057
    [3] Y. Zhang, S. Zheng, F. Zhou, et al. Multi-Layer Printable Lithium Ion Micro-Batteries with Remarkable Areal Energy Density and Flexibility for Wearable Smart Electronics[J]. Small,2022,18(5):e2104506-e2104513. doi: 10.1002/smll.202104506
    [4] C. Meng, F. Zhou, H. Liu, et al. Water-in-Salt Ambipolar Redox Electrolyte Extraordinarily Boosting High Pseudocapacitive Performance of Micro-supercapacitors[J]. ACS Energy Lett.,2022,7(5):1706-1711. doi: 10.1021/acsenergylett.2c00329
    [5] W. Lai, Y. Wang, Z. Lei, et al. High performance, environmentally benign and integratable Zn//MnO2microbatteries[J]. J. Mater. Chem. A,2018,6(9):3933-3940. doi: 10.1039/C7TA10936A
    [6] A. Toor, A. Wen, F. Maksimovic, et al. Stencil-printed Lithium-ion micro batteries for IoT applications[J]. Nano Energy,2021,82:105666-105673. doi: 10.1016/j.nanoen.2020.105666
    [7] S. Y. Lee. Scalable and safer printed Zn//MnO2 planar micro-batteries for smart electronics[J]. Natl. Sci. Rev.,2020,7(1):5-6. doi: 10.1093/nsr/nwz092
    [8] K. -A. Qu, W. Chen, J. Guo, et al. A Mini-Review on Preparation of Functional Composite Fibers and Their Based Devices[J]. Coatings,2022,12(4):473-484. doi: 10.3390/coatings12040473
    [9] S. Zheng, X. Shi, P. Das, et al. The Road Towards Planar Microbatteries and Micro-Supercapacitors: From 2D to 3D Device Geometries[J]. Adv. Mater.,2019,31(50):e1900583-e1900606. doi: 10.1002/adma.201900583
    [10] Y. Ren, F. Meng, S. Zhang, et al. CNT@MnO2 composite ink toward a flexible 3D printed micro‐zinc‐ion battery[J]. Carbon Energy,2022,4(3):446-457. doi: 10.1002/cey2.177
    [11] J. F. M. Oudenhoven, R. J. M. Vullers and R. Schaijk. A review of the present situation and future developments of micro-batteries for wireless autonomous sensor systems[J]. Int. J. Energy Res.,2012,36(12):1139-1150. doi: 10.1002/er.2949
    [12] J. Koo, S. B. Kim, Y. S. Choi, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion[J]. Sci. Adv.,2020,6(35):eabb1093. doi: 10.1126/sciadv.abb1093
    [13] C. Zhang, Z. Peng, C. Huang, et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems[J]. Nano Energy,2021,81:105609-105622. doi: 10.1016/j.nanoen.2020.105609
    [14] E. Sardini and M. Serpelloni. Self-Powered Wireless Sensor for Air Temperature and Velocity Measurements With Energy Harvesting Capability[J]. IEEE Trans. Instrum. Meas.,2011,60(5):1838-1844. doi: 10.1109/TIM.2010.2089090
    [15] Z. L. Wang and W. Wu. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems[J]. Angew. Chem. Int. Ed.,2012,51(47):11700-21. doi: 10.1002/anie.201201656
    [16] S. Zheng, J. Ma, K. Fang, et al. High‐Voltage Potassium Ion Micro‐Supercapacitors with Extraordinary Volumetric Energy Density for Wearable Pressure Sensor System[J]. Adv. Energy Mater.,2021,11(17):2003835-2003843. doi: 10.1002/aenm.202003835
    [17] K. Sun, T. S. Wei, B. Y. Ahn, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Adv. Mater.,2013,25(33):4539-43. doi: 10.1002/adma.201301036
    [18] X. Gao, H. Zhou, S. Li, et al. The fast-charging properties of micro lithium-ion batteries for smart devices[J]. J. Colloid Interface Sci.,2022,615:141-150. doi: 10.1016/j.jcis.2022.01.105
    [19] Z. Tian, Z. Sun, Y. Shao, et al. Ultrafast rechargeable Zn micro-batteries endowing a wearable solar charging system with high overall efficiency[J]. Energy Environ Sci.,2021,14(3):1602-1611. doi: 10.1039/D0EE03623D
    [20] H. Wang, R. Guo, H. Li, et al. 2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries[J]. Chem. Eng. J.,2022,429:132196-132203. doi: 10.1016/j.cej.2021.132196
    [21] Z. Hao, L. Xu, Q. Liu, et al. On‐Chip Ni–Zn Microbattery Based on Hierarchical Ordered Porous Ni@Ni(OH)2 Microelectrode with Ultrafast Ion and Electron Transport Kinetics[J]. Adv. Funct. Mater.,2019,29(16):1808470-1808478. doi: 10.1002/adfm.201808470
    [22] X. Wang, S. Zheng, F. Zhou, et al. Scalable fabrication of printed Zn//MnO2 planar micro-batteries with high volumetric energy density and exceptional safety[J]. Natl. Sci. Rev.,2020,7(1):64-72. doi: 10.1093/nsr/nwz070
    [23] R. Li, L. Li, R. Jia, et al. A Flexible Concentric Circle Structured Zinc‐Ion Micro‐Battery with Electrodeposited Electrodes[J]. Small Methods,2020,4(9):2000363-2000371. doi: 10.1002/smtd.202000363
    [24] M. Yan, P. He, Y. Chen, et al. Water-Lubricated Intercalation in V2O5·nH2O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries[J]. Adv. Mater.,2018,30(1):1703725-1703730. doi: 10.1002/adma.201703725
    [25] B. Yin, S. Zhang, K. Ke, et al. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery[J]. Nanoscale,2019,11(42):19723-19728. doi: 10.1039/C9NR07458A
    [26] C. Liu, X. Wang, F. Xie, et al. Fabrication of Sm-doped porous In2O3 nanotubes and their excellent formaldehyde-sensing properties[J]. J. Mater. Sci. :Mater. Electron.,2016,27(9):9870-9876. doi: 10.1007/s10854-016-5055-7
    [27] X. Han, J. Li, J. Lu, et al. High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage[J]. Nano Energy,2021,86:106079-106088. doi: 10.1016/j.nanoen.2021.106079
    [28] X. Wang, J. Hu, W. Liu, et al. Ni–Zn binary system hydroxide, oxide and sulfide materials: synthesis and high supercapacitor performance[J]. J. Mater. Chem. A,2015,3(46):23333-23344. doi: 10.1039/C5TA07169K
    [29] R. Ramachandran, Y. Lan, Z.-X. Xu, et al. Construction of NiCo-Layered Double Hydroxide Microspheres from Ni-MOFs for High-Performance Asymmetric Supercapacitors[J]. ACS Appl. Energy Mater.,2020,3(7):6633-6643. doi: 10.1021/acsaem.0c00790
    [30] X. Gao, Z. Jia, B. Wang, et al. Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber[J]. Chem. Eng. J.,2021,419:130019-130030. doi: 10.1016/j.cej.2021.130019
    [31] H. Chen, Z. Shen, Z. Pan, et al. Hierarchical Micro-Nano Sheet Arrays of Nickel-Cobalt Double Hydroxides for High-Rate Ni-Zn Batteries[J]. Adv Sci (Weinh),2019,6(8):1802002-1802011. doi: 10.1002/advs.201802002
    [32] C. Cao, X. Xiang and H. Zhu. High-density, uniform gallium nitride nanorods grown on Au-coated silicon substrate[J]. J. Cryst. Growth,2005,273(3-4):375-380. doi: 10.1016/j.jcrysgro.2004.09.050
    [33] J. M. C., A. S., M. D. E., et al. Controlled Vapor-Liquid-Solid Growth of Indium, Gallium, and Tin Oxide Nanowires via Chemical Vapor Transport[J]. Cryst. Growth Des.,2006,6(8):1936-1941. doi: 10.1021/cg050524g
    [34] O. Yaglioglu, A. Cao, A. J. Hart, et al. Wide Range Control of Microstructure and Mechanical Properties of Carbon Nanotube Forests: A Comparison Between Fixed and Floating Catalyst CVD Techniques[J]. Adv. Funct. Mater.,2012,22(23):5028-5037. doi: 10.1002/adfm.201200852
    [35] V. Augustyn, J. Come, M. A. Lowe, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat. Mater.,2013,12(6):518-22. doi: 10.1038/nmat3601
    [36] H. S. Kim, J. B. Cook, H. Lin, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x[J]. Nat. Mater.,2017,16(4):454-460. doi: 10.1038/nmat4810
    [37] Li, W. Liu, K. Jiang, et al. In-Situ Annealed Ti3C2Tx MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability[J]. Nanomicro Lett,2021,13(1):100-110.
    [38] P. Zhang, Y. Li, G. Wang, et al. Zn-Ion Hybrid Micro-Supercapacitors with Ultrahigh Areal Energy Density and Long-Term Durability[J]. Adv. Mater.,2019,31(3):e1806005-e1806010. doi: 10.1002/adma.201806005
  • 加载中
图(5)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  19
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-01
  • 网络出版日期:  2022-07-26

目录

    /

    返回文章
    返回