谢金明, 庄容, 杜宇轩, 裴永伟, 谭德明, 徐飞. 硫掺杂炭材料在钠离子电池负极中的研究进展[J]. 新型炭材料, 2023, 38(2): 305-316. DOI: 10.1016/S1872-5805(22)60630-9
引用本文: 谢金明, 庄容, 杜宇轩, 裴永伟, 谭德明, 徐飞. 硫掺杂炭材料在钠离子电池负极中的研究进展[J]. 新型炭材料, 2023, 38(2): 305-316. DOI: 10.1016/S1872-5805(22)60630-9
XIE Jin-ming, ZHUANG Rong, DU Yu-xuan, PEI Yong-wei, TAN De-ming, XU Fei. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries[J]. New Carbon Mater., 2023, 38(2): 305-316. DOI: 10.1016/S1872-5805(22)60630-9
Citation: XIE Jin-ming, ZHUANG Rong, DU Yu-xuan, PEI Yong-wei, TAN De-ming, XU Fei. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries[J]. New Carbon Mater., 2023, 38(2): 305-316. DOI: 10.1016/S1872-5805(22)60630-9

硫掺杂炭材料在钠离子电池负极中的研究进展

Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries

  • 摘要: 钠离子电池因资源丰富及成本低等优势,在大规模储能领域备受关注。炭材料作为钠离子电池实用化进程中的关键负极材料,具有高容量、低嵌钠平台、易调控且稳定性好等特点,引起了研究者的广泛关注。掺杂原子可改善炭材料的微观与电子结构,是提升储钠性能的有效途径。常见的杂原子包括N、S、O、P、B等,其中硫原子因其较大的半径能显著扩大层间距、增加缺陷与活性位点,被广泛用于炭负极材料的掺杂改性。本文综述了近年来硫掺杂炭材料的设计制备及在钠离子电池负极中的研究进展,分析了硫掺杂对碳结构的调控机理与改善电池性能的作用机制,最后针对目前面临的挑战和可能的解决方案进行了总结和展望,以期推动硫掺杂炭负极材料在钠离子电池中的实用化进程。

     

    Abstract: Sodium-ion batteries (SIBs) are regarded as one of the most promising candidates for the post-lithium-ion battery (LIB) era due to the abundance and low cost of sodium and their similar operating principles to LIBs. Because of their low sodium intercalation potential, high capacity, and good stability, carbon anode materials appear to be the key to practical applications. Heteroatom doping (e.g., sulfur, nitrogen, phosphorus, oxygen, boron doping) has proved to be an effective way of changing the physical and electrochemical properties of carbon materials to improve their energy storage. Among these, sulfur doping has been widely studied. The S atom has a large covalent radius to expand the interlayer spacing of carbons and thus increase the number of active sites for sodium storage. This review summarizes research progress in the design, synthesis, and electrochemical properties of sulfur-doped carbon anodes for SIBs, including the sodium storage mechanism, preparation strategies, and the way sulfur doping changes the structure of carbon materials, with the aim of improving its specific capacity, rate capability and cycle life in SIBs. Key problems of sulfur-doped carbon anodes are presented and possible solutions are considered.

     

/

返回文章
返回