留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫掺杂炭材料在钠离子电池负极中的研究进展

谢金明 庄容 杜宇轩 裴永伟 谭德明 徐飞

谢金明, 庄容, 杜宇轩, 裴永伟, 谭德明, 徐飞. 硫掺杂炭材料在钠离子电池负极中的研究进展. 新型炭材料(中英文), 2023, 38(2): 305-316. doi: 10.1016/S1872-5805(22)60630-9
引用本文: 谢金明, 庄容, 杜宇轩, 裴永伟, 谭德明, 徐飞. 硫掺杂炭材料在钠离子电池负极中的研究进展. 新型炭材料(中英文), 2023, 38(2): 305-316. doi: 10.1016/S1872-5805(22)60630-9
XIE Jin-ming, ZHUANG Rong, DU Yu-xuan, PEI Yong-wei, TAN De-ming, XU Fei. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries. New Carbon Mater., 2023, 38(2): 305-316. doi: 10.1016/S1872-5805(22)60630-9
Citation: XIE Jin-ming, ZHUANG Rong, DU Yu-xuan, PEI Yong-wei, TAN De-ming, XU Fei. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries. New Carbon Mater., 2023, 38(2): 305-316. doi: 10.1016/S1872-5805(22)60630-9

硫掺杂炭材料在钠离子电池负极中的研究进展

doi: 10.1016/S1872-5805(22)60630-9
基金项目: 国家自然科学基金面上项目(51972270),凝固技术国家重点实验室自主研究课题(2021-TS-03),中央高校基本科研业务费专项资金资助。
详细信息
    作者简介:

    谢金明和庄容为共同第一作者

    通讯作者:

    谭德明,博士,副教授. E-mail:tandeming@cdu.edu.cn

    徐 飞,博士,教授. E-mail:feixu@nwpu.edu.cn

  • 中图分类号: TQ127.1+1

Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries

Funds: National Natural Scientific Foundation of China (51972270); Research Fund of the State Key Laboratory of Solidification Processing (NPU), China (2021-TS-03); Fundamental Research Funds for the Central Universities.
More Information
    Author Bio:

    XIE Jin-ming and ZHUANG Rong contributed equally to this work

    Corresponding author: TAN De-ming, Ph. D, Associate Professor. E-mail: tandeming@cdu.edu.cnXU Fei, Ph. D, Professor. E-mail: feixu@nwpu.edu.cn
  • 摘要: 钠离子电池因资源丰富及成本低等优势,在大规模储能领域备受关注。炭材料作为钠离子电池实用化进程中的关键负极材料,具有高容量、低嵌钠平台、易调控且稳定性好等特点,引起了研究者的广泛关注。掺杂原子可改善炭材料的微观与电子结构,是提升储钠性能的有效途径。常见的杂原子包括N、S、O、P、B等,其中硫原子因其较大的半径能显著扩大层间距、增加缺陷与活性位点,被广泛用于炭负极材料的掺杂改性。本文综述了近年来硫掺杂炭材料的设计制备及在钠离子电池负极中的研究进展,分析了硫掺杂对碳结构的调控机理与改善电池性能的作用机制,最后针对目前面临的挑战和可能的解决方案进行了总结和展望,以期推动硫掺杂炭负极材料在钠离子电池中的实用化进程。
  • FIG. 2234.  FIG. 2234.

    FIG. 2234..  FIG. 2234.

    图  1  (a)不同种类原子掺杂及(b)硫掺杂炭材料的可能构型示意图

    Figure  1.  Scheme of possible configurations of (a) various heteroatom-doped carbon and (b) sulfur-doped carbon frameworks

    图  2  硫掺杂炭负极的结构、储钠机制与性能优势

    Figure  2.  Structure, sodium storage mechanism and performance advantages of sulfur-doped carbon anodes

    图  3  炭负极材料中储钠机理示意图:(a)“插层-吸附”机制;(b)“吸附-插层”机制[27];(c)“吸附-插层-孔填充”机制[28];(d)“吸附-填孔-插层-填孔”机理[1]

    Figure  3.  The mechanism model of sodium ion storage. (a) "Intercalation-adsorption". (b) "Adsorption-intercalation"[27]. (c) "Adsorption-intercalation- pore filling"[28]. (d) "Adsorption-pore filling-intercalation-pore filling"[1]. Reprinted with permission

    图  4  (a)钠离子在石墨、氮掺杂炭和硫掺杂炭材料中的存储示意图[22];(b)钠离子从一个空穴到最近空穴的势垒[30];(c)钠离子从炭层外部向炭层内部的扩散路径[31];(d)层间距离(0.37、0.41 nm)和缺陷对钠离子吸附能的影响[30]

    Figure  4.  (a) Schematic diagrams for Na+ storage in graphite, N-doped carbon, and S-doped carbon[22]. (b) The barrier energy of the Na+ from one hollow site to the nearest hollow site[30]. (c) Diffusion path of Na+ from the outside to the inside of the carbon layers[31]. (d) The influence of interlayer distance (0.37 and 0.41 nm) and defect on Na+ adsorption energy[30]. Reprinted with permission

    图  5  (a)两种硫掺杂石墨最稳定的吸附构型。绿色、黄色和黑色的球体分别代表钠离子、硫和碳原子[34];(b)DC-S电极在扫描速率为0.1 mV s−1下的CV曲线;(c)DC-S在完全放电状态下S2p的XPS能谱图[38];(d)硫掺杂炭的变形电荷密度图;(e)未掺杂和硫掺杂炭的态密度图[31]

    Figure  5.  (a) Two of the most stable adsorption configurations of S-doped graphite. The green, yellow, and black balls represent Na+, sulfur dopant, and carbon atoms, respectively[34]. (b) The CV curves of DC-S electrode at a scan rate of 0.1 mV s−1. (c) High resolution XPS of S2p of DC-S at the fully discharged state[38]. (d) Deformation charge density map of S-doped carbon. (e) Density of states of undoped and S-doped carbon[31]. Reprinted with permission

    图  6  (a)DC-S的制备示意图;(b,c)DC和DC-S的SEM照片[38];(d)硫掺杂介孔氮化碳(S-MCN)的制备示意图[44];(e)硫掺杂富氮炭纳米片(S-N/C)的制备示意图[50]

    Figure  6.  (a) Schematic illustration for preparation of DC-S. SEM images of (b) DC and (c) DC-S[38]. (d) Schematic of the synthetic procedure of S-MCN[44]. (e) Fabrication process of S-N/C[50]. Reprinted with permission

    图  7  (a)硫掺杂扩大炭层间距储钠示意图[53];(b)SC0和SC1电极在 100 mA g−1 时的第5圈充放电曲线[54];(c)SC1不同扫描速率下电容和扩散控制过程的贡献率[54];(d)SNC和NC在100 mA g−1的循环性能[55]

    Figure  7.  (a) Schematic illustration of sulfur doping expanding carbon interlayer spacing for sodium storage[53]. (b) The 5th charge-discharge profiles of SC0 and SC1 electrodes at 100 mA g−1[54]. (c) Contribution ratio of the capacitive and diffusion-controlled processes at different scan rates of SC1[54]. (d) Cycling performances of SNC and NC at 100 mA g−1[55]. Reprinted with permission

    图  8  (a)硫掺杂炭表面主导储钠的示意图;(b) DCs和(c) NSC2的HR-TEM图像和晶格条纹(插图)以及相应的层间距;(d)NSC2 在 5 mV s−1 下测量的电容行为分布;(e)5次循环后DCs、NSCs(s=1、2、4,s代表杂原子的比例)的倍率性能[42]

    Figure  8.  (a) Schematic illustration of the surface-dominant sodium storage on sulfur-doped carbon. The HR-TEM images and lattice fringes (inset) of (b) DCs and (c) NSC2 and their corresponding interlayer distances. (d) The distribution of capacitive behaviors of NSC2 measured at 5 mV s−1. (e) The rate performances DCs, NSC1, NSC2, and NSC4 after 5 cycles (s=1, 2, 4, s represents the ratio of heteroatoms), respectively[42]. Reprinted with permission

    表  1  硫掺杂炭材料的SIBs电化学性能总结

    Table  1.   Comparison of electrochemical performance for various S-doped carbon materials in SIBs

    Electrode
    materials
    S
    content
    Mass
    loading
    (mg cm−2)
    ElectrolytePotential range
    (V vs Na+/Na)
    Capacity
    (mAh g−1)
    @Current
    ICERef.
    S-doped carbon bulk particles 15.17% - 1 mol/L NaClO4
    in EC/PC (3∶1)
    0.01-2.0 327.8@0.5 A g−1 73.6% [22]
    119.5@5 A g−1
    S-doped carbon nanofibers 15.0% 1.0-2.0 1 mol/L NaFP6 in DME 0.001-3.0 460@0.05 A g−1 ~69.0% [31]
    255@10 A g−1
    S-doped graphene 3.33% 1.5 1 mol/L NaPF6
    in EC/DMC (1∶1)
    0.001-3.0 262@0.1 A g−1 ~58.3% [34]
    83@5 A g−1
    S-doped disordered carbon 26.91% 1.0-1.2 1 mol/L NaPF6 in EC/DEC (1∶1)
    with 5 wt% FEC
    0.01-3.0 360@0.5 A g−1 ~63.2% [38]
    158@4 A g−1
    S-doped porous carbon 6.25% 1.0 1 mol/L NaClO4
    in EC/PC (1∶1)
    0.005-3.0 570@0.025 A g−1; ~46.3% [53]
    304@0.5 A g−1
    S-doped activated carbon 6.27% - 1 mol/L NaClO4 in PC
    with 5 vol% FEC
    0.01-3.0 345@0.1 A g−1 56.02% [48]
    100.2@5 A g−1
    S doped micron particles 7.97% 1.0-2.0 1 mol/L NaClO4 in PC 0.01-3.0 703@0.05 A g−1 ~44.9% [40]
    255@1 A g−1
    S-doped carbon nanosheets 23.0% 1.0 1 mol/L NaClO4 in EC/DEC (1∶1)
    with 5 wt% FEC
    0.01-3.0 601.2@ 0.05 A g−1 ~58.0% [33]
    133.6@10 A g−1
    S-doped porous carbon 5.9% - 1.25 mol/L NaPF6 in
    EC/DMC (1∶1)
    0.01-3.0 690.9@0.1 A g−1 ~68% [24]
    354@2 A g−1
    N/S-codoped carbon microspheres - - 1 mol/L NaClO4 in EC/PC (2∶1) 0.01-3.0 280@0.03 A g−1 - [30]
    130@10 A g−1
    N/S-codoped carbon nanoparticles S: 6.44%; 1.0-1.5 1 mol/L NaClO4 in EC/DEC (1∶1)
    with 5 vol% FEC
    0.01-3.0 280@0.05 A g−1 - [42]
    N: 24.05% 102@10 A g−1
    N/S-codoped carbon
    nanotubes/nanofibers
    S: 5.92% 1.0-1.5 1 mol/L NaClO4 in EC/DEC (1∶1)
    with 5 % FEC
    0.01-3.0 395.5@0.1 A g−1 49.1% [57]
    N: 16.86% 109.3@10 A g−1
    N/S-codoped graphene
    hollow spheres
    - - 1 mol/L NaClO4 in EC/PC (1∶1)
    with 5 vol% FEC
    0.01-3.0 385@0.5 A g−1 ~37.6% [35]
    308@20 A g−1
    N/S-codoped carbon nanosheets S: 9.19% - 1 mol/L NaClO4 in
    EC/PC (1∶1)
    0.01-3.0 350@0.05 A g−1 ~43.8% [50]
    N: 20.01% 110@10 A g−1
    N/S-codoped ordered
    mesoporous carbon
    S: 0.82% - 1 mol/L NaClO4 in EC/PC (1∶1)
    with 5 wt% FEC
    0.01-3.0 487@0.01 A g−1 26.1% [46]
    N: 20.32% 233@5 A g−1
    N/S-codoped ordered mesoporous
    carbon nanofibers
    S: 2.3% 1.0-1.2 1 mol/L NaClO4 in EC/DEC (1∶1)
    with 5 wt% FEC
    0.1-3.0 290.3@0.1 A g−1 ~40.6% [51]
    N: 11.7% 160.2@10 A g−1
    N/S-codoped porous
    carbon nanosheets
    S: 9.12% 1.0-1.5 1 mol/L NaClO4
    in EC/DMC (1∶1)
    0-2.9 210@1 A g−1 51.5% [58]
    N: 4.52% 120@5 A g−1
    N/S-codoped mesoporous
    hollow carbon spheres
    S: 2.94% 0.3-0.4 1 mol/L NaClO4 in EC/DEC (1∶1)
    with 2 % FEC
    1.5-4.5 240@0.5 A g−1 29.0% [52]
    N: 8.56% 138@30 A g−1
    下载: 导出CSV
  • [1] Alvin S, Yoon D, Chandra C, et al. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon,2019,145:67-81. doi: 10.1016/j.carbon.2018.12.112
    [2] Huang Q, Deng J, Li X, et al. Experimental investigation on thermally induced aluminum nitride based flexible composite phase change material for battery thermal management[J]. Journal of Energy Storage,2020,32:101755. doi: 10.1016/j.est.2020.101755
    [3] Dong R, Wu F, Bai Y, et al. Sodium storage mechanism and optimization strategies for hard carbon anode of sodium ion batteries[J]. Acta Chimica Sinica,2021,79(12):1461-1476. doi: 10.6023/A21060284
    [4] Li J, Fleetwood J, Hawley W B, et al. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews,2022,122(1):903-956.
    [5] Kong L, Yin L, Xu F, et al. Electrolyte solvation chemistry for lithium-sulfur batteries with electrolyte-lean conditions[J]. Journal of Energy Chemistry,2021,55:80-91. doi: 10.1016/j.jechem.2020.06.054
    [6] Yang J, Zhai Y, Zhang X, et al. Perspective on carbon anode materials for K+ storage: balancing the intercalation‐controlled and surface‐driven behavior[J]. Advanced Energy Materials,2021,11(29):2100856. doi: 10.1002/aenm.202100856
    [7] Zhang X, Yang J, Ren Z, et al. In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy[J]. New Carbon Materials,2022,37(2):371-379. doi: 10.1016/S1872-5805(22)60601-2
    [8] Jiang G, Qiu Y, Lu Q, et al. Mesoporous thin-wall molybdenum nitride for fast and stable Na/Li storage[J]. ACS Applied Materials & Interfaces,2019,11(44):41188-41195. doi: 10.1021/acsami.9b07060
    [9] Zhu Y, Xiao Y, Dou S, et al. Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries[J]. eScience,2021,1(1):13-27. doi: 10.1016/j.esci.2021.10.003
    [10] Fang C, Huang Y, Zhang W, et al. Routes to high energy cathodes of sodium-ion batteries[J]. Advanced Energy Materials,2016,6(5):1501727. doi: 10.1002/aenm.201501727
    [11] Huang Y, Fang C, Huang Y. Recent development on electrode materials with high performance and low cost for sodium-ion batteries[J]. Journal of the Chinese Ceramic Society,2021,49(2):256-271. doi: 10.14062/j.issn.0454-5648.20200753
    [12] Kang H, Liu Y, Cao K, et al. Update on anode materials for Na-ion batteries[J]. Journal of Materials Chemistry A,2015,3(35):17899-17913. doi: 10.1039/C5TA03181H
    [13] Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries[J]. Nature Communications,2014,5:4033. doi: 10.1038/ncomms5033
    [14] Li G, Luo D, Wang X, et al. Enhanced reversible sodium-ion intercalation by synergistic coupling of few-layered MoS2 and S-doped graphene[J]. Advanced Functional Materials,2017,27(40):1702562. doi: 10.1002/adfm.201702562
    [15] Wu Y, Liu X, Yang Z, et al. Nitrogen-doped ordered mesoporous anatase TiO2 nanofibers as anode materials for high performance sodium-ion batteries[J]. Small,2016,12(26):3522-3529. doi: 10.1002/smll.201600606
    [16] Tang J, Peng X, Lin T, et al. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage[J]. eScience,2021,1(2):203-211. doi: 10.1016/j.esci.2021.12.004
    [17] Xu F, Han H, Qiu Y, et al. Facile regulation of carbon framework from the microporous to low-porous via molecular crosslinker design and enhanced Na storage[J]. Carbon,2020,167:896-905. doi: 10.1016/j.carbon.2020.05.081
    [18] Xu F, Zhai Y, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie International Edition,2020,59(44):19460-19467. doi: 10.1002/anie.202005118
    [19] Li Y, Chen M, Liu B, et al. Heteroatom doping: An effective way to boost sodium ion storage[J]. Advanced Energy Materials,2020,10(27):2000927. doi: 10.1002/aenm.202000927
    [20] Chen W, Wan M, Liu Q, et al. Heteroatom‐doped carbon materials: Synthesis, mechanism, and application for sodium‐ion batteries[J]. Small Methods,2019,3(4):1800323. doi: 10.1002/smtd.201800323
    [21] Wu T, Zhang W, Yang J, et al. Architecture engineering of carbonaceous anodes for high‐rate potassium‐ion batteries[J]. Carbon Energy,2021,3(4):554-581. doi: 10.1002/cey2.99
    [22] Qie L, Chen W, Xiong X, et al. Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries[J]. Advanced Science,2015,2(12):1500195. doi: 10.1002/advs.201500195
    [23] Kiciński W, Szala M, Bystrzejewski M. Sulfur-doped porous carbons: Synthesis and applications[J]. Carbon,2014,68:1-32. doi: 10.1016/j.carbon.2013.11.004
    [24] Wan H, Hu X. Sulfur-doped honeycomb-like carbon with outstanding electrochemical performance as an anode material for lithium and sodium ion batteries[J]. Journal of Colloid and Interface Science,2020,558:242-250. doi: 10.1016/j.jcis.2019.09.124
    [25] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium‐ion batteries[J]. Journal of The Electrochemical Society,2000,147:1271. doi: 10.1149/1.1393348
    [26] Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters,2012,12(7):3783-3787. doi: 10.1021/nl3016957
    [27] Qiu S, Xiao L, Sushko M L, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high‐efficiency sodium ion storage[J]. Advanced Energy Materials,2017,7(17):1700403. doi: 10.1002/aenm.201700403
    [28] Bommier C, Surta T W, Dolgos M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters,2015,15(9):5888-5892. doi: 10.1021/acs.nanolett.5b01969
    [29] Li S, Qiu J, Lai C, et al. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries[J]. Nano Energy,2015,12:224-230. doi: 10.1016/j.nanoen.2014.12.032
    [30] Xu D, Chen C, Xie J, et al. A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials,2016,6(6):1501929. doi: 10.1002/aenm.201501929
    [31] Jin Q, Li W, Wang K, et al. Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode[J]. Journal of Materials Chemistry A,2019,7(17):10239-10245. doi: 10.1039/C9TA02107H
    [32] Hong Z, Zhen Y, Ruan Y, et al. Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance[J]. Advanced Materials,2018,30(29):1802035. doi: 10.1002/adma.201802035
    [33] Zhao G, Yu D, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy,2020,67:104219. doi: 10.1016/j.nanoen.2019.104219
    [34] Wang X, Li G, Hassan F M, et al. Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes[J]. Nano Energy,2015,15:746-754. doi: 10.1016/j.nanoen.2015.05.038
    [35] Chen W, Chen X, Qiao R, et al. Understanding the role of nitrogen and sulfur doping in promoting kinetics of oxygen reduction reaction and sodium ion battery performance of hollow spherical graphene[J]. Carbon,2022,187:230-240. doi: 10.1016/j.carbon.2021.11.020
    [36] 杨佳迎, 韩浩杰, Repich H, 等. 空心炭球在室温钠硫电池中的研究进展[J]. 新型炭材料,2020,35(6):630-645. doi: 10.1016/S1872-5805(20)60519-4

    Yang J, Han H, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium-sulfur batteries[J]. New Carbon Materials,2020,35(6):630-645. doi: 10.1016/S1872-5805(20)60519-4
    [37] Kim H, Yang H, Kang J, et al. Multifunctional disordered sulfur-doped carbon for efficient sodium-ion-exchange and 2-electron-transfer-dominant oxygen reduction reaction[J]. Carbon,2021,182:242-253. doi: 10.1016/j.carbon.2021.05.063
    [38] Li W, Zhou M, Li H, et al. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy & Environmental Science,2015,8(10):2916-2921. doi: 10.1039/c5ee01985k
    [39] Garcia A G, Baltazar S E, Castro A H R, et al. Influence of S and P doping in a graphene sheet[J]. Journal of Computational and Theoretical Nanoscience,2008,5(11):2221-2229. doi: 10.1166/jctn.2008.1121
    [40] Tzadikov J, Levy N R, Abisdris L, et al. Bottom‐up synthesis of advanced carbonaceous anode materials containing sulfur for Na‐Ion batteries[J]. Advanced Functional Materials,2020,30(19):2000592. doi: 10.1002/adfm.202000592
    [41] Zou G, Wang C, Hou H, et al. Controllable interlayer spacing of sulfur-doped graphitic carbon nanosheets for fast sodium-ion batteries[J]. Small,2017,13(31):1700762. doi: 10.1002/smll.201700762
    [42] Jin Q, Wang K, Feng P, et al. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries[J]. Energy Storage Materials,2020,27:43-50. doi: 10.1016/j.ensm.2020.01.014
    [43] Liu S, Cai Y, Zhao X, et al. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor[J]. Journal of Power Sources,2017,360:373-382. doi: 10.1016/j.jpowsour.2017.06.029
    [44] Cha W, Kim I Y, Lee J M, et al. Sulfur-doped mesoporous carbon nitride with an ordered porous structure for sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2019,11(30):27192-27199. doi: 10.1021/acsami.9b07657
    [45] Yue L, Xu W, Li K, et al. 3D nitrogen and sulfur equilibrium co-doping hollow carbon nanosheets as Na-ion battery anode with ultralong cycle life and superior rate capability[J]. Applied Surface Science,2021,546:149168. doi: 10.1016/j.apsusc.2021.149168
    [46] Ye J, Zhao H, Song W, et al. Enhanced electronic conductivity and sodium-ion adsorption in N/S co-doped ordered mesoporous carbon for high-performance sodium-ion battery anode[J]. Journal of Power Sources,2019,412:606-614. doi: 10.1016/j.jpowsour.2018.12.002
    [47] Zou G, Hou H, Hu J, et al. General synthesis of heteroatom-doped hierarchical carbon toward excellent electrochemical energy storage[J]. Batteries & Supercaps,2019,2(8):712-722. doi: 10.1002/batt.201900030
    [48] Zhao G, Zou G, Hou H, et al. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior[J]. Journal of Materials Chemistry A,2017,5(46):24353-24360. doi: 10.1039/C7TA07860A
    [49] Jiang T, Wang Y, Wang K, et al. A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction[J]. Applied Catalysis B:Environmental,2016,189:1-11. doi: 10.1016/j.apcatb.2016.02.009
    [50] Yang J, Zhou X, Wu D, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials,2017,29(6):1604108. doi: 10.1002/adma.201604108
    [51] Yu M, Yin Z, Yan G, et al. Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon nanofiber[J]. Journal of Power Sources,2020,449:227514. doi: 10.1016/j.jpowsour.2019.227514
    [52] Ni D, Sun W, Wang Z, et al. Heteroatom‐doped mesoporous hollow carbon spheres for fast sodium storage with an ultralong cycle life[J]. Advanced Energy Materials,2019,9(19):1900036. doi: 10.1002/aenm.201900036
    [53] Li Y, Ni B, Li X, et al. High-performance Na-ion storage of S-doped porous carbon derived from conjugated microporous polymers[J]. Nano-micro Letters,2019,11(1):60. doi: 10.1007/s40820-019-0291-z
    [54] Feng P, Wang W, Wang K, et al. A high-performance carbon with sulfur doped between interlayers and its sodium storage mechanism as anode material for sodium ion batteries[J]. Journal of Alloys and Compounds,2019,795:223-232. doi: 10.1016/j.jallcom.2019.04.338
    [55] Bai L, Sun Y, Tang L, et al. Sulfur and nitrogen co-doped carbon nanosheets for improved sodium ion storage[J]. Journal of Alloys and Compounds,2021,868:159080. doi: 10.1016/j.jallcom.2021.159080
    [56] Velez V, Ramos-Sánchez G, Lopez B, et al. Synthesis of novel hard mesoporous carbons and their application as anodes for Li and Na ion batteries[J]. Carbon,2019,147:214-226. doi: 10.1016/j.carbon.2019.02.083
    [57] Chen D, Huang Z, Sun S, et al. A flexible multi-channel hollow CNT/carbon nanofiber composites with S/N co-doping for sodium/potassium ion energy storage[J]. ACS Applied Materials & Interfaces,2021,13(37):44369-44378. doi: 10.1021/acsami.1c12470
    [58] Zhao Q, Meng Y, Li J, et al. Sulfur and nitrogen dual-doped porous carbon nanosheet anode for sodium ion storage with a self-template and self-porogen method[J]. Applied Surface Science,2019,481:473-483. doi: 10.1016/j.apsusc.2019.03.143
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  2143
  • HTML全文浏览量:  1709
  • PDF下载量:  451
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-07-24
  • 网络出版日期:  2022-07-26
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回