A high-rate and ultrastable anode enabled by surface oxidation and intercalation modification of hard carbon for lithium ion capacitors
-
摘要: 由于锂离子电容器正负极材料的储能机理不同,正极材料对其功率密度和倍率性能有很大限制。硬碳是一种很有前景的锂离子电容器负极材料,对碳材料进行改性是提高锂离子电容器电化学性能的重要手段之一。本研究采用氧化插层法制备的硬碳插层复合材料(ZnCl2-OHC),0.05 A·g−1电流密度下半电池可逆容量为257.4 mAh·g−1。ZnCl2-OHC作负极、活性炭作正极的全电池容量保持可达43.3%,比未经处理硬碳作负极的全电池提高了两倍以上,1 A·g−1电流密度下充放电5000次后容量保持率约为98.4%。因此,通过硬碳的表面氧化和插层改性可以作为未来提升锂离子电容器负极性能的一种途径。Abstract: Due to the difference of energy storage mechanism between anode and cathode materials, the power density or rate performance of lithium ion capacitor is greatly limited by anode materials. Hard carbon is a promising anode material for lithium ion capacitors. The modification of carbon materials is one of the important means of improving the electrochemical performance of lithium ion capacitor. Hard carbon intercalation composite (ZnCl2-OHC) was prepared by oxidation intercalation. The reversible capacity of half cell prepared with ZnCl2-OHC is 257.4 mAh·g−1 at current density of 0.05 A·g−1, and the capacity retention rate of full cell prepared with ZnCl2-OHC as anode and activated carbon as cathode can still reach 43.3%, which raises more than two times as compared with untreated hard carbon. At the same time, after 5000 charge-discharge cycles at the current density of 1 A·g−1, the capacity retention rate is about 98.4%. Therefore, surface oxidation and intercalation modification of hard carbon can be seen as a promising way of the improvement of anode for lithium ion capacitors in the future.
-
Key words:
- lithium ion capacitors /
- anode materials /
- hard carbon /
- intercalation
-
Table 1. Pore structure parameters of hard carbon materials before and after treatment
Component Specific surface area /m2·g−1 SBET SLANGUIR HC 2.28 6.29 OHC 11.58 30.53 ZnCl2-HC 8.31 22.39 ZnCl2-OHC 47.91 120.66 Table 2. Analysis of elements on the surface of ZnCl2-OHC
Name Start BE Peak BE End BE Height CPS Atomic % C1s 297.98 283.47 279.18 32914.62 83.75 Cl2p 210.03 197.4 190.13 1095.69 2.14 O1s 544.98 531.39 525.18 3586.45 12.73 Zn2p 1052.03 1021.11 1015.13 4324.72 1.38 -
[1] Cao W J, Shih J, Zheng J P, et al. Development and characterization of Li-ion capacitor pouch cells[J]. Journal of Power Sources,2014,257:388-393. doi: 10.1016/j.jpowsour.2014.01.087 [2] Zheng J, Xing G, Zhang L, et al. A minireview on high‐performance anodes for lithium‐ion capacitors[J]. Batteries & Supercaps,2021,4(6):897-908. [3] Jin L M, Guo X, Shen C, et al. A universal matching approach for high power-density and high cycling-stability lithium ion capacitor[J]. Journal of Power Sources,2019,441:227211. doi: 10.1016/j.jpowsour.2019.227211 [4] Jin L M, Guo X, Gong R Q, et al. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors[J]. Energy Storage Materials,2019,23:409-417. doi: 10.1016/j.ensm.2019.04.027 [5] Guo X, Gong R Q, Qin N, et al. The influence of electrode matching on capacity decaying of hybrid lithium ion capacitor[J]. Journal of Electroanalytical Chemistry,2019,845:84-91. doi: 10.1016/j.jelechem.2019.05.046 [6] Shellikeri A, Yturriaga S, Zheng J S, et al. Hybrid lithium-ion capacitor with LiFePO4/AC composite cathode – Long term cycle life study, rate effect and charge sharing analysis[J]. Journal of Power Sources,2018,392:285-295. doi: 10.1016/j.jpowsour.2018.05.002 [7] Li B, Zheng J, Zhang H, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Adv Mater,2018,30(17):1705670. doi: 10.1002/adma.201705670 [8] Jin L M, Zheng J S, Wu Q, et al. Exploiting a hybrid lithium ion power source with a high energy density over 30 Wh/kg[J]. Mater Today Energy,2018,7:51-57. doi: 10.1016/j.mtener.2017.12.003 [9] Piedboeuf M L C, Job N, Aqil A, et al. Understanding the influence of surface oxygen groups on the electrochemical behavior of porous carbons as anodes for lithium-ion batteries[J]. Acs Applied Materials & Interfaces,2020,12(32):36054-36065. [10] Fu R S, Chang Z Z, Shen C X, et al. Surface oxo-functionalized hard carbon spheres enabled superior high-rate capability and long-cycle stability for Li-ion storage[J]. Electrochimica Acta,2018,260:430-438. doi: 10.1016/j.electacta.2017.12.043 [11] An J-C, Lee E J, Hong I. Preparation of the spheroidized graphite-derived multi-layered graphene via GIC (graphite intercalation compound) method[J]. Journal of Industrial and Engineering Chemistry,2017,47:56-61. doi: 10.1016/j.jiec.2016.12.017 [12] Park C M, Jo Y N, Park J W, et al. Anodic Performances of Surface-Treated Natural Graphite for Lithium Ion Capacitors[J]. Bull Korean Chem Soc,2014,35(9):2630-2634. doi: 10.5012/bkcs.2014.35.9.2630 [13] Wang F, Yi J, Wang Y G, et al. Graphite intercalation compounds (GICs): A new type of promising anode material for lithium-ion batteries[J]. Advanced Energy Materials,2014,4(2):1300600. doi: 10.1002/aenm.201300600 [14] Wang F, Li W, Hou M, et al. Sandwich-like Cr2O3–graphite intercalation composites as high-stability anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(4):1703-1708. doi: 10.1039/C4TA05072J [15] Sun Y L, Han F, Zhang C Z, et al. FeCl3 intercalated microcrystalline graphite enables high volumetric capacity and good cycle stability for lithium-ion batteries[J]. Energy Technol-Ger,2019,7(4):1-20. [16] Lv S X, Zhang X G, Zhang P X, et al. One-step fabrication of nanosized LiFePO4/expanded graphite composites with a particle growth inhibitor and enhanced electrochemical performance of aqueous Li-ion capacitors[J]. RSC Advances,2019,9(25):14407-14416. doi: 10.1039/C9RA02248A [17] Bin X, Chen J, Cao H, et al. Preparation and structural investigation of CuCl2 graphite intercalation compounds[J]. ACTA GEOLOGICA SINICA-ENGLISH EDITION,2008,82(5):1056-1060. [18] Zhang C Z, Ma J M, Han F, et al. Strong anchoring effect of ferric chloride-graphite intercalation compounds (FeCl3-GICs) with tailored epoxy groups for high-capacity and stable lithium storage[J]. Journal of Materials Chemistry A,2018,6(37):17982-17993. doi: 10.1039/C8TA06670A [19] Ye J C, Zang J, Tian Z W, et al. Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance[J]. Journal of Materials Chemistry A,2016,4(34):13223-13227. doi: 10.1039/C6TA04592H [20] Odziomek M, Chaput F, Rutkowska A, et al. Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries[J]. Nat Commun,2017,8:15636. doi: 10.1038/ncomms15636 [21] Sun N, Guan Z, Liu Y, et al. Extended “adsorption–insertion” model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials,2019,9(32):1901351. doi: 10.1002/aenm.201901351 [22] Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials[J]. Mater Charact,2013,85:111-123. doi: 10.1016/j.matchar.2013.09.002 [23] Dysart A D, Phuah X L, Shrestha L K, et al. Room and elevated temperature lithium-ion storage in structurally submicron carbon spheres with mechanistic[J]. Carbon,2018,134:334-344. doi: 10.1016/j.carbon.2018.01.024 [24] Li B, Xiao Z J, Chen M, et al. Rice husk-derived hybrid lithium-ion capacitors with ultra-high energy[J]. Journal of Materials Chemistry A,2017,5(46):24502-24507. doi: 10.1039/C7TA07088H [25] Fang Q, Zhou X, Deng W, et al. Nitrogen-doped graphene nanoscroll foam with high diffusion rate and binding affinity for removal of organic pollutants[J]. Small,2017,13(14):1603779. doi: 10.1002/smll.201603779 [26] Yin L, Feng J L, Zhang X H, et al. Advanced sodium-ion pseudocapacitor performance of oxygen-implanted hard carbon derived from carbon spheres[J]. Journal of Materials Science,2019,54(5):4124-4134. doi: 10.1007/s10853-018-3111-9 [27] Al Haj Y, Balamurugan J, Kim N H, et al. Nitrogen-doped graphene encapsulated cobalt iron sulfide as an advanced electrode for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A,2019,7(8):3941-3952. doi: 10.1039/C8TA12396A [28] Li D, Shi J, Liu H L, et al. T-Nb2O5 embedded carbon nanosheets with superior reversibility and rate capability as an anode for high energy Li-ion capacitors[J]. Sustainable Energy & Fuels,2019,3(4):1055-1065. [29] Yang C, Sun M, Zhang L, et al. ZnFe2O4@carbon core-shell nanoparticles encapsulated in reduced graphene oxide for high-performance Li-ion hybrid supercapacitors[J]. ACS Appl Mater Interfaces,2019,11(16):14713-14721. doi: 10.1021/acsami.8b20305 [30] Huang S J, Yang L W, Gao M, et al. Free-standing 3D composite of CoO nanocrystals anchored on carbon nanotubes as high-power anodes in Li-ion hybrid supercapacitors[J]. Journal of Power Sources,2019,437:226934. doi: 10.1016/j.jpowsour.2019.226934 [31] Jin L M, Shen C, Wu Q, et al. Pre-Lithiation Strategies for Next-Generation Practical Lithium-Ion Batteries [J]. Advanced Science, 2021, 8(12). [32] Jin L M, Yuan J M, Shellikeri A, et al. An Overview on Design Parameters of Practical Lithium-Ion Capacitors[J]. Batteries & Supercaps,2021,4(5):749-757. -