留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维介孔氮掺杂炭/石墨烯纳米片的可控合成及其高性能微型超级电容器

杨志 周锋 张鸿涛 秦洁琼 吴忠帅

杨志, 周锋, 张鸿涛, 秦洁琼, 吴忠帅. 二维介孔氮掺杂炭/石墨烯纳米片的可控合成及其高性能微型超级电容器. 新型炭材料(中英文), 2022, 37(5): 936-943. doi: 10.1016/S1872-5805(22)60633-4
引用本文: 杨志, 周锋, 张鸿涛, 秦洁琼, 吴忠帅. 二维介孔氮掺杂炭/石墨烯纳米片的可控合成及其高性能微型超级电容器. 新型炭材料(中英文), 2022, 37(5): 936-943. doi: 10.1016/S1872-5805(22)60633-4
YANG Zhi, ZHOU Feng, ZHANG Hong-tao, QIN Jie-qiong, WU Zhong-shuai. Controllable synthesis of 2D mesoporous nitrogen-doped carbon/graphene nanosheets for high-performance micro-supercapacitors. New Carbon Mater., 2022, 37(5): 936-943. doi: 10.1016/S1872-5805(22)60633-4
Citation: YANG Zhi, ZHOU Feng, ZHANG Hong-tao, QIN Jie-qiong, WU Zhong-shuai. Controllable synthesis of 2D mesoporous nitrogen-doped carbon/graphene nanosheets for high-performance micro-supercapacitors. New Carbon Mater., 2022, 37(5): 936-943. doi: 10.1016/S1872-5805(22)60633-4

二维介孔氮掺杂炭/石墨烯纳米片的可控合成及其高性能微型超级电容器

doi: 10.1016/S1872-5805(22)60633-4
基金项目: 国家自然科学基金(22125903,51872283,22109040);河南农业大学拔尖人才项目(30500947)。
详细信息
    作者简介:

    杨志:杨 志,硕士研究生. E-mail:yz18637399871@163.com

    通讯作者:

    秦洁琼,教授. E-mail:qinjieqiong@henau.edu.cn

    吴忠帅,研究员. E-mail:wuzs@dicp.ac.cn

  • 中图分类号: TB33

Controllable synthesis of 2D mesoporous nitrogen-doped carbon/graphene nanosheets for high-performance micro-supercapacitors

Funds: National Natural Science Foundation of China (22125903, 51872283, 22109040); Top-Notch Talent Program of Henan Agricultural University (30500947).
More Information
  • 摘要: 石墨烯基二维介孔材料能够有效耦合石墨烯基底、功能化材料和介孔结构的优势,被认为是一种理想的微型超级电容器电极材料。基于此,本文以苯胺为前驱体,氧化石墨烯为二维导向剂,二氧化硅纳米球为介孔模板,采用双模板界面诱导自组装法制备介孔氮掺杂炭/石墨烯(mNC/G)纳米片,并实现了其介孔孔径的精确调控和电化学性能的优化。研究表明,7 nm孔径的介孔氮掺杂炭/石墨烯(mNC/G-7)展现出267 F g−1的高比电容,且应用于准固态平面微型超级电容器表现出21.0 F cm−3的体积比电容和1.9 mWh cm−3的体积能量密度,证明了该二维介孔氮掺杂炭/石墨烯纳米片在微型超级电容器应用方面具有良好的前景。
  • FIG. 1817.  FIG. 1817.

    FIG. 1817..  FIG. 1817.

    图  1  2D mNC/G纳米片的合成示意图

    Figure  1.  Schematic illustration of the synthesis of 2D mNC/G nanosheets.

    图  2  2D mNC/G的结构与形貌表征图:(a-c)mNC/G-7、mNC/G-12和mNC/G-22的TEM图,(d-f)mNC/G-7、mNC/G-12和mNC/G-22的HRTEM图,(g)mNC/G-7的等温吸附线(插图为孔径分布曲线),(h)mNC/G-7的AFM图像,(i)mNC/G-7的XPS N1s拟合谱图

    Figure  2.  Characterization of 2D mNC/G. (a-c) TEM images of mNC/G-7, mNC/G-12 and mNC/G-22, (d-f) HRTEM images of mNC/G-7, mNC/G-12 and mNC/G-22, (g) nitrogen adsorption-desorption isotherm of mNC/G-7 (Inset: pore size distribution profile), (h) AFM image and thickness of mNC/G-7, (i) XPS spectrum of N 1s for mNC/G-7.

    图  3  2D mNC/G的电化学性能:(a)mNC/G-7的CV曲线,(b)mNC/G-7的GCD曲线,(c)mNC/G-7、mNC/G-12和mNC/G-22在1 A g−1时的GCD曲线,(d)mNC/G-7、mNC/G-12和mNC/G-22比电容随电流密度变化的曲线,(e)mNC/G-7、mNC/G-12和mNC/G-22的EIS图,(f)mNC/G-7、mNC/G-12和mNC/G-22的循环性能

    Figure  3.  Electrochemical performance of 2D mNC/G. (a) CV curves and (b) GCD profiles of mNC/G-7, (c) GCD profiles obtained at 1 A g−1, (d) specific capacity versus current density, (e) EIS plots and (f) cycling stability of mNC/G-7, mNC/G-12 and mNC/G-22.

    图  4  mNC/G-MSCs的电化学性能:(a)微电极的俯视SEM和(b)横截面SEM图,(c)mNC/G-MSCs在5~100 mV s−1下的CV曲线,(d)mNC/G-MSCs在0.05~1 mA cm−2下的GCD曲线,(e)mNC/G-MSCs比电容随扫描速率的变化曲线,(f,g)1~3个器件并联的CV和GCD曲线,(h,i)是1~3个器件串联的CV和GCD曲线

    Figure  4.  Electrochemical performance of mNC/G-MSCs. (a) Top-view and (b) cross-section SEM images of microelectrodes, (c) CV curves measured at scan rates of 5-100 mV s−1, (d) GCD profiles tested at current density of 0.05-1 mA cm−2, and (e) specific capacity versus scan rates of mNC/G-MSCs, (f-i) CV curves and GCD profiles of three mNC/G-MSCs connected (f, g) in parallel, and (h, i) in series.

    图  5  mNC/G-MSCs的Ragone图和展示图:(a)mNC/G-MSCs的面积能量密度和功率密度曲线,(b)mNC/G-MSCs体积能量密度和功率密度曲线;(c,d)串联mNC/G-MSCs点亮LCD的光学照片

    Figure  5.  Ragone plot and application photographs of mNC/G-MSCs. (a) Ragone plot of areal energy density and power density of mNC/G-MSCs, (b) Ragone plot of volumetric energy density and power density of mNC/G-MSCs, (c,d) optical images of LCDs powered by three serially-connected mNC/G-MSCs.

  • [1] Shi X Y, Das P, Wu Z S. Digital microscale electrochemical energy storage devices for a fully connected and intelligent world[J]. ACS Energy Letters,2022,7:267-281. doi: 10.1021/acsenergylett.1c01854
    [2] Kyeremateng N A, Brouss T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics[J]. Nature Nanotechnology,2017,12:7-15. doi: 10.1038/nnano.2016.196
    [3] Qu Z, Zhu M S, Tang H M, et al. Towards high-performance microscale batteries: Configurations and optimization of electrode materials by in-situ analytical platforms[J]. Energy Storage Materials,2020,29:17-41. doi: 10.1016/j.ensm.2020.03.025
    [4] Zheng S H, Wang H, Das P, et al. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems[J]. Advanced Materials,2021,33:2005449. doi: 10.1002/adma.202005449
    [5] Zheng S H, Ma J X, Fang K X, et al. High-voltage potassium ion micr-supercapacitors with extraordinary volumetric energy density for wearable pressure sensor system[J]. Advanced Energy Materials,2021,11:2003835. doi: 10.1002/aenm.202003835
    [6] Zhang J H, Zhang, G X, Zhou T, et al. Recent developments of planar micro‐supercapacitors: Fabrication, properties, and applications[J]. Advanced Functional Materials,2020,30:1910000. doi: 10.1002/adfm.201910000
    [7] Lu B, Jin X T, Han Q, et al. Planar graphene-based microsupercapacitors[J]. Small,2021,17:2006827. doi: 10.1002/smll.202006827
    [8] Jiang Q, Lei Y, Liang H F, et al. Review of MXene electrochemical microsupercapacitors[J]. Energy Storage Materials,2020,27:78-95. doi: 10.1016/j.ensm.2020.01.018
    [9] Xiao H, Wu Z S, Chen L, et al. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density[J]. ACS Nano,2017,11:7284-7292. doi: 10.1021/acsnano.7b03288
    [10] Qin J Q, Gao J M, Shi X Y, et al. Hierarchical ordered dual‐mesoporous polypyrrole/graphene nanosheets as bi‐functional active materials for high‐performance planar integrated system of micro‐supercapacitor and gas sensor[J]. Advanced Functional Materials,2020,30:1909756. doi: 10.1002/adfm.201909756
    [11] Wu Z S, Parvez K, Feng X L, et al. Graphene-based in-plane micro-supercapacitors with high power and energy densities[J]. Nature Communications,2013,4:2487. doi: 10.1038/ncomms3487
    [12] Zheng S H, Wu Z S, Wang S, et al. Graphene-based materials for high-voltage and high-energy asymmetric supercapacitors[J]. Energy Storage Materials,2017,6:70-97. doi: 10.1016/j.ensm.2016.10.003
    [13] Qin J Q, Das P, Zheng S H, et al. A perspective on two-dimensional materials for planar micro-supercapacitors[J]. APL Materials,2019,7:090902. doi: 10.1063/1.5113940
    [14] Moon Y S, Kim D, Lee G, et al. Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnO electrodes and its application[J]. Carbon,2015,81:29-37. doi: 10.1016/j.carbon.2014.09.018
    [15] Kamboj N, Dey R S. Exploring the chemistry of “Organic/water-in-salt” electrolyte in graphene-polypyrrole based high-voltage (2.4V) microsupercapacitor[J]. Electrochimica Acta,2022,421:140499. doi: 10.1016/j.electacta.2022.140499
    [16] Peng L L, Peng X, Liu B, et al. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano Letters,2013,13:2151-7. doi: 10.1021/nl400600x
    [17] Liu Y Q, Zhang B B, Xu Q, et al. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing[J]. Advanced Functional Materials,2018,28:1706592. doi: 10.1002/adfm.201706592
    [18] Liu Y, Liu X P, Dai Y, et al. Preparation of a N, S, P co-doped and oxidized porous carbon for the efficient adsorption of uranium(VI)[J]. New Carbon Materials,2021,36:1138-1146. doi: 10.1016/S1872-5805(21)60055-0
    [19] Wu J X, Yu J F, Liu J P, et al. MoSe2 nanosheets embedded in nitrogen/phosphorus co-doped carbon/graphene composite anodes for ultrafast sodium storage[J]. Journal of Power Sources,2020,476:228660. doi: 10.1016/j.jpowsour.2020.228660
    [20] Chen Z Y, Zhao S Q, Zhao H H, et al. Nitrogen-doped interpenetrating porous carbon/graphene networks for supercapacitor applications[J]. Chemical Engineering Journal,2021,409:127891. doi: 10.1016/j.cej.2020.127891
    [21] Huang L, Wang S, Zhang Y, et al. Preparation of a N-P co-doped waste cotton fabric-based activated carbon for supercapacitor electrodes[J]. New Carbon Materials,2021,36:1128-1135. doi: 10.1016/S1872-5805(21)60054-9
    [22] Zhang W, Cheng R R, Bi H H, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials,2021,36:69-81. doi: 10.1016/S1872-5805(21)60005-7
    [23] Shi H D, Qin J Q, Huang K, et al. A two-dimensional mesoporous polypyrrole–graphene oxideHeterostructure as a dual-functional ion redistributor for dendrite-free lithium metal anodes[J]. Angewandte Chemie-International Edition,2020,59:2-9. doi: 10.1002/anie.201914768
    [24] Qiu P P, Zhao T, Fang Y, et al. Pushing the limit of ordered mesoporous materials via 2D self‐assembly for energy conversion and storage[J]. Advanced Functional Materials,2020,31:2007496. doi: 10.1002/adfm.202007496
    [25] Su S H, Wang X W, Xue J M. Nanopores in two-dimensional materials: Accurate fabrication[J]. Materials Horizons,2021,8:1390-1408. doi: 10.1039/D0MH01412E
    [26] Kashiwagi D, Sim S, Niwa T, et al. Protein nanotube selectively cleavable with DNA: Supramolecular polymerization of "DNA-appended molecular chaperones"[J]. Journal of the American Chemical Society,2018,140:26-29. doi: 10.1021/jacs.7b09892
    [27] Huang H B, Zhou F, Lu P F, et al. Design and construction of few-layer graphene cathode for ultrafast and high-capacity aluminum-ion batteries[J]. Energy Storage Materials,2020,27:396-404. doi: 10.1016/j.ensm.2020.02.011
    [28] Cui J, Xing F F, Luo H, et al. General synthesis of hollow mesoporous conducting polymers by dual-colloid interface co-assembly for high-energy-density micro-supercapacitors[J]. Journal of Energy Chemistry,2021,62:145-152. doi: 10.1016/j.jechem.2021.03.016
    [29] Tu S B, Su H, Sui D, et al. Mesoporous carbon nanomaterials with tunable geometries and porous structures fabricated by a surface-induced assembly strategy[J]. Energy Storage Materials,2021,35:602-609. doi: 10.1016/j.ensm.2020.11.042
    [30] Tian H, Qin J Q, Hou D, et al. General interfacial self-assembly engineering for patterning two-dimensional polymers with cylindrical mesopores on graphene[J]. Angewandte Chemie-International Edition,2019,58:10173-10178. doi: 10.1002/anie.201903684
    [31] Liu S H, Wang F X, Dong R H, et al. Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size[J]. Advanced Materials,2016,28:8365-8370. doi: 10.1002/adma.201603036
    [32] Veeramani V, Raghavi G, Chen S M, et al. Nitrogen and high oxygen-containing metal-free porous carbon nanosheets for supercapacitor and oxygen reduction reaction applications[J]. Nano Express,2020,1:010036. doi: 10.1088/2632-959X/ab9240
    [33] Zhao N, Zhang P X, Luo D, et al. Direct production of porous carbon nanosheets/particle composites from wasted litchi shell for supercapacitors[J]. Journal of Alloys and Compounds,2019,788:677-684. doi: 10.1016/j.jallcom.2019.02.304
    [34] Ma Q H, Xi H T, Cui F, et al. Self-templating synthesis of hierarchical porous carbon with multi-heteroatom co-doping from tea waste for high-performance supercapacitor[J]. Journal of Energy Storage,2022,45:103509. doi: 10.1016/j.est.2021.103509
    [35] Song B, Li L Y, Lin Z Y, et al. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities[J]. Nano Energy,2015,16:470-478. doi: 10.1016/j.nanoen.2015.06.020
    [36] Beidaghi M, Wang C L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance[J]. Advanced Functional Materials,2012,22:4501-4510. doi: 10.1002/adfm.201201292
    [37] El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications,2013,4:1475. doi: 10.1038/ncomms2446
    [38] Wang S, Wu Z S, Zheng S, et al. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities[J]. ACS Nano,2017,11:4283-4291. doi: 10.1021/acsnano.7b01390
    [39] Zhang Q, Huang L, Chang Q H, et al. Gravure-printed interdigital microsupercapacitors on a flexible polyimide substrate using crumpled graphene ink[J]. Nanotechnology,2016,27:105401. doi: 10.1088/0957-4484/27/10/105401
    [40] Wen F S, Hao C X, Xiang J Y, et al. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter[J]. Carbon,2014,75:236-243. doi: 10.1016/j.carbon.2014.03.058
  • ncm2022-0002C--Qjq-吴忠帅-支撑材料-.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  463
  • HTML全文浏览量:  233
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 修回日期:  2022-08-31
  • 网络出版日期:  2022-07-29
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回