留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress on freestanding carbon electrodes for flexible supercapacitors

ZHAO Yi-rong LIU Cong-cong LU Qiong-qiong OMAR Ahmad PAN Xiao-jun MIKHAILOVA Daria

赵一蓉, 刘聪聪, 卢琼琼, OMARAhmad, 潘孝军, MIKHAILOVADaria. 自支撑碳基柔性超级电容器电极材料研究进展. 新型炭材料(中英文), 2022, 37(5): 875-897. doi: 10.1016/S1872-5805(22)60637-1
引用本文: 赵一蓉, 刘聪聪, 卢琼琼, OMARAhmad, 潘孝军, MIKHAILOVADaria. 自支撑碳基柔性超级电容器电极材料研究进展. 新型炭材料(中英文), 2022, 37(5): 875-897. doi: 10.1016/S1872-5805(22)60637-1
ZHAO Yi-rong, LIU Cong-cong, LU Qiong-qiong, OMAR Ahmad, PAN Xiao-jun, MIKHAILOVA Daria. Recent progress on freestanding carbon electrodes for flexible supercapacitors. New Carbon Mater., 2022, 37(5): 875-897. doi: 10.1016/S1872-5805(22)60637-1
Citation: ZHAO Yi-rong, LIU Cong-cong, LU Qiong-qiong, OMAR Ahmad, PAN Xiao-jun, MIKHAILOVA Daria. Recent progress on freestanding carbon electrodes for flexible supercapacitors. New Carbon Mater., 2022, 37(5): 875-897. doi: 10.1016/S1872-5805(22)60637-1

自支撑碳基柔性超级电容器电极材料研究进展

doi: 10.1016/S1872-5805(22)60637-1
基金项目: 中国留学基金委CSC(202006180045,202108080263);德国研究联合会DFG(448719339);联邦教育和研究部BMBF(03XP0390C, 03XP0254D)
详细信息
    通讯作者:

    卢琼琼,博士,博士后. E-mail:q.lu@ifw-dresden.de

    潘孝军,博士,教授. E-mail:xipan@lzu.edu.cn

  • 中图分类号: TQ127.1+1

Recent progress on freestanding carbon electrodes for flexible supercapacitors

Funds: The authors acknowledge the financial support from the China Scholarship Council (CSC, 202006180045, 202108080263), the financial support from German Research Foundation (DFG) under the joint German-Russian DFG project “KIBSS” (448719339), and Federal Ministry of Education and Research (BMBF) under the projects “HeNa” (03XP0390C) and “KaSiLi” (03XP0254D)
More Information
    Author Bio:

    赵一蓉,刘聪聪,博士研究生,为共同第一作者

    Corresponding author: LU Qiong-qiong. E-mail: q.lu@ifw-dresden.dePAN Xiao-jun. E-mail: xipan@lzu.edu.cn
  • 摘要: 为了驱动柔性电子设备和传感器工作,急需探索具有高电化学性能和优异力学性能的柔性超级电容器。 自支撑电极在柔性超级电容器中起着至关重要的作用。 独立自支撑碳基电极因其高导电性、重量轻、孔隙率可调、表面积可调、易于功能化和优异的力学性能而被广泛应用于柔性超级电容器。 此外,碳基电极还具有来源丰富,成本低廉等优势。 本综述系统总结了基于各种炭材料的独立自支撑碳基电极在柔性超级电容器中的最新进展,并讨论了独立自支撑碳基电极在柔性超级电容器商业化过程中的挑战和未来机遇。
  • FIG. 1814.  FIG. 1814.

    FIG. 1814..  FIG. 1814.

    Figure  1.  (a) Schematic illustration of the structural and features of conventional electrode (upper case) and freestanding carbon electrode (lower case). (b) Schematics of charge storage in SCs.

    Figure  2.  Freestanding carbon electrodes based on various carbon materials for flexible SCs[36-46]. (Reprinted with permission)

    Figure  3.  SEM images of carbon cloth (a) before and (b) after oxidation. (c) TEM image of oxidized carbon fiber. (d) Schematic diagram and the digital picture of solid-state symmetric SCs with PVA/H2SO4 gel electrolyte[49]. (e) Schematic diagram of the carbon cloth after activation. (f) A LED light was lit by SCs devices[40]. (g) Schematic diagram of preparing activated carbon felts with graphene nanosheets. (h) The specific capacitance at different bending states in PVA/H2SO4 electrolyte. (i) Capacitance retention of the flexible device using PVA/H2SO4 electrolyte at different bending angles test [50]. (j) Schematic diagram of the fabrication procedure of fiber-shaped SCs. (k) Digital images of fiber-shaped SCs woven into a glove at different bending states. (l) Digital images of fiber-shaped SCs before and after stretching [54]. (Reprinted with permission).

    Figure  4.  (a) Schematic diagram of the synthesis process of activated textile carbon. (b) Electrochemical performance under different bending angles and (c) performance retention of a device under bending of symmetric SCs device for 200 cycles[72]. (d) Schematic illustration of the synthesis of CNF/GN composite materials. (e) Optical photo and (f) CV curves under different bending angles of CNF/GN composite electrodes[73]. (g) Schematic illustration of the synthesis process for CS-MnO2 electrode. (h) Electrochemical performance of a symmetric SCs device under different bending angles. (i) A watch calculator powered by three symmetric SC devices connected in series[74]. (j) Optical images of the carbonaceous hydrogel and aerogel. (k) SEM image of the carbonaceous gels. (l) Optical image of carbonaceous aerogel. (m) Optical images of hydrogel and aerogel mechanical properties. (n) Electrochemical performance of the electrode[75]. (Reprinted with permission).

    Figure  5.  (a) Optical photos of melamine foam and N-doped carbon foam. (b) SEM image of N-doped carbon foam. (c) Digital photographs of a device with the compressing and recovering processes[45]. (d) Schematic illustration of preparation of the flexible Ti3C2Tx/ANF electrodes. (e) Optical photos of fiber SCs with different curve radii[84]. (Reprinted with permission)

    Figure  6.  (a) Schematic diagram of fabrication process of a fully printable SCs via consecutive spray printing. SCs could integrate on (b) PET, (c) cloth, and (d) paper. (e) Normalized specific capacitance of SCs at different bending states[122]. (f) Schematic illustration of fabrication of asymmetric SCs based on CNT-MnO2 film. (g) Optical pictures and schematics of the SCs before and after being cut[123]. (Reprinted with permission)

    Figure  7.  (a-b) Schematic process of preparing rGO micro-SCs. (c-d) Optical images of micro-SCs. (e-f) The electrochemical performance of the micro- SCs based on rGO film[156]. (g) Schematic illustration of fabricating process of rGO/PVA/H2SO4 electrolyte. (h) CV curves of rGO@PVA composite films with different PVA contents at 50 mV s−1. (i-j) Electrochemical performance of the flexible SCs at different bending states and with loading. (k) Optical images of a LED light lighted by 2 SC devices before and after bending[39]. (Reprinted with permission).

    Table  1.   Comparison of comprehensive performance of freestanding carbon electrodes based on various carbon materials for flexible SCs.

    TypeMaterialsElectronic
    conductivity
    Flexibility/
    Mechanical strength
    Capacitance
    and cycling stability
    in flexible SCs
    AdvantagesDisadvantages
    Commercial carbon clothCarbon fiber textile actived by electrochemical oxidation and chemical oxidation[60]Excellent17.4 MPa0.67 F cm−2 at 2 mA cm−2
    89.5% retentation after
    30000 cycles
    Commercially available,
    high conductivity,
    high tensile strength,
    moderate cost.
    High weight,
    small surface area.
    Carbon fiber cloth actived by KOH and annealing [62]3.2 S cm−1Excellent0.5 F cm−2 at 5 mV s−1
    Biomass-derived carbonCotton-derivered carbon[72]15.06 S cm−10.3 MPa with
    6% strain
    153 mF cm−2 at 1 mA cm−2
    92% retentation
    after 200 cycles
    Renewable raw materials,
    low cost.
    Weak mechanical strength,
    low conductivity,
    low surface area.
    Bacterial cellulose/graphene composite[73]0.37 S cm−10.67 MPa with
    60% strain
    178 F g−1 at 1 A g−1
    ~100% retentation after
    1000 cycles
    Silk-derived carbon decorated with MnO2[74]Good550 kPa with
    7% strain
    -
    Polymer-derived carbonElectrospun-derivecarbon23 S cm−1--Raw material commercially available,
    chemically dopant rich.
    Low conductivity.

    CNTsCNTs film fabricated by spay[122]624 S cm−1-120-129 F g−1 at 0.5 A g−1High conductivity,
    excellent mechanical property.
    Catalyst residue,
    high dispersing difficulty,
    high production cost.
    Partially unzipped CNTs/rGO fiber[136]28.2 S cm−1134.4 MPa with
    3.1% strain
    45.6 F g–1 at 0.1 A g−1
    97.8% retentation after
    20000 cycles
    GraphenerGO fiber[136]25.1 S cm−1151.2 MPa with
    5.3% strain
    12.3 F g–1 at 0.1 A g−1High conductivity and high
    surface area (CVD method),
    functional group rich and high dispersion ability
    (Hummer’s method),
    scalable (mechanical
    exfoliation).
    Low density, weak mechanical strength and high production difficult (CVD method),
    low conductivity and layers stacking (Hummer’s method),
    layers stacking and high difficulty of dispersing (mechanical exfoliation).
    rGO fiber coagulated with Ca2+[151]171.3 S cm−1164.9 MPa with
    10.3 strain
    286.59 mF cm−2 at
    0.53 mV s−1
    rGO/PVA composite film[39]Excellent283 MPa with
    0.9% strain
    184.6 F g−1 at 1 A g−1
    下载: 导出CSV
  • [1] Wen L, Chen J, Liang J, et al. Flexible batteries ahead[J]. National Science Review,2016,4(1):20-23.
    [2] Wang X, Lu X, Liu B, et al. Flexible energy-storage devices: Design consideration and recent progress[J]. Advanced Materials,2014,26(28):4763-4782. doi: 10.1002/adma.201400910
    [3] Zhou G, Li F, Cheng H M. Progress in flexible lithium batteries and future prospects[J]. Energy & Environmental Science,2014,7(4):1307-1338.
    [4] Lu Q, Omar A, Ding L, et al. A facile method to stabilize sodium metal anodes towards high-performance sodium batteries[J]. Journal of Materials Chemistry A,2021,9(14):9038-9047. doi: 10.1039/D1TA00066G
    [5] Lu Q, Liu C, Du Y, et al. Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries[J]. ACS Applied Materials & Interfaces,2021,13(14):16869-16875.
    [6] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. doi: 10.1038/nmat2297
    [7] Liu L, Niu Z, Chen J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations[J]. Chemical Society Reviews,2016,45(15):4340-4363. doi: 10.1039/C6CS00041J
    [8] Peng M, Wang L, Li L, et al. Molecular crowding agents engineered to make bioinspired electrolytes for high-voltage aqueous supercapacitors[J]. eScience,2021,1(1):83-90. doi: 10.1016/j.esci.2021.09.004
    [9] Feng X, Shi X, Ning J, et al. Recent advances in micro-supercapacitors for AC line-filtering performance: From fundamental models to emerging applications[J]. eScience,2021,1(2):124-140. doi: 10.1016/j.esci.2021.11.005
    [10] Wang R, Yao M, Niu Z. Smart supercapacitors from materials to devices[J]. InfoMat,2020,2(1):113-125. doi: 10.1002/inf2.12037
    [11] Wang Y, Qu Q, Gao S, et al. Biomass derived carbon as binder-free electrode materials for supercapacitors[J]. Carbon,2019,155:706-726. doi: 10.1016/j.carbon.2019.09.018
    [12] Bonaccorso F, Colombo L, Yu G, et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501. doi: 10.1126/science.1246501
    [13] Long J W, Bélanger D, Brousse T, et al. Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes[J]. MRS Bulletin,2011,36(7):513-522. doi: 10.1557/mrs.2011.137
    [14] Zhai Y, Dou Y, Zhao D, et al. Carbon materials for chemical capacitive energy storage[J]. Advanced Materials,2011,23(42):4828-4850. doi: 10.1002/adma.201100984
    [15] Lu Q, Jie Y, Meng X, et al. Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook[J]. Carbon Energy,2021,3(6):957-975. doi: 10.1002/cey2.147
    [16] Yang J Y, Han H J, Repich H, et al. Recent progress on the design of hollow carbon spheres to host sulfur in room-temperature sodium–sulfur batteries[J]. New Carbon Materials,2020,35(6):630-645. doi: 10.1016/S1872-5805(20)60519-4
    [17] Xu F, Zhai Y, Zhang E, et al. Ultrastable surface-dominated pseudocapacitive potassium storage enabled by edge-enriched N-doped porous carbon nanosheets[J]. Angewandte Chemie International Edition,2020,59(44):19460-19467. doi: 10.1002/anie.202005118
    [18] Xu F, Qu C, Lu Q, et al. Atomic Sn-enabled high-utilization, large-capacity, and long-life Na anode[J]. Science advances,2022,8(19):eabm7489. doi: 10.1126/sciadv.abm7489
    [19] Wu T, Zhang W, Yang J, et al. Architecture engineering of carbonaceous anodes for high-rate potassium-ion batteries[J]. Carbon Energy,2021,3(4):554-581. doi: 10.1002/cey2.99
    [20] Zhang X R, Yang J Y, Ren Z Y, et al. In-situ observation of electrolyte-dependent interfacial change of the graphite anode in sodium-ion batteries by atomic force microscopy[J]. New Carbon Materials,2022,37(2):371-379. doi: 10.1016/S1872-5805(22)60601-2
    [21] Jin C B, Shi P, Zhang X Q, et al. Advances in carbon materials for stable lithium metal batteries[J]. New Carbon Materials,2022,37(1):1-24. doi: 10.1016/S1872-5805(22)60573-0
    [22] Wang Y, Zhu M, Liu H X, et al. Carbon-based current collector materials for sodium metal anodes[J]. New Carbon Materials,2022,37(1):93-108. doi: 10.1016/S1872-5805(22)60581-X
    [23] Yang J L, Zhao X X, Li W H, et al. Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries[J]. eScience,2022,2(1):95-101. doi: 10.1016/j.esci.2021.11.001
    [24] Wen L, Li F, Cheng H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices[J]. Advanced Materials,2016,28(22):4306-4337. doi: 10.1002/adma.201504225
    [25] Dong L, Xu C, Li Y, et al. Flexible electrodes and supercapacitors for wearable energy storage: A review by category[J]. Journal of Materials Chemistry A,2016,4(13):4659-4685. doi: 10.1039/C5TA10582J
    [26] Yang Z, Yang Y, Lu C X, et al. A high energy density fiber-shaped supercapacitor based on zinc-cobalt bimetallic oxide nanowire forests on carbon nanotube fibers[J]. New Carbon Materials,2019,34(6):559-568. doi: 10.1016/S1872-5805(19)60031-4
    [27] Yin J, Zhang W, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [28] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. doi: 10.1039/b813846j
    [29] Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A,2017,5(25):12653-12672. doi: 10.1039/C7TA00863E
    [30] Wang Y, Zhang L, Hou H, et al. Recent progress in carbon-based materials for supercapacitor electrodes: A review[J]. Journal of Materials Science,2021,56(1):173-200. doi: 10.1007/s10853-020-05157-6
    [31] Kumar S, Saeed G, Zhu L, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review[J]. Chemical Engineering Journal,2021,403:126352. doi: 10.1016/j.cej.2020.126352
    [32] Bi Z, Kong Q, Cao Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A,2019,7(27):16028-16045. doi: 10.1039/C9TA04436A
    [33] Zhu S, Ni J, Li Y. Carbon nanotube-based electrodes for flexible supercapacitors[J]. Nano Research,2020,13(7):1825-1841. doi: 10.1007/s12274-020-2729-5
    [34] Liu L, Niu Z, Chen J. Flexible supercapacitors based on carbon nanotubes[J]. Chinese Chemical Letters,2018,29(4):571-581. doi: 10.1016/j.cclet.2018.01.013
    [35] Shao Y, El-Kady M F, Wang L J, et al. Graphene-based materials for flexible supercapacitors[J]. Chemical Society Reviews,2015,44(11):3639-3665. doi: 10.1039/C4CS00316K
    [36] El-Kady M F, Strong V, Dubin S, et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors[J]. Science,2012,335(6074):1326-1330. doi: 10.1126/science.1216744
    [37] Zhu S, Li Y, Zhu H, et al. Pencil-drawing skin-mountable micro-supercapacitors[J]. Small,2019,15(3):1804037. doi: 10.1002/smll.201804037
    [38] Liu N, Ma W, Tao J, et al. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage[J]. Advanced Materials,2013,25(35):4925-4931. doi: 10.1002/adma.201301311
    [39] Cao J, Chen C, Chen K, et al. High-strength graphene composite films by molecular level couplings for flexible supercapacitors with high volumetric capacitance[J]. Journal of Materials Chemistry A,2017,5(29):15008-15016. doi: 10.1039/C7TA04920J
    [40] Wang W, Liu W, Zeng Y, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Advanced Materials,2015,27(23):3572-3578. doi: 10.1002/adma.201500707
    [41] Zhao Y, Liu Y, Du J, et al. Facile synthesis of interconnected carbon network decorated with Co3O4 nanoparticles for potential supercapacitor applications[J]. Applied Surface Science,2019,487:442-451. doi: 10.1016/j.apsusc.2019.05.142
    [42] Fan L Z, Chen T T, Song W L, et al. High nitrogen-containing cotton derived 3D porous carbon frameworks for high-performance supercapacitors[J]. Scientific Reports,2015,5(1):15388. doi: 10.1038/srep15388
    [43] Hu M, Hu T, Cheng R, et al. Mxene-coated silk-derived carbon cloth toward flexible electrode for supercapacitor application[J]. Journal of Energy Chemistry,2018,27(1):161-166. doi: 10.1016/j.jechem.2017.10.030
    [44] Lu J, Wan H, Ju T, et al. Super flexible electrospun carbon/nickel nanofibrous film electrode for supercapacitors[J]. Journal of Alloys and Compounds,2019,774:593-600. doi: 10.1016/j.jallcom.2018.09.383
    [45] Xiao K, Ding L X, Liu G, et al. Freestanding, hydrophilic nitrogen-doped carbon foams for highly compressible all solid-state supercapacitors[J]. Advanced Materials,2016,28(28):5997-6002. doi: 10.1002/adma.201601125
    [46] Niu Z, Zhou W, Chen J, et al. Compact-designed supercapacitors using free-standing single-walled carbon nanotube films[J]. Energy & Environmental Science,2011,4(4):1440-1446.
    [47] Borchardt L, Oschatz M, Kaskel S. Tailoring porosity in carbon materials for supercapacitor applications[J]. Materials Horizons,2014,1(2):157-168. doi: 10.1039/C3MH00112A
    [48] Jin S, Jiang Y, Ji H, et al. Advanced 3D current collectors for lithium-based batteries[J]. Advanced Materials,2018,30(48):1802014. doi: 10.1002/adma.201802014
    [49] Wang G, Wang H, Lu X, et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability[J]. Advanced Materials,2014,26(17):2676-2682. doi: 10.1002/adma.201304756
    [50] Zhao Z, Wang X, Yao M, et al. Activated carbon felts with exfoliated graphene nanosheets for flexible all-solid-state supercapacitors[J]. Chinese Chemical Letters,2019,30(4):915-918. doi: 10.1016/j.cclet.2019.03.003
    [51] Ouyang B, Zhang Y, Wang Y, et al. Plasma surface functionalization induces nanostructuring and nitrogen-doping in carbon cloth with enhanced energy storage performance[J]. Journal of Materials Chemistry A,2016,4(45):17801-17808. doi: 10.1039/C6TA08155J
    [52] Nakayama M, Komine K, Inohara D. Nitrogen-doped carbon cloth for supercapacitors prepared via a hydrothermal process[J]. Journal of The Electrochemical Society,2016,163(10):A2428-A2434. doi: 10.1149/2.0091613jes
    [53] Liu X, Xu W, Zheng D, et al. Carbon cloth as an advanced electrode material for supercapacitors: Progress and challenges[J]. Journal of Materials Chemistry A,2020,8(35):17938-17950. doi: 10.1039/D0TA03463K
    [54] Jin H, Zhou L, Mak C L, et al. High-performance fiber-shaped supercapacitors using carbon fiber thread (CFT)@polyanilne and functionalized cft electrodes for wearable/stretchable electronics[J]. Nano Energy,2015,11:662-670. doi: 10.1016/j.nanoen.2014.11.055
    [55] Jiang S, Shi T, Zhan X, et al. High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth[J]. Journal of Power Sources,2014,272:16-23. doi: 10.1016/j.jpowsour.2014.08.049
    [56] Miao Z, Huang Y, Xin J, et al. High-performance symmetric supercapacitor constructed using carbon cloth boosted by engineering oxygen-containing functional groups[J]. ACS Applied Materials & Interfaces,2019,11(19):18044-18050.
    [57] Ye D, Yu Y, Tang J, et al. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance[J]. Nanoscale,2016,8(19):10406-10414. doi: 10.1039/C6NR00606J
    [58] Song Y, Liu T Y, Yao B, et al. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small,2017,13(16):1700067. doi: 10.1002/smll.201700067
    [59] Xia H F, Zhang B, Wang C H, et al. Surface engineered carbon-cloth with broadening voltage window for boosted energy density aqueous supercapacitors[J]. Carbon,2020,162:136-146. doi: 10.1016/j.carbon.2020.02.033
    [60] Han Y, Lu Y, Shen S, et al. Enhancing the capacitive storage performance of carbon fiber textile by surface and structural modulation for advanced flexible asymmetric supercapacitors[J]. Advanced Functional Materials,2019,29(7):1806329. doi: 10.1002/adfm.201806329
    [61] Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry,2012,22(45):23710-23725. doi: 10.1039/c2jm34066f
    [62] Zhang T, Kim C H J, Cheng Y, et al. Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a “top-down” approach[J]. Nanoscale,2015,7(7):3285-3291. doi: 10.1039/C4NR06812B
    [63] Peng Z, Huang J, Wang Y, et al. Construction of a hierarchical carbon coated Fe3O4 nanorod anode for 2.6 V aqueous asymmetric supercapacitors with ultrahigh energy density[J]. Journal of Materials Chemistry A,2019,7(48):27313-27322. doi: 10.1039/C9TA10195K
    [64] Xiong G, Meng C, Reifenberger R G, et al. Graphitic petal electrodes for all-solid-state flexible supercapacitors[J]. Advanced Energy Materials,2014,4(3):1300515. doi: 10.1002/aenm.201300515
    [65] Tao J, Liu N, Ma W, et al. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure[J]. Scientific Reports,2013,3(1):2286. doi: 10.1038/srep02286
    [66] Zhai S, Jiang W, Wei L, et al. All-carbon solid-state yarn supercapacitors from activated carbon and carbon fibers for smart textiles[J]. Materials Horizons,2015,2(6):598-605. doi: 10.1039/C5MH00108K
    [67] Lu Q, Wang X, Cao J, et al. Freestanding carbon fiber cloth/sulfur composites for flexible room-temperature sodium-sulfur batteries[J]. Energy Storage Materials,2017,8:77-84. doi: 10.1016/j.ensm.2017.05.001
    [68] Gao Y, Zheng S, Fu H, et al. Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors[J]. Carbon,2020,168:701-709. doi: 10.1016/j.carbon.2020.06.063
    [69] Li L, Zhong Q, Kim N D, et al. Nitrogen-doped carbonized cotton for highly flexible supercapacitors[J]. Carbon,2016,105:260-267. doi: 10.1016/j.carbon.2016.04.031
    [70] Zhao Y, Zhao Y, Ma X, et al. Ammonia-assisted thermal activation of graphene-embellished biological fiber for flexible supercapacitors[J]. Journal of Alloys and Compounds,2019,785:944-950. doi: 10.1016/j.jallcom.2019.01.256
    [71] Jiang Y, Zhang L, Zhang H, et al. Hierarchical Ni0.54Co0.46O2 nanowire and nanosheet arrays grown on carbon fiber cloth for high-performance supercapacitors[J]. Journal of Power Sources,2016,329:473-483. doi: 10.1016/j.jpowsour.2016.08.103
    [72] Zhang W, Guo R, Sun J, et al. Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth[J]. Journal of Colloid and Interface Science,2019,553:705-712. doi: 10.1016/j.jcis.2019.06.048
    [73] Luo H, Xiong P, Xie J, et al. Uniformly dispersed freestanding carbon nanofiber/graphene electrodes made by a scalable biological method for high-performance flexible supercapacitors[J]. Advanced Functional Materials,2018,28(48):1803075. doi: 10.1002/adfm.201803075
    [74] Xia T, Wang Q, Wu W, et al. Fabrication and characterization of MnO2-coated carbon fabrics from silk for shape-editable supercapacitors[J]. Journal of Alloys and Compounds,2021,854:157289. doi: 10.1016/j.jallcom.2020.157289
    [75] Wu X L, Wen T, Guo H L, et al. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors[J]. ACS Nano,2013,7(4):3589-3597. doi: 10.1021/nn400566d
    [76] Hao X, Wang J, Ding B, et al. Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources,2017,352:34-41. doi: 10.1016/j.jpowsour.2017.03.088
    [77] Wang C, Xia K, Zhang Y, et al. Silk-based advanced materials for soft electronics[J]. Accounts of Chemical Research,2019,52(10):2916-2927. doi: 10.1021/acs.accounts.9b00333
    [78] Li X, Zhao J, Cai Z, et al. A dyeing-induced heteroatom-co-doped route toward flexible carbon electrode derived from silk fabric[J]. Journal of Materials Science,2018,53(10):7735-7743. doi: 10.1007/s10853-018-2100-3
    [79] Shi Y, Liu G, Jin R, et al. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review[J]. Carbon Energy,2019,1(2):253-275. doi: 10.1002/cey2.19
    [80] Zhang R, Jing X, Chu Y, et al. Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors[J]. Journal of Materials Chemistry A,2018,6(36):17730-17739. doi: 10.1039/C8TA06471G
    [81] Yao L, Chen D M, Yan S, et al. A facile synthesis of nitrogen-doped porous carbon materials for high-performance supercapacitors[J]. Chemistry Select,2019,4(9):2726-2733. doi: 10.1002/slct.201803808
    [82] Xiang X, Liu E, Xie H, et al. Highly stable performance of supercapacitors using microporous carbon derived from phenol–melamine–formaldehyde resin[J]. Journal of Solid State Electrochemistry,2012,16(8):2661-2666. doi: 10.1007/s10008-012-1692-9
    [83] Yang Z, Xie L, Chen Y, et al. Effective boron doping in three-dimensional nitrogen-containing carbon foam with mesoporous structure for enhanced all-solid-state supercapacitor performance[J]. Applied Surface Science,2019,493:1205-1214. doi: 10.1016/j.apsusc.2019.07.150
    [84] Liu Q, Zhao A, He X, et al. Full‐temperature all‐solid‐state Ti3C2Tx/aramid fiber supercapacitor with optimal balance of capacitive performance and flexibility[J]. Advanced Functional Materials,2021,31(22):2010944. doi: 10.1002/adfm.202010944
    [85] Shen L, Wang J, Xu G, et al. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors[J]. Advanced Energy Materials,2015,5(3):1400977. doi: 10.1002/aenm.201400977
    [86] Ramakrishna S, Fujihara K, Teo W E, et al. Electrospun nanofibers: Solving global issues[J]. Materials today,2006,9(3):40-50. doi: 10.1016/S1369-7021(06)71389-X
    [87] Thavasi V, Singh G, Ramakrishna S. Electrospun nanofibers in energy and environmental applications[J]. Energy & Environmental Science,2008,1(2):205-221.
    [88] Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42(1):261-272. doi: 10.1016/S0032-3861(00)00250-0
    [89] Inagaki M, Yang Y, Kang F. Carbon nanofibers prepared via electrospinning[J]. Advanced Materials,2012,24(19):2547-2566. doi: 10.1002/adma.201104940
    [90] Nataraj S, Yang K, Aminabhavi T. Polyacrylonitrile-based nanofibers—A state-of-the-art review[J]. Progress in polymer science,2012,37(3):487-513. doi: 10.1016/j.progpolymsci.2011.07.001
    [91] Liu C K, Lai K, Liu W, et al. Preparation of carbon nanofibres through electrospinning and thermal treatment[J]. Polymer International,2009,58(12):1341-1349. doi: 10.1002/pi.2669
    [92] Huang Z M, Zhang Y, Ramakrishna S, et al. Electrospinning and mechanical characterization of gelatin nanofibers[J]. Polymer,2004,45(15):5361-5368. doi: 10.1016/j.polymer.2004.04.005
    [93] Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel?[J]. Advanced Materials,2004,16(14):1151-1170. doi: 10.1002/adma.200400719
    [94] Lu X, Wang C, Favier F, et al. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance[J]. Advanced Energy Materials,2017,7(2):1601301. doi: 10.1002/aenm.201601301
    [95] Zhou Z, Liu T, Khan A U, et al. Block copolymer–based porous carbon fibers[J]. Science advances,2019,5(2):eaau6852. doi: 10.1126/sciadv.aau6852
    [96] Yan J, Choi J H, Jeong Y G. Freestanding supercapacitor electrode applications of carbon nanofibers based on polyacrylonitrile and polyhedral oligomeric silsesquioxane[J]. Materials & Design,2018,139:72-80.
    [97] Kim C, Park S H, Lee W J, et al. Characteristics of supercapaitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning[J]. Electrochimica Acta,2004,50(2-3):877-881. doi: 10.1016/j.electacta.2004.02.071
    [98] Kim B H, Yang K S, Woo H G. Boron-nitrogen functional groups on porous nanocarbon fibers for electrochemical supercapacitors[J]. Materials Letters,2013,93:190-193. doi: 10.1016/j.matlet.2012.11.057
    [99] Ma C, Li Y, Shi J, et al. High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching[J]. Chemical Engineering Journal,2014,249:216-225. doi: 10.1016/j.cej.2014.03.083
    [100] Kim C, Ngoc B T N, Yang K S, et al. Self‐sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride[J]. Advanced Materials,2007,19(17):2341-2346. doi: 10.1002/adma.200602184
    [101] Chen L F, Huang Z H, Liang H W, et al. Flexible all-solid-state high-power supercapacitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose[J]. Energy & Environmental Science,2013,6(11):3331.
    [102] Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning[J]. Polymer,1999,40(16):4585-4592. doi: 10.1016/S0032-3861(99)00068-3
    [103] Kim B H, Yang K S, Ferraris J P. Highly conductive, mesoporous carbon nanofiber web as electrode material for high-performance supercapacitors[J]. Electrochimica Acta,2012,75:325-331. doi: 10.1016/j.electacta.2012.05.004
    [104] Le T, Yang Y, Huang Z, et al. Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance[J]. Journal of Power Sources,2015,278:683-692. doi: 10.1016/j.jpowsour.2014.12.055
    [105] Hong S, Lee S, Paik U. Core-shell tubular nanostructured electrode of hollow carbon nanofiber/manganese oxide for electrochemical capacitors[J]. Electrochimica Acta,2014,141:39-44. doi: 10.1016/j.electacta.2014.07.047
    [106] Lee D, Jung J Y, Jung M J, et al. Hierarchical porous carbon fibers prepared using a SiO2 template for high-performance edlcs[J]. Chemical Engineering Journal,2015,263:62-70. doi: 10.1016/j.cej.2014.10.070
    [107] Kim J G, Kim H C, Kim N D, et al. N-doped hierarchical porous hollow carbon nanofibers based on PAN/PVP@ SAN structure for high performance supercapacitor[J]. Composites Part B:Engineering,2020,186:107825. doi: 10.1016/j.compositesb.2020.107825
    [108] Joshi B, Park S, Samuel E, et al. Zeolitic imidazolate framework-7 textile-derived nanocomposite fibers as freestanding supercapacitor electrodes[J]. Journal of Electroanalytical Chemistry,2018,810:239-247. doi: 10.1016/j.jelechem.2018.01.012
    [109] Qu Q, Yun J, Wan Z, et al. MOF-derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3[J]. RSC advances,2014,4(110):64692-64697. doi: 10.1039/C4RA11009A
    [110] Yan B, Zheng J, Wang F, et al. Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance[J]. Materials & Design,2021,201:109518.
    [111] Singhal R, Kalra V. Using common salt to impart pseudocapacitive functionalities to carbon nanofibers[J]. Journal of Materials Chemistry A,2015,3(1):377-385. doi: 10.1039/C4TA05121A
    [112] Dahal B, Mukhiya T, Ojha G P, et al. In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors[J]. Electrochimica Acta,2019,301:209-219. doi: 10.1016/j.electacta.2019.01.171
    [113] Joshi B, Samuel E, Kim Y I, et al. Hierarchically designed ZIF-8-derived Ni@ ZnO/carbon nanofiber freestanding composite for stable Li storage[J]. Chemical Engineering Journal,2018,351:127-134. doi: 10.1016/j.cej.2018.05.098
    [114] Kebabsa L, Kim J, Lee D, et al. Highly porous cobalt oxide-decorated carbon nanofibers fabricated from starch as free-standing electrodes for supercapacitors[J]. Applied Surface Science,2020,511:145313. doi: 10.1016/j.apsusc.2020.145313
    [115] Miao F, Shao C, Li X, et al. Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@ polyaniline nanofibers[J]. Journal of Materials Chemistry A,2016,4(11):4180-4187. doi: 10.1039/C6TA00015K
    [116] Yanilmaz M, Dirican M, Asiri A M, et al. Flexible polyaniline-carbon nanofiber supercapacitor electrodes[J]. Journal of Energy Storage,2019,24:100766. doi: 10.1016/j.est.2019.100766
    [117] Liu X, Marlow M N, Cooper S J, et al. Flexible all-fiber electrospun supercapacitor[J]. Journal of Power Sources,2018,384:264-269. doi: 10.1016/j.jpowsour.2018.02.081
    [118] Levitt A S, Alhabeb M, Hatter C B, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes[J]. Journal of Materials Chemistry A,2019,7(1):269-277. doi: 10.1039/C8TA09810G
    [119] Sun B, Lu Q, Chen K, et al. Redox-active metaphosphate-like terminals enable high-capacity MXene anodes for ultrafast Na-ion storage[J]. Advanced Materials,2022,34(15):2108682. doi: 10.1002/adma.202108682
    [120] Zhang T, Zhang L, Hou Y. Mxenes: Synthesis strategies and lithium-sulfur battery applications[J]. eScience,2022,2(2):164-182. doi: 10.1016/j.esci.2022.02.010
    [121] Xiong D, Li X, Bai Z, et al. Recent advances in layered Ti3C2Tx mxene for electrochemical energy storage[J]. Small,2018,14(17):1703419. doi: 10.1002/smll.201703419
    [122] Wang X, Lu Q, Chen C, et al. A consecutive spray printing strategy to construct and integrate diverse supercapacitors on various substrates[J]. ACS Appl Mater Interfaces,2017,9(34):28612-28619. doi: 10.1021/acsami.7b08833
    [123] Wang Q, Ma Y, Liang X, et al. Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode[J]. Chemical Engineering Journal,2019,371:145-153. doi: 10.1016/j.cej.2019.04.021
    [124] Du Y H, Liu X Y, Wang X Y, et al. Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries[J]. Rare Metals,2022,41(2):415-424. doi: 10.1007/s12598-021-01777-2
    [125] Liu X, Ma L, Du Y, et al. Vanadium pentoxide nanofibers/carbon nanotubes hybrid film for high-performance aqueous zinc-ion batteries[J]. Nanomaterials,2021,11(4):1054. doi: 10.3390/nano11041054
    [126] Chen C, Cao J, Lu Q, et al. Foldable all-solid-state supercapacitors integrated with photodetectors[J]. Advanced Functional Materials,2017,27(3):1604639. doi: 10.1002/adfm.201604639
    [127] Chen C, Cao J, Wang X, et al. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector[J]. Nano Energy,2017,42:187-194. doi: 10.1016/j.nanoen.2017.10.056
    [128] Lim C, Min D H, Lee S B. Direct patterning of carbon nanotube network devices by selective vacuum filtration[J]. Applied Physics Letters,2007,91(24):243117. doi: 10.1063/1.2824575
    [129] Niu Z, Chen J, Hng H H, et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Advanced Materials,2012,24(30):4144-4150. doi: 10.1002/adma.201200197
    [130] Li Y, Kang Z, Yan X, et al. A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor[J]. Nanoscale,2018,10(19):9360-9368. doi: 10.1039/C8NR01991F
    [131] Gao H, Xiao F, Ching C B, et al. Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes[J]. ACS Applied Materials & Interfaces,2012,4(12):7020-7026.
    [132] Wang S, Liu N, Su J, et al. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs[J]. ACS Nano,2017,11(2):2066-2074. doi: 10.1021/acsnano.6b08262
    [133] Cui X, Lv R, Sagar R U R, et al. Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor[J]. Electrochimica Acta,2015,169:342-350. doi: 10.1016/j.electacta.2015.04.074
    [134] Kou L, Huang T, Zheng B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics[J]. Nature communications,2014,5(1):1-10.
    [135] Xue Y, Ding Y, Niu J, et al. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage[J]. Science advances,2015,1(8):e1400198. doi: 10.1126/sciadv.1400198
    [136] Ma W, Li W, Li M, et al. Unzipped carbon nanotube/graphene hybrid fiber with less “dead volume” for ultrahigh volumetric energy density supercapacitors[J]. Advanced Functional Materials,2021,31(19):2100195. doi: 10.1002/adfm.202100195
    [137] Zhang J, Xia Z, Dai L. Carbon-based electrocatalysts for advanced energy conversion and storage[J]. Science advances,2015,1(7):e1500564. doi: 10.1126/sciadv.1500564
    [138] Soltman D, Subramanian V. Inkjet-printed line morphologies and temperature control of the coffee ring effect[J]. Langmuir,2008,24(5):2224-2231. doi: 10.1021/la7026847
    [139] Paul R, Voevodin A A, Zemlyanov D, et al. Microwave‐assisted surface synthesis of a boron–carbon–nitrogen foam and its desorption enthalpy[J]. Advanced Functional Materials,2012,22(17):3682-3690. doi: 10.1002/adfm.201200325
    [140] Zhang Z, Wang L, Li Y, et al. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor[J]. Advanced Energy Materials,2017,7(5):1601814. doi: 10.1002/aenm.201601814
    [141] Wu K, Ye Z, Ding Y, et al. Facile co-deposition of the carbon nanotube@ MnO2 heterostructure for high-performance flexible supercapacitors[J]. Journal of Power Sources,2020,477:229031. doi: 10.1016/j.jpowsour.2020.229031
    [142] Zhang X, Shi W, Zhu J, et al. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous cuo nanobelts and single-walled carbon nanotubes[J]. ACS Nano,2011,5(3):2013-2019. doi: 10.1021/nn1030719
    [143] Jiang Y, Wang P, Zang X, et al. Uniformly embedded metal oxide nanoparticles in vertically aligned carbon nanotube forests as pseudocapacitor electrodes for enhanced energy storage[J]. Nano letters,2013,13(8):3524-3530. doi: 10.1021/nl400921p
    [144] Lu X, Yu M, Wang G, et al. H‐TiO2@ MnO2//H‐TiO2@ C core–shell nanowires for high performance and flexible asymmetric supercapacitors[J]. Advanced Materials,2013,25(2):267-272. doi: 10.1002/adma.201203410
    [145] Su F, Lv X, Miao M. High‐performance two‐Ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles[J]. Small,2015,11(7):854-861. doi: 10.1002/smll.201401862
    [146] Li C, Bai H, Shi G. Conducting polymer nanomaterials: Electrosynthesis and applications[J]. Chemical Society Reviews,2009,38(8):2397-2409. doi: 10.1039/b816681c
    [147] Moon H, Lee H, Kwon J, et al. Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices[J]. Scientific Reports,2017,7(1):1-10. doi: 10.1038/s41598-016-0028-x
    [148] Niu Z, Luan P, Shao Q, et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes[J]. Energy & Environmental Science,2012,5(9):8726-8733.
    [149] Huang P, Lethien C, Pinaud S, et al. On-chip and freestanding elastic carbon films for micro-supercapacitors[J]. Science,2016,351(6274):691-695. doi: 10.1126/science.aad3345
    [150] Zhou Y, Wang X, Acauan L, et al. Ultrahigh‐areal‐capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon‐nanotube arrays[J]. Advanced Materials,2019,31(30):1901916. doi: 10.1002/adma.201901916
    [151] He N, Shan W, Wang J, et al. Mordant inspired wet-spinning of graphene fibers for high performance flexible supercapacitors[J]. Journal of Materials Chemistry A,2019,7(12):6869-6876. doi: 10.1039/C8TA12337C
    [152] Jin Y, Meng Y, Fan W, et al. Free-standing macro-porous nitrogen doped graphene film for high energy density supercapacitor[J]. Electrochimica Acta,2019,318:865-874. doi: 10.1016/j.electacta.2019.06.107
    [153] Yao B, Chandrasekaran S, Zhang J, et al. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading[J]. Joule,2019,3(2):459-470. doi: 10.1016/j.joule.2018.09.020
    [154] Zhao Y, Du J, Li Y, et al. Facile fabrication of flexible graphene-based micro-supercapacitors with ultra-high areal performance[J]. ACS Applied Energy Materials,2020,3(9):8415-8422. doi: 10.1021/acsaem.0c01036
    [155] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper[J]. Nature,2007,448(7152):457-460. doi: 10.1038/nature06016
    [156] Niu Z, Zhang L, Liu L, et al. All-solid-state flexible ultrathin micro-supercapacitors based on graphene[J]. Adv Mater,2013,25(29):4035-42. doi: 10.1002/adma.201301332
    [157] Zhang R, An H, Li Z, et al. Mesoporous graphene-layered double hydroxides free-standing films for enhanced flexible supercapacitors[J]. Chemical Engineering Journal,2016,289:85-92. doi: 10.1016/j.cej.2015.12.088
    [158] Han M, Wang X, Chen C, et al. All-solid-state supercapacitors with superior compressive strength and volumetric capacitance[J]. Energy Storage Materials,2018,13:119-126. doi: 10.1016/j.ensm.2018.01.007
    [159] Yang X, Cheng C, Wang Y, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science,2013,341(6145):534-537. doi: 10.1126/science.1239089
    [160] Li H, Tao Y, Zheng X, et al. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage[J]. Energy & Environmental Science,2016,9(10):3135-3142.
    [161] Zou Z, Zhou W, Zhang Y, et al. High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film[J]. Chemical Engineering Journal,2019,357:45-55. doi: 10.1016/j.cej.2018.09.143
    [162] Du J, Mu X, Zhao Y, et al. Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors[J]. Nanoscale,2019,11(30):14392-14399. doi: 10.1039/C9NR03917A
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  942
  • HTML全文浏览量:  427
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-08-01
  • 网络出版日期:  2022-08-15
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回