留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrospun carbon nanofibers for use in the capacitive desalination of water

Bethwel K Tarus Yusufu A C Jande Karoli N Njau

Bethwel K Tarus, Yusufu A C Jande, Karoli N Njau. 静电纺丝纳米炭纤维的电容去离子化技术用于海水淡化. 新型炭材料(中英文), 2022, 37(6): 1066-1088. doi: 10.1016/S1872-5805(22)60645-0
引用本文: Bethwel K Tarus, Yusufu A C Jande, Karoli N Njau. 静电纺丝纳米炭纤维的电容去离子化技术用于海水淡化. 新型炭材料(中英文), 2022, 37(6): 1066-1088. doi: 10.1016/S1872-5805(22)60645-0
Bethwel K Tarus, Yusufu A C Jande, Karoli N Njau. Electrospun carbon nanofibers for use in the capacitive desalination of water. New Carbon Mater., 2022, 37(6): 1066-1088. doi: 10.1016/S1872-5805(22)60645-0
Citation: Bethwel K Tarus, Yusufu A C Jande, Karoli N Njau. Electrospun carbon nanofibers for use in the capacitive desalination of water. New Carbon Mater., 2022, 37(6): 1066-1088. doi: 10.1016/S1872-5805(22)60645-0

静电纺丝纳米炭纤维的电容去离子化技术用于海水淡化

doi: 10.1016/S1872-5805(22)60645-0
详细信息
    通讯作者:

    Bethwel K Tarus. E-mail: bethweltarus@gmail.com

    Yusufu A C Jande. E-mail: yusufu.jande@nm-aist.ac.tz

  • 中图分类号: TQ127.1+1

Electrospun carbon nanofibers for use in the capacitive desalination of water

  • 摘要:

    电容去离子技术(CDI)已迅速发展成为极具前景的海水淡化方法之一,该技术主要通过在两个多孔电极之间施加电势,使水中的带电物质向电极表面移动,去除水中的盐分进行海水淡化。当离子可以在电极材料的多孔结构中畅通无阻地通过时,海水淡化的效果最佳。纳米结构的多孔炭材料具有较高的比表面积和表面活性,因此更有利运用CDI进行海水淡化。从这个意义上来说,高比表面积静电纺丝炭纳米纤维(CNFs)是非常理想的炭材料,可以在其表面进行掺杂/接枝活性剂增强表面特性。与传统的用粉状材料制备得到的电极不同,CNF可以无需使用黏合剂自支撑形成电极,从而避免了电极材料微观结构和导电性的改变。因此,中孔和微孔均匀分布的分层孔结构使得CNF电极具有较好的海水淡化性能。此外,CNFs与法拉第材料的复合材料可以通过双电层(EDL)和赝电容机制的协同作用进一步增强离子的存储能力。本文重点综述了在CDI工艺中静电纺丝CNFs电极的主要前驱体材料、结构改性及其在盐离子电吸附中的性能。

  • FIG. 1957.  FIG. 1957.

    FIG. 1957..  FIG. 1957.

    Figure  1.  Conventional CDI setup: (a) electrosorption step, (b) desorption step and (c) electrosorption concept in materials[7]

    Figure  2.  Faradaic ion storage mechanisms: (a) ion insertion/intercalation, (b) conversion reaction, and (c) ion-redox active moiety interaction[6, 47]

    Figure  3.  Basic electrospinning setup

    Figure  4.  (a, b) Optical images of electrospun CNFs. (c) – (e) CNFs obtained at carbonization temperatures of 600, 800 and 1000 °C, respectively, with corresponding fiber diameter distributions[82]. (Reproduced with permission from Elsevier)

    Figure  5.  Number of publications on electrospun CNFs used in CDI per year between the years 2011 and 2021. (Google Scholar)

    Figure  6.  FE-SEM images of CNFs obtained from polymer blends with different PAN:PMMA ratios: (a) 90∶10, (b) 85∶15, (c) 80∶20 and (d) 75∶25[9]. (Reproduced with permission from Elsevier)

    Figure  7.  FE-SEM images of BiOCl-CNF hybrid 3D networks: (a-b) nanoplates, (c-d) nanoflowers, and (e-f) dense nanospheres formed on CNFs at low, moderate and high precursor dosages, respectively[124]. (Reproduced with permission from Elsevier)

    Figure  8.  (a – c) FE-SEM images of CNFs modified with MOF-derived PCP at different magnifications and the EDS elemental mapping images of (d) CNF-PCP, (e) C, (f) N, and (g) O[125]. (Reproduced under CC-BY 4.0)

    Figure  9.  Representation of (a) CV curves at different scan rates of modified CNF electrodes. (b) Comparison of CV curves of pure CNFs with the surface-modified CNFs. (c) Comparison of specific capacitance of CNFs with the surface-modified CNFs at different scan rates (inset: schematic illustration of rapid ion transport mechanism of surface-modified CNF electrode). (d) Nyquist plots of pristine CNF and surface-modified CNF electrodes[122]. (Reproduced with permission from Elsevier)

    Figure  10.  Desalination performance of CNF electrodes containing TiO2 as an active agent: (a) electrosorption curves in 2500 mg/L NaCl feed at various cell voltages, (b) salt removal capacities and charge efficiencies at varying voltages, (c) salt removal capacities at varying feed concentrations, (d) salt removal capacities at varying flowrates, (e) salt removal capacity and rate versus time during cycling, (f) cycling stability of the electrodes[37]. (Reproduced with permission from Elsevier)

    Table  1.   A summary of polymeric nanofiber fabrication techniques

    TechniquePrincipleProsCons
    ElectrospinningElectrostatic force is used to draw/stretch polymer solutions
    into ultrafine fibers which are uniformly dispersed onto
    a grounded stationary or rotating collector[31].
    Simple tooling.
    Quick setup.
    Inexpensive.
    Wide material selection
    High versatility.
    High degree of control
    of fiber properties.
    Relatively poor fiber
    mechanical properties.
    Limited solvents for
    certain polymers.
    Limited productivity.
    Phase separationA nanofiber matrix is formed from a polymer solution/gel
    by the separation of phases due to its varying
    solubility in different solvents[54].
    Three-dimensional
    pore structure.
    Complex process.
    Poor control of fiber
    diameter and arrangement.
    Limited material selection.
    Self-assemblySelf-organization and arrangement of molecules to form
    supramolecular structures through electrostatic
    attractions or hydrogen bonding[56].
    Three-dimensional
    pore structure.
    Very small nanofiber dia
    meter possible.
    Complex process.
    Poor control of
    fiber arrangement.
    Limited fiber dimensions.
    Template synthesisNanofibers are formed inside the pores of a nano/
    micro-porous membrane that acts as a template[57].
    Wide material selection.
    Definite control of
    fiber length and diameter.
    Complex process.
    Sacrificial materials.
    Limited fiber sizes.
    Poor control of fiber arrangement.
    DrawingDirect contact and continuous mechanical drawing/
    pulling of a viscous polymer solution[53].
    Simple process and tooling.
    Wide material selection.
    Low productivity.
    Discontinuous process.
    Limited fiber length.
    Inconsistent fiber diameter.
    Interfacial polymerizationPolymerization at the interface of two monomers
    dissolved in immiscible phases. Nanofibers are formed
    as a result of uniformly nucleated growth[51].
    Three-dimensional
    pore structure.
    High degree of control of
    pore sizes, connectivity
    and distribution.
    Limited productivity.
    Large quantities of solvents needed.
    Relatively complex process.
    Material wastage.
    Limited control of fiber properties.
    下载: 导出CSV

    Table  2.   Polymer stabilization conditions for common polymers

    PrecursorConditionsTime (h)ReactionsRef.
    PANHeat in air at ~200-~320 °C
    (280 °C is common).
    Ramp rate = 1-2 °C/min.
    (Ramp rates >5 °C/min are not recommended).
    1-3Dehydrogenation, oxidation,
    aromatization, cyclization.
    [71-76]
    CelluloseHeat in air at 240-400 °C.
    Ramp rate = 1-3 °C/min.
    1-3Dehydration and thermal cleavage and
    scission of C=O and C―O bonds.
    [77, 78]
    Phenolic resinsNovolac
    Cure in formaldehyde + acid catalyst.
    1Crosslinking.[79]
    Resol
    Cure by stepwise heating in air to 180 °C.
    1-2Crosslinking[80-82]
    Polyvinyl acetate (PVA)Heat at 353 K in saturated iodine vapor.
    or Heat in air at 220-250 °C.
    8


    2-4
    Dehydration, aromatization.[22, 83]
    Polyvinyl pyrrolidine (PVP)Solvent evaporation by heating in air at 150 °C.

    Pre-oxidation in air at 280-350 °C.
    4


    5-24
    Oxidation, crosslinking, dehydration.[37, 84-86]
    LigninHeat in air at 200-300 °C.
    (Addition of phosphoric acid to the lignin
    solution reduces stabilization time[87])
    2-~90Crosslinking, oxidation.[87-92]
    Pitch
    Isotropic
    Heat in air at 300-340 °C.

    Anisotropic
    Heat in 8%-10% O2 at 300-310 °C.
    1-3Dehydration, dehydrogenation, oxidation,
    condensation, crosslinking.
    [93, 94]
    PolyimideImidization in air via stepwise thermal treatments:
    250-350 °C
    0.5 - 3Dehydration, cyclization.[95-97]
    下载: 导出CSV

    Table  3.   A comparison of properties and electrosorption performance of electrospun CNFs with other materials

    Electrode materialSBET
    (m2/g)
    VTotal
    (cm3/g)
    Vmeso/
    VTotal (%)
    EC
    electrolyte
    Scan rate
    (mV/s)
    Cs
    (F/g)
    Salt
    solution
    Flow
    rate
    (mL/min)
    CDI Cell
    voltage
    (V)
    SAC
    (mg/g)
    Ref.
    Polymer-based CNFs
    CO2 activated PAN 712 0.363 24.52 6 M KOH 2 228 192 μS/cm NaCl 5 1.6 4.64 [114]
    PAN + PMMA 393.36 0.335 61.3 58.5 g/L NaCl 2 53.6 0.5 g/L NaCl 10 1.2 5.61 [9]
    HCl etched PAN + NiO 322.28 0.28 64.29 58.5 g/L NaCl 2 157.9 0.5 g/L NaCl 10 1.2 6.2 [33]
    PAN + PS 39.83 0.1447 90.46 58.5 g/L NaCl 2 14.8 0.5 g/L NaCl 10 1.2 2.87 [9]
    PAN + PVP 1232 0.786 43.89 6 mol/L KOH 2 202 0.1 g/L NaCl - 1.2 6.51 [5]
    PAN + DMSO2 212 0.118 42.37 58.5 g/L NaCl 2 42.7 0.5 g/L NaCl 10 1.2 8.1 [63]
    PAN + PMMA
    asymmetric
    (ZnCl2 activated
    cathode)
    589.8Cathode
    287.6Anode
    0.36Cathode
    0.23Anode
    - 1 mol/L NaCl 2 112.6 0.5 g/L NaCl 10 1.2 30.4 [26]
    PVP+TiO2 178 0.35 - 1 mol/L NaCl 1 217 2 g/L NaCl 10 1.4 15.5 [37]
    Lignin + PVA 1099 0.65 - 4 mol/L NaCl 5 143 0.1 g/L NaCl 15 1.2 85.4% (η) [105]
    Phenolic Resin 617 0.27 - 1 mol/L NaCl 10 52.1 2 g/L NaCl 6 1.2 50.1 [82]
    Non-CNF
    AC 940 0.49 55 1 mol/L NaCl 5 51.8 2mM NaCl 10 1.2 5.04 [126]
    ACF + CNF 558 - - 1 mol/L NaCl 5 29.16 50 μS/cm NaCl 40 1.2 17.19 [127]
    Biomass derived AC 322.36 0.197 31.47 58.5 g/L NaCl 1 108 0.5 g/L NaCl 12.3 1.5 10.79 [128]
    ACF + polyaniline 415 - - - - 0.2 g/L NaCl 80 2 19.9 [129]
    N-Doped carbon aerogel 2405 1.06 6 mol/L KOH 5 263 0.5 g/L NaCl 25 1.2 17.9 [130]
    Graphene + MoS2 29.7 0.167 - 1 mol/L Na2SO4 10 198.6 0.2 g/L NaCl 18 1.0 16.82 [131]
    Graphene 273.2 - - 6 mol/L KOH - 265.9 at 1A/g 100 mM NaCl - 1.0 22.4 [132]
    TiO2-NT - - - 1 mol/L Na2SO4 20 238.2 0.5 g/L NaCl 30 1.2 13.11 [133]
    Na2FeP2O7 - - - 2 mol/L NaCl - 200 at 48 mA/g 10 mM NaCl 2 1.2 30.2 [134]
    Na4Mn9O18 - - - 1 mol/L NaCl 2 300 10 mM NaCl 10 1.2 31.2 [45]
    Carbon + Fe3O4 90.8 0.34 - 2 mol/L KOH 5 386 0.5 g/L NaCl - 1.2 28.5 [123]
    CNFs + Faradaic/pseudocapacitive material, Hybrid
    CNF + Mn2O3 277.23 - - 1 mol/L NaCl 2 268.67 3 g/L NaCl 20 1.2 27.43 [20]
    CNF + CoCr7C3 1 mol/L NaCl 5 250 1000 μs/cm NaCl 10 1.0 20.4 [120]
    CNF + TiC + Co 60.50 0.263 1 mol/L NaCl 5 979.4 1050 μS/cm NaCl 10 1.2 33.10 [135]
    CNF + MoS2 - - - 1 mol/L NaCl 1 462.5 3 g/L NaCl 20 1.2 53.03 [40]
    CNF + Co3O4 + CNT 320 - - 1 mol/L NaCl 1 300 150×10−6 NaCl 1.4 58.6 [122]
    CNF + Bismuth
    oxychloride
    - - - 1 mol/L NaCl - 846.12 3 g/L NaCl 20 1.2 124.0 [124]
    CNF + MOF 696.2 1.499 - 1 mol/L NaCl 1 172.7 1 g/L NaCl - 1.4 43.3 [136]
    CNF + Porous
    carbon polyhedra
    1450 1.01 - 1 mol/L NaCl 1 284.75 0.5 g/L NaCl 50 1.2 16.98 [125]
    Note: SBET – Specific surface area; VTotal – Total pore volume; Vmeso – Mesopore volume; Vmicro – Micropore volume; Cs – Specific capacitance; EC – Electrochemical; SAC – Salt adsorption capacity; AC – Activated carbon; ACF – Activated carbon fiber; MOF – Metal organic framework; η – Efficiency; M: mol/L
    下载: 导出CSV
  • [1] Manish T, Divya S, Babu G S, et al. Desalination of Water[M]. In: Eyvaz M, Yüksel E, eds. Desalination and water treatment. London: IntechOpen, 2018, 333-347.
    [2] Boretti A, Rosa L. Reassessing the projections of the World Water Development Report[J]. npj Clean Water,2019,2(1):15. doi: 10.1038/s41545-019-0039-9
    [3] United Nations World Water Assessment Programme. The United Nations World Water Development Report 2015: Water for A Sustainable World[R]. Paris: UNESCO, 2015.
    [4] Ng K C, Thu K, Kim Y, et al. Adsorption desalination: An emerging low-cost thermal desalination method[J]. Desalination,2013,308:161-179. doi: 10.1016/j.desal.2012.07.030
    [5] Wang G, Qian B, Wang Y, et al. Electrospun porous hierarchical carbon nanofibers with tailored structures for supercapacitors and capacitive deionization[J]. New Journal of Chemistry,2016,40(4):3786-3792. doi: 10.1039/C5NJ02963E
    [6] Li Q, Zheng Y, Xiao D, et al. Faradaic electrodes open a new era for capacitive deionization[J]. Advanced Science,2020,7(22):2002213. doi: 10.1002/advs.202002213
    [7] Porada S, Zhao R, van der Wal A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science,2013,58(8):1388-1442. doi: 10.1016/j.pmatsci.2013.03.005
    [8] Bouhadana Y, Avraham E, Soffer A, et al. Several basic and practical aspects related to electrochemical deionization of water[J]. AIChE Journal,2010,56(3):779-789.
    [9] Liu J, Xiong Z, Wang S, et al. Structure and electrochemistry comparison of electrospun porous carbon nanofibers for capacitive deionization[J]. Electrochimica Acta,2016,210:171-180. doi: 10.1016/j.electacta.2016.05.133
    [10] Zhao X, Wei H, Zhao H, et al. Electrode materials for capacitive deionization: A review[J]. Journal of Electroanalytical Chemistry,2020,873:114416. doi: 10.1016/j.jelechem.2020.114416
    [11] Vafakhah S, Beiramzadeh Z, Saeedikhani M, et al. A review on free-standing electrodes for energy-effective desalination: Recent advances and perspectives in capacitive deionization[J]. Desalination,2020,493:114662. doi: 10.1016/j.desal.2020.114662
    [12] Zhang L, Aboagye A, Kelkar A, et al. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. Journal of Materials Science,2014,49(2):463-480. doi: 10.1007/s10853-013-7705-y
    [13] Lee H M, Kim H G, Kang S J, et al. Effects of pore structures on electrochemical behaviors of polyacrylonitrile (PAN)-based activated carbon nanofibers[J]. Journal of Industrial and Engineering Chemistry,2015,21:736-740. doi: 10.1016/j.jiec.2014.04.004
    [14] Gao L, Liu S, Dong Q, et al. Sulfur & nitrogen co-doped electrospun carbon nanofibers as freestanding electrodes for membrane capacitive deionization[J]. Separation and Purification Technology,2022,295:121280. doi: 10.1016/j.seppur.2022.121280
    [15] Li Y, Liu Y, Wang M, et al. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization[J]. Carbon,2018,130:377-383. doi: 10.1016/j.carbon.2018.01.035
    [16] Zhu G, Wang H, Xu H, et al. Enhanced capacitive deionization by nitrogen-doped porous carbon nanofiber aerogel derived from bacterial-cellulose[J]. Journal of Electroanalytical Chemistry,2018,822:81-88. doi: 10.1016/j.jelechem.2018.05.024
    [17] Hou Z, Jiang M, Cao Y, et al. Encapsulating ultrafine cobalt sulfides into multichannel carbon nanofibers for superior Li-ion energy storage[J]. Journal of Power Sources,2022,541:231682. doi: 10.1016/j.jpowsour.2022.231682
    [18] Yin D, Han C, Bo X, et al. Prussian blue analogues derived iron-cobalt alloy embedded in nitrogen-doped porous carbon nanofibers for efficient oxygen reduction reaction in both alkaline and acidic solutions[J]. Journal of Colloid and Interface Science,2019,533:578-587. doi: 10.1016/j.jcis.2018.08.118
    [19] Liu Y H, Yu T C, Chen Y W, et al. Incorporating manganese dioxide in carbon nanotube–chitosan as a pseudocapacitive composite electrode for high-performance desalination[J]. ACS Sustainable Chemistry & Engineering,2018,6(3):3196-3205.
    [20] Liu Y, Gao X, Zhang L, et al. Mn2O3 nanoflower decorated electrospun carbon nanofibers for efficient hybrid capacitive deionization[J]. Desalination,2020,494:114665. doi: 10.1016/j.desal.2020.114665
    [21] Yang C M, Kim B H. Incorporation of MnO2 into boron-enriched electrospun carbon nanofiber for electrochemical supercapacitors[J]. Journal of Alloys and Compounds,2019,780:428-434. doi: 10.1016/j.jallcom.2018.11.347
    [22] Nagamine S, Ishimaru S, Taki K, et al. Fabrication of carbon-core/TiO2-sheath nanofibers by carbonization of poly(vinyl alcohol)/TiO2 composite nanofibers prepared via electrospinning and an interfacial sol–gel reaction[J]. Materials Letters,2011,65(19):3027-3029.
    [23] Lal M S, Sundara R. Electrospun porous carbon nanofibers/TiO2 composite coated over carbon cloth- A flexible electrode for capacitive deionization[J]. Ceramics International,2022,48(14):20351-20361. doi: 10.1016/j.ceramint.2022.03.319
    [24] Ma C, Wu L, Dirican M, et al. ZnO-assisted synthesis of lignin-based ultra-fine microporous carbon nanofibers for supercapacitors[J]. Journal of Colloid and Interface Science,2021,586:412-422. doi: 10.1016/j.jcis.2020.10.105
    [25] Li Y, Xu R, Qiao L, et al. Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization[J]. Microporous and Mesoporous Materials,2022,338:111889. doi: 10.1016/j.micromeso.2022.111889
    [26] Nie P, Wang S, Shang X, et al. Self-supporting porous carbon nanofibers with opposite surface charges for high-performance inverted capacitive deionization[J]. Desalination,2021,520:115340. doi: 10.1016/j.desal.2021.115340
    [27] Xue Z, Xiong Q, Zou C, et al. Growth of carbon nanofibers through chemical vapor deposition for enhanced sodium ion storage[J]. Materials Research Bulletin,2021,133:111049. doi: 10.1016/j.materresbull.2020.111049
    [28] Hiremath N, Bhat G. High-performance Carbon Nanofibers and Nanotubes. In: Bhat G, ed. Structure and Properties of High-performance Fibers[M]. Oxford: Woodhead Publishing, 2017, 79-109.
    [29] Nataraj S K, Yang K S, Aminabhavi T M. Polyacrylonitrile-based nanofibers—A state-of-the-art review[J]. Progress in Polymer Science,2012,37(3):487-513. doi: 10.1016/j.progpolymsci.2011.07.001
    [30] Newcomb B A. Processing, structure, and properties of carbon fibers[J]. Composites Part A:Applied Science and Manufacturing,2016,91:262-282. doi: 10.1016/j.compositesa.2016.10.018
    [31] Xue J, Wu T, Dai Y, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews,2019,119(8):5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [32] Haider S, Haider A, Alghyamah A A, et al. Electrohydrodynamic Processes and Their Affecting Parameters. In: Haider S, Haider A, eds. Electrospinning and Electrospraying-techniques and Applications[M]. London: IntechOpen, 2019, 1-25.
    [33] Hussain T, Wang Y, Xiong Z, et al. Fabrication of electrospun trace NiO-doped hierarchical porous carbon nanofiber electrode for capacitive deionization[J]. Journal of Colloid and Interface Science,2018,532:343-351. doi: 10.1016/j.jcis.2018.07.129
    [34] Suss M E, Porada S, Sun X, et al. Water desalination via capacitive deionization: what is it and what can we expect from it?[J]. Energy & Environmental Science,2015,8(8):2296-2319.
    [35] Zhao R, Biesheuvel P M, Van der Wal A. Energy consumption and constant current operation in membrane capacitive deionization[J]. Energy & Environmental Science,2012,5(11):9520-9527.
    [36] Oladunni J, Zain J H, Hai A, et al. A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice[J]. Separation and Purification Technology,2018,207:291-320. doi: 10.1016/j.seppur.2018.06.046
    [37] Guo L, Ding M, Yan D, et al. High speed capacitive deionization system with flow-through electrodes[J]. Desalination,2020,496:114750. doi: 10.1016/j.desal.2020.114750
    [38] Mossad M, Zou L. A study of the capacitive deionisation performance under various operational conditions[J]. Journal of Hazardous Materials,2012,213-214:491-497. doi: 10.1016/j.jhazmat.2012.02.036
    [39] Ahmed M A, Tewari S. Capacitive deionization: Processes, materials and state of the technology[J]. Journal of Electroanalytical Chemistry,2018,813:178-192. doi: 10.1016/j.jelechem.2018.02.024
    [40] Liu Y, Du X, Wang Z, et al. MoS2 nanoflakes-coated electrospun carbon nanofibers for “rocking-chair” capacitive deionization[J]. Desalination,2021,520:115376. doi: 10.1016/j.desal.2021.115376
    [41] Chang J, Li Y, Duan F, et al. Selective removal of chloride ions by bismuth electrode in capacitive deionization[J]. Separation and Purification Technology,2020,240:116600. doi: 10.1016/j.seppur.2020.116600
    [42] Su X, Hatton T A. Electrosorption at functional interfaces: from molecular-level interactions to electrochemical cell design[J]. Physical Chemistry Chemical Physics,2017,19(35):23570-23584. doi: 10.1039/C7CP02822A
    [43] Han B, Cheng G, Wang Y, et al. Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization[J]. Chemical Engineering Journal,2019,360:364-384. doi: 10.1016/j.cej.2018.11.236
    [44] Singh K, Zhang L, Zuilhof H, et al. Water desalination with nickel hexacyanoferrate electrodes in capacitive deionization: Experiment, model and comparison with carbon[J]. Desalination,2020,496:114647. doi: 10.1016/j.desal.2020.114647
    [45] Lee J, Kim S, Kim C, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy & Environmental Science,2014,7(11):3683-3689.
    [46] Srimuk P, Husmann S, Presser V. Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater[J]. RSC advances,2019,9(26):14849-14858. doi: 10.1039/C9RA02570G
    [47] Wu M, Ni W, Hu J, et al. NASICON-structured NaTi2(PO4)3 for sustainable energy storage[J]. Nano-Micro Letters,2019,11(1):44. doi: 10.1007/s40820-019-0273-1
    [48] Mohamed A. Synthesis, Characterization, and Applications Carbon Nanofibers. In: Yaragalla S, Mishra R, Thomas S, Kalarikkal N, Maria H J, eds. Carbon-based Nanofillers and Their Rubber Nanocomposites[M]. Amsterdam: Elsevier, 2019, 243-257.
    [49] Qin W, Li J, Tu J, et al. Fabrication of porous chitosan membranes composed of nanofibers by low temperature thermally induced phase separation, and their adsorption behavior for Cu2+[J]. Carbohydrate Polymers,2017,178:338-346. doi: 10.1016/j.carbpol.2017.09.051
    [50] Zheng Z, Chen P, Xie M, et al. Cell environment-differentiated self-assembly of nanofibers[J]. Journal of the American Chemical Society,2016,138(35):11128-11131. doi: 10.1021/jacs.6b06903
    [51] Song Y, Fan J B, Wang S. Recent progress in interfacial polymerization[J]. Materials Chemistry Frontiers,2017,1(6):1028-1040. doi: 10.1039/C6QM00325G
    [52] Ejeromedoghene O, Zuo X, Ogungbesan S O, et al. Template synthesis and characterization of photochromic tungsten trioxide nanofibers [J]. Journal of Materials Science: Materials in Electronics, 2022, 33: 7371–7379.
    [53] Jao D, Beachley V Z. Continuous dual-track fabrication of polymer micro-/nanofibers based on direct drawing[J]. ACS Macro Letters,2019,8(5):588-595. doi: 10.1021/acsmacrolett.9b00167
    [54] Alghoraibi I, Alomari S. Different Methods for Nanofiber Design and Fabrication[M]. Handbook of Nanofibers, 2018: 1-46.
    [55] Yadav D, Amini F, Ehrmann A. Recent advances in carbon nanofibers and their applications – A review[J]. European Polymer Journal,2020,138:109963. doi: 10.1016/j.eurpolymj.2020.109963
    [56] Beachley V, Wen X. Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions[J]. Progress in Polymer Science,2010,35(7):868-892. doi: 10.1016/j.progpolymsci.2010.03.003
    [57] Soltani S, Khanian N, Choong T S Y, et al. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: characterization and potential applications[J]. New Journal of Chemistry,2020,44(23):9581-9606. doi: 10.1039/D0NJ01071E
    [58] Kaur S, Sundarrajan S, Rana D, et al. Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane[J]. Journal of Membrane Science,2012,392-393:101-111. doi: 10.1016/j.memsci.2011.12.005
    [59] El Messiry M, Fadel N. Study of poly(vinyl chloride) nanofiber structured assemblies as oil sorbents[J]. The Journal of The Textile Institute,2019,110(8):1114-1125. doi: 10.1080/00405000.2018.1541436
    [60] Huang L, Arena J T, Manickam S S, et al. Improved mechanical properties and hydrophilicity of electrospun nanofiber membranes for filtration applications by dopamine modification[J]. Journal of Membrane Science,2014,460:241-249. doi: 10.1016/j.memsci.2014.01.045
    [61] Lalia B S, Guillen-Burrieza E, Arafat H A, et al. Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation[J]. Journal of Membrane Science,2013,428:104-115. doi: 10.1016/j.memsci.2012.10.061
    [62] Tijing L D, Woo Y C, Johir M A H, et al. A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation[J]. Chemical Engineering Journal,2014,256:155-159. doi: 10.1016/j.cej.2014.06.076
    [63] Pan H, Yang J, Wang S, et al. Facile fabrication of porous carbon nanofibers by electrospun PAN/dimethyl sulfone for capacitive deionization[J]. Journal of Materials Chemistry A,2015,3(26):13827-13834. doi: 10.1039/C5TA02954F
    [64] Ramakrishna S, Fujihara K, Teo W-E, et al. Electrospun nanofibers: solving global issues[J]. Materials Today,2006,9(3):40-50. doi: 10.1016/S1369-7021(06)71389-X
    [65] Lu X, Wang C, Favier F, et al. Electrospun nanomaterials for supercapacitor electrodes: Designed architectures and electrochemical performance[J]. Advanced Energy Materials,2017,7(2):1601301. doi: 10.1002/aenm.201601301
    [66] Hwang M, Karenson M O, Elabd Y A. High production rate of high purity, high fidelity Nafion nanofibers via needleless electrospinning[J]. ACS Applied Polymer Materials,2019,1(10):2731-2740. doi: 10.1021/acsapm.9b00681
    [67] He J H. On the height of Taylor cone in electrospinning[J]. Results in Physics,2020,17:103096. doi: 10.1016/j.rinp.2020.103096
    [68] Kaur S, Gopal R, Ng W J, et al. Next-generation fibrous media for water treatment[J]. MRS Bulletin,2008,33(1):21-26. doi: 10.1557/mrs2008.10
    [69] Tarus B, Fadel N, Al-Oufy A, et al. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats[J]. Alexandria Engineering Journal,2016,55(3):2975-2984. doi: 10.1016/j.aej.2016.04.025
    [70] Ditaranto N, Basoli F, Trombetta M, et al. Electrospun nanomaterials implementing antibacterial inorganic nanophases[J]. Applied Sciences,2018,8(9):1643. doi: 10.3390/app8091643
    [71] Storck J L, Grothe T, Tuvshinbayar K, et al. Stabilization and incipient carbonization of electrospun polyacrylonitrile nanofibers fixated on aluminum substrates[J]. Fibers,2020,8(9):55. doi: 10.3390/fib8090055
    [72] Rahaman M S A, Ismail A F, Mustafa A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation and Stability,2007,92(8):1421-1432. doi: 10.1016/j.polymdegradstab.2007.03.023
    [73] Faraji S, Yardim M F, Can D S, et al. Characterization of polyacrylonitrile, poly(acrylonitrile-co-vinyl acetate), and poly(acrylonitrile-co-itaconic acid) based activated carbon nanofibers[J]. Journal of Applied Polymer Science,2017,134(2):44381. doi: 10.1002/app.44381
    [74] Jun Y R, Kim B H. Effects of heat treatment on the hierarchical porous structure and electro-capacitive properties of RuO2/activated carbon nanofiber composites[J]. Bulletin of the Korean Chemical Society,2016,37(11):1820-1826. doi: 10.1002/bkcs.10981
    [75] Barua B, Saha M C. Studies of reaction mechanisms during stabilization of electrospun polyacrylonitrile carbon nanofibers[J]. Polymer Engineering & Science,2018,58(8):1315-1321.
    [76] Wu M, Wang Q, Li K, et al. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers[J]. Polymer Degradation and Stability,2012,97(8):1511-1519. doi: 10.1016/j.polymdegradstab.2012.05.001
    [77] Deng L, Young R J, Kinloch I A, et al. Supercapacitance from cellulose and carbon nanotube nanocomposite fibers[J]. ACS applied materials & interfaces,2013,5(20):9983-9990.
    [78] Liu Y, Qin W, Wang Q, et al. Glassy carbon nanofibers from electrospun cellulose nanofiber[J]. Journal of Materials Science,2015,50(2):563-569. doi: 10.1007/s10853-014-8612-6
    [79] Wang M X, Huang Z H, Kang F, et al. Porous carbon nanofibers with narrow pore size distribution from electrospun phenolic resins[J]. Materials Letters,2011,65(12):1875-1877. doi: 10.1016/j.matlet.2011.03.095
    [80] Bai Y, Huang Z H, Kang F. Electrospun preparation of microporous carbon ultrafine fibers with tuned diameter, pore structure and hydrophobicity from phenolic resin[J]. Carbon,2014,66:705-712. doi: 10.1016/j.carbon.2013.09.074
    [81] Wang L, Huang Z H, Yue M, et al. Preparation of flexible phenolic resin-based porous carbon fabrics by electrospinning[J]. Chemical Engineering Journal,2013,218:232-237. doi: 10.1016/j.cej.2012.12.042
    [82] Chen Y, Yue M, Huang Z H, et al. Electrospun carbon nanofiber networks from phenolic resin for capacitive deionization[J]. Chemical Engineering Journal,2014,252:30-37. doi: 10.1016/j.cej.2014.04.099
    [83] Zhang S J, Yu H Q, Feng H M. PVA-based activated carbon fibers with lotus root-like axially porous structure[J]. Carbon,2006,44(10):2059-2068. doi: 10.1016/j.carbon.2005.12.047
    [84] Ekabutr P, Ariyathanakul T, Chaiyo S, et al. Carbonized electrospun polyvinylpyrrolidone/metal hybrid nanofiber composites for electrochemical applications[J]. Journal of Applied Polymer Science,2018,135(1):45639. doi: 10.1002/app.45639
    [85] Dong L, Wang G, Li X, et al. PVP-derived carbon nanofibers harvesting enhanced anode performance for lithium ion batteries[J]. RSC Advances,2016,6(5):4193-4199. doi: 10.1039/C5RA23924A
    [86] Wang P, Zhang D, Ma F, et al. Mesoporous carbon nanofibers with a high surface area electrospun from thermoplastic polyvinylpyrrolidone[J]. Nanoscale,2012,4(22):7199-7204. doi: 10.1039/c2nr32249h
    [87] García-Mateos F J, Ruiz-Rosas R, María Rosas J, et al. Activation of electrospun lignin-based carbon fibers and their performance as self-standing supercapacitor electrodes[J]. Separation and Purification Technology,2020,241:116724. doi: 10.1016/j.seppur.2020.116724
    [88] Deng H, Chen X, Tan Y, et al. Lignin-derived porous and microcrystalline carbon for flow-electrode capacitive deionization[J]. Int. J. Electrochem. Sci,2021,16(2):210231.
    [89] Ma X, Kolla P, Zhao Y, et al. Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowhiskers as binder-free supercapacitor electrodes with high performance[J]. Journal of Power Sources,2016,325:541-548. doi: 10.1016/j.jpowsour.2016.06.073
    [90] Wei J, Geng S, Kumar M, et al. Investigation of structure and chemical composition of carbon nanofibers developed from renewable precursor[J]. Frontiers in Materials,2019, 6:334. doi: 10.3389/fmats.2019.00334
    [91] Ma C, Li Z, Li J, et al. Lignin-based hierarchical porous carbon nanofiber films with superior performance in supercapacitors[J]. Applied Surface Science,2018,456:568-576. doi: 10.1016/j.apsusc.2018.06.189
    [92] Cho M, Ko F K, Renneckar S. Impact of thermal oxidative stabilization on the performance of lignin-based carbon nanofiber mats[J]. ACS Omega,2019,4(3):5345-5355. doi: 10.1021/acsomega.9b00278
    [93] Clingerman M L. Development and modelling of electrically conductive composite materials[D]. Ph.D. Thesis. Michigan Technological University, MICH 2001.
    [94] Park S H, Kim C, Yang K S. Preparation of carbonized fiber web from electrospinning of isotropic pitch[J]. Synthetic Metals,2004,143(2):175-179. doi: 10.1016/j.synthmet.2003.11.006
    [95] Le T, Yang Y, Huang Z, et al. Preparation of microporous carbon nanofibers from polyimide by using polyvinyl pyrrolidone as template and their capacitive performance[J]. Journal of Power Sources,2015,278:683-692. doi: 10.1016/j.jpowsour.2014.12.055
    [96] Kim C, Choi Y O, Lee W J, et al. Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions[J]. Electrochimica Acta,2004,50(2):883-887.
    [97] Yang K S, Edie D D, Lim D Y, et al. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution[J]. Carbon,2003,41(11):2039-2046. doi: 10.1016/S0008-6223(03)00174-X
    [98] Lee H M, An K H, Kim B J. Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers[J]. Carbon letters,2014,15(2):146-150. doi: 10.5714/CL.2014.15.2.146
    [99] Ju Y W, Park S H, Jung H R, et al. Electrospun activated carbon nanofibers electrodes based on polymer blends[J]. Journal of The Electrochemical Society,2009,156(6):A489. doi: 10.1149/1.3116245
    [100] Tavanai H, Jalili R, Morshed M. Effects of fiber diameter and CO2 activation temperature on the pore characteristics of polyacrylonitrile based activated carbon nanofibers[J]. Surface and Interface Analysis,2009,41(10):814-819. doi: 10.1002/sia.3104
    [101] Wu Y B, Bi J, Lou T, et al. Preparation of a novel PAN/cellulose acetate-Ag based activated carbon nanofiber and its adsorption performance for low-concentration SO2[J]. International Journal of Minerals, Metallurgy, and Materials,2015,22(4):437-445. doi: 10.1007/s12613-015-1091-1
    [102] Fan Q, Ma C, Wu L, et al. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode[J]. RSC Advances,2019,9(12):6419-6428. doi: 10.1039/C8RA07587E
    [103] Deng L, Young R J, Kinloch I A, et al. Carbon nanofibres produced from electrospun cellulose nanofibres[J]. Carbon,2013,58:66-75. doi: 10.1016/j.carbon.2013.02.032
    [104] Sheng J, Ma C, Ma Y, et al. Synthesis of microporous carbon nanofibers with high specific surface using tetraethyl orthosilicate template for supercapacitors[J]. International Journal of Hydrogen Energy,2016,41(22):9383-9393. doi: 10.1016/j.ijhydene.2016.04.076
    [105] Song Y M. Preparation and characterization of electrospun lignin carbon fibers for capacitive deionization[D]. MSc. Thesis. Chosun University Graduate School, Gwangju, 2017.
    [106] Altin Y, Bedeloğlu A. Polyacrylonitrile nanofiber optimization as precursor of carbon nanofibers for supercapacitors[J]. Journal of Innovative Science and Engineering (JISE),2020,4(2):69-83. doi: 10.38088/jise.726792
    [107] Zhang Y, Xue Q, Li F, et al. Removal of heavy metal ions from wastewater by capacitive deionization using polypyrrole/chitosan composite electrode[J]. Adsorption Science & Technology,2019,37(3-4):205-216.
    [108] Yin J, Zhang W, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [109] Zhang B, Kang F, Tarascon J M, et al. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage[J]. Progress in Materials Science,2016,76:319-380. doi: 10.1016/j.pmatsci.2015.08.002
    [110] Zhang Y, Shi Q, Song J, et al. A facile strategy for Co3O4/Co nanoparticles encapsulated in porous N-doped carbon nanofibers towards enhanced lithium storage performance[J]. Journal of Porous Materials,2020,27(1):1-9. doi: 10.1007/s10934-019-00785-z
    [111] Zhang B, Yu Y, Huang Z, et al. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles[J]. Energy & Environmental Science,2012,5(12):9895-9902.
    [112] El-Deen A G, Barakat N A M, Khalil K A, et al. Development of multi-channel carbon nanofibers as effective electrosorptive electrodes for a capacitive deionization process[J]. Journal of Materials Chemistry A,2013,1(36):11001-11010. doi: 10.1039/c3ta12450a
    [113] Liu J, Wang S, Yang J, et al. ZnCl2 activated electrospun carbon nanofiber for capacitive desalination[J]. Desalination,2014,344:446-453. doi: 10.1016/j.desal.2014.04.015
    [114] Wang G, Pan C, Wang L, et al. Activated carbon nanofiber webs made by electrospinning for capacitive deionization[J]. Electrochimica Acta,2012,69:65-70. doi: 10.1016/j.electacta.2012.02.066
    [115] Jo E, Yeo J G, Kim D K, et al. Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends[J]. Polymer International,2014,63(8):1471-1477. doi: 10.1002/pi.4645
    [116] Su Y J, Ko T H, Lin J H. Preparation of ultra-thin PAN-based activated carbon fibers with physical activation[J]. Journal of Applied Polymer Science,2008,108(6):3610-3617. doi: 10.1002/app.27982
    [117] Kim D W, Kil H S, Nakabayashi K, et al. Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model[J]. Carbon,2017,114:98-105. doi: 10.1016/j.carbon.2016.11.082
    [118] Yang Y, Le T, Kang F, et al. Polymer blend techniques for designing carbon materials[J]. Carbon,2017,111:546-568. doi: 10.1016/j.carbon.2016.10.047
    [119] Lee H M, Kim H G, An K H, et al. Effects of pore structures on electrochemical behaviors of polyacrylonitrile-based activated carbon nanofibers by carbon dioxide activation[J]. Carbon letters,2014,15(1):71-76. doi: 10.5714/CL.2014.15.1.071
    [120] Zouli N, Hameed R M A, Abutaleb A, et al. Insights on the role of supporting electrospun carbon nanofibers with binary metallic carbides for enhancing their capacitive deionization performance[J]. Journal of Materials Research and Technology,2021,15:3795-3806. doi: 10.1016/j.jmrt.2021.09.129
    [121] Lee J, Jo K, Lee J, et al. Rocking-chair capacitive deionization for continuous brackish water desalination[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10815-10822.
    [122] Guo L, Zhang J, Ding M, et al. Hierarchical Co3O4/CNT decorated electrospun hollow nanofiber for efficient hybrid capacitive deionization[J]. Separation and Purification Technology,2021,266:118593. doi: 10.1016/j.seppur.2021.118593
    [123] Chen L, Xu X, Wan L, et al. Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors[J]. Materials Chemistry Frontiers,2021,5(8):3480-3488. doi: 10.1039/D0QM00946F
    [124] Liu Y, Gao X, Wang Z, et al. Controlled synthesis of bismuth oxychloride-carbon nanofiber hybrid materials as highly efficient electrodes for rocking-chair capacitive deionization[J]. Chemical Engineering Journal,2021,403:126326. doi: 10.1016/j.cej.2020.126326
    [125] Liu Y, Ma J, Lu T, et al. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization[J]. Scientific Reports,2016,6(1):32784. doi: 10.1038/srep32784
    [126] Liu N L, Sun S H, Hou C H. Studying the electrosorption performance of activated carbon electrodes in batch-mode and single-pass capacitive deionization[J]. Separation and Purification Technology,2019,215:403-409. doi: 10.1016/j.seppur.2019.01.029
    [127] Zhan Y, Nie C, Li H, et al. Enhancement of electrosorption capacity of activated carbon fibers by grafting with carbon nanofibers[J]. Electrochimica Acta,2011,56(9):3164-3169. doi: 10.1016/j.electacta.2011.01.059
    [128] Xie Z, Shang X, Yan J, et al. Biomass-derived porous carbon anode for high-performance capacitive deionization[J]. Electrochimica Acta,2018,290:666-675. doi: 10.1016/j.electacta.2018.09.104
    [129] Tian S, Zhang Z, Zhang X, et al. Capacitative deionization using commercial activated carbon fiber decorated with polyaniline[J]. Journal of Colloid and Interface Science,2019,537:247-255. doi: 10.1016/j.jcis.2018.11.025
    [130] Liu X, Liu H, Mi M, et al. Nitrogen-doped hierarchical porous carbon aerogel for high-performance capacitive deionization[J]. Separation and Purification Technology,2019,224:44-50. doi: 10.1016/j.seppur.2019.05.010
    [131] Peng W, Wang W, Han G, et al. Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization[J]. Desalination,2020,473:114191. doi: 10.1016/j.desal.2019.114191
    [132] Mohanapriya K, Ghosh G, Jha N. Solar light reduced graphene as high energy density supercapacitor and capacitive deionization electrode[J]. Electrochimica Acta,2016,209:719-729. doi: 10.1016/j.electacta.2016.03.111
    [133] Wei K, Zhang Y, Han W, et al. A novel capacitive electrode based on TiO2-NTs array with carbon embedded for water deionization: Fabrication, characterization and application study[J]. Desalination,2017,420:70-78. doi: 10.1016/j.desal.2017.07.001
    [134] Kim S, Lee J, Kim C, et al. Na2FeP2O7 as a novel material for hybrid capacitive deionization[J]. Electrochimica Acta,2016,203:265-271. doi: 10.1016/j.electacta.2016.04.056
    [135] Hameed R M A, Zouli N, Abutaleb A, et al. Improving water desalination performance of electrospun carbon nanofibers by supporting with binary metallic carbide nanoparticles[J]. Ceramics International,2022,48(4):4741-4753. doi: 10.1016/j.ceramint.2021.11.010
    [136] Ding M, Bannuru K K R, Wang Y, et al. Free-standing electrodes derived from metal–organic frameworks/nanofibers hybrids for membrane capacitive deionization[J]. Advanced Materials Technologies,2018,3(11):1800135. doi: 10.1002/admt.201800135
    [137] Han Y, Xu Y, Zhang S, et al. Progress of improving mechanical strength of electrospun nanofibrous membranes[J]. Macromolecular Materials and Engineering,2020,305(11):2000230. doi: 10.1002/mame.202000230
    [138] Nie G, Zhao X, Luan Y, et al. Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges[J]. Nanoscale,2020,12(25):13225-13248. doi: 10.1039/D0NR03425H
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  840
  • HTML全文浏览量:  420
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-08-03
  • 网络出版日期:  2022-08-23
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回