留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sulfonated graphene improves the wear resistance of pantograph carbon slider materials under normal and wet conditions

ZHANG Si-si TU Chuan-jun LI Xiang SONG Teng-hui XIAN Yong LIU Xin-long SUN Heng CHEN Yi-xing

张思斯, 涂川俊, 李响, 宋腾辉, 鲜勇, 刘新龙, 孙恒, 陈宜兴. 磺化石墨烯提升受电弓炭滑板材料在常规和潮湿条件下的抗磨性. 新型炭材料(中英文), 2023, 38(2): 378-384. doi: 10.1016/S1872-5805(23)60704-8
引用本文: 张思斯, 涂川俊, 李响, 宋腾辉, 鲜勇, 刘新龙, 孙恒, 陈宜兴. 磺化石墨烯提升受电弓炭滑板材料在常规和潮湿条件下的抗磨性. 新型炭材料(中英文), 2023, 38(2): 378-384. doi: 10.1016/S1872-5805(23)60704-8
ZHANG Si-si, TU Chuan-jun, LI Xiang, SONG Teng-hui, XIAN Yong, LIU Xin-long, SUN Heng, CHEN Yi-xing. Sulfonated graphene improves the wear resistance of pantograph carbon slider materials under normal and wet conditions. New Carbon Mater., 2023, 38(2): 378-384. doi: 10.1016/S1872-5805(23)60704-8
Citation: ZHANG Si-si, TU Chuan-jun, LI Xiang, SONG Teng-hui, XIAN Yong, LIU Xin-long, SUN Heng, CHEN Yi-xing. Sulfonated graphene improves the wear resistance of pantograph carbon slider materials under normal and wet conditions. New Carbon Mater., 2023, 38(2): 378-384. doi: 10.1016/S1872-5805(23)60704-8

磺化石墨烯提升受电弓炭滑板材料在常规和潮湿条件下的抗磨性

doi: 10.1016/S1872-5805(23)60704-8
基金项目: 国家自然科学基金(No. 51772081,51837009,51905172);AECC产学研合作项目(No. HFZL2018CXY003-4);长沙市重大科技项目(No. kq1804010)
详细信息
    通讯作者:

    涂川俊, 研究员. E-mail:tcj@hnu.edu.cn

  • 中图分类号: TQ127.1+1

Sulfonated graphene improves the wear resistance of pantograph carbon slider materials under normal and wet conditions

Funds: The authors thank financial support from National Natural Science Foundation of China (No. 51772081, 51837009, 51905172), Industry-University-Research Cooperation Project of AECC (No. HFZL2018CXY003-4) and Major Science and Technology Projects of Changsha City (No. kq1804010)
More Information
  • 摘要: 以磺化石墨烯(SG)为添加剂,采用预模压、热挤压和焙烧等工艺,设计制备了一种新型受电弓炭滑板材料(PCS-1)。结果表明,PCS-1的力学强度和载流磨损性能均明显优于未改性的炭滑板材料(PCS-0)。载流磨损测试显示,与PCS-0相比,PCS-1的抗折强度提高了41.8%,载流磨损率在潮湿和常规环境条件下分别降低了51.0%和50.0%。扫描电镜、偏光显微镜和白光干涉仪等测试揭示了磺化石墨烯的加入显著减少了炭滑板材料的随机裂纹数量,提高了断口表面的致密度,因此抑制了炭滑板材料的电弧侵蚀,从而有效地提高了材料的抗磨性。
  • FIG. 2241.  FIG. 2241.

    FIG. 2241..  FIG. 2241.

    Figure  1.  Manufacturing process for PCS materials

    Figure  2.  SEM micrographs of fracture surface of (a) PCS-0 and (b) PCS-1. POM images of (c) PCS-0 and (d) PCS-1

    Figure  3.  (a) The variation of the wear rate for different samples in normal and wet conditions. ESEM micrographs of the worn surface after 12 h current-carrying wear test, under normal condition: (b) PCS-0, (c) PCS-1; under wet condition (d) PCS-0, (e) PCS-1

    Figure  4.  Three-dimensional topography, the corresponding variation curves of the surface profile's height and the schematic diagram of the worn surface after 12 h current-carrying wear test under wet condition: (a, c, e) PCS-0, (b, d, f) PCS-1

    Table  1.   The main physical properties of the PCS composites

    SampleFlexure strength (MPa)Compressive strength (MPa)PorosityFriction coefficientHardness (HSD)Electrical resistivity (μΩ· m)
    PCS-029.4133.6510%0.1370.242
    PCS-141.7166.607%0.1083.538
    下载: 导出CSV
  • [1] Jia S G, Liu P, Ren F Z, et al. Wear behavior of Cu–Ag–Cr alloy wire under electrical sliding[J]. Materials Science & Engineering:A,2005,398(1):262-267.
    [2] Guo B, Jin Y P, Yu B, et al. Material design and performance of powder metallurgy pantograph slider[J]. Materials For Mechanical Engineering,2004,28(3):31-32.
    [3] Liu Z J, Guo Q G, Liu L, et al. Influence of filler type on the performance and microstructure of a carbon/graphite material[J]. Carbon,2010,25(4):0-316.
    [4] Liu B X, Chen T L, Yu L, et al. Pantograph-catenary arc energy detection and analysis on current disturbance in metro[J]. Journal of the China Railway Society,2015,37(3):8-13.
    [5] Wang W D, Tu C J, Song T H, et al. Investigation on service conditions and damage characteristics of the impregnated metal carbon strip for high-speed EMUs in China[J]. Carbon,2017(1):10-15.
    [6] Wu Y L, Huang H, Fu W M, et al. Experimental study on pantograph-catenary current-carrying efficiency and its influence on wear resistance of carbon strip[J]. Surface Technology,2017,46(6):21-26.
    [7] Zhang Y Y, Zhang Y Z, Du S M, et al. Tribological properties of pure carbon strip affected by dynamic contact force during current-carrying sliding[J]. Tribology International,2018,123(7):256-265.
    [8] Qiu H P, Song Y Z, Liu L, et al. Thermal conductivity and microstructure of Ti-doped graphite[J]. Carbon,2003,41(5):973-978. doi: 10.1016/S0008-6223(02)00429-3
    [9] Shuai M, Xu E, Zhu Z, et al. Mechanical and wear performances of aluminum/sintered-carbon composites produced by pressure infiltration for pantograph sliders[J]. Powder Technology,2018,326(5):54-61.
    [10] Yin J, Zhang H B, Xiong X, et al. Influence of applied load on wear behavior of C/C-Cu composites under electric current[J]. Progress in Natural Science:Materials International,2017,27(2):40-44.
    [11] Ding T, Chen G X, Bu J, et al. Effect of temperature and arc discharge on friction and wear behaviors of carbon strip/copper contact wire in pantograph–catenary systems[J]. Wear,2011,271(9):1629-1636.
    [12] Yang H, Fu L, Liu Y, et al. Research on the delamination wear properties of the pure carbon strip at the high-sliding speed with electric current[J]. Industrial Lubrication and Tribology,2017,70(4):76-83.
    [13] Nagasawa H, Kato K. Wear mechanism of copper alloy wire sliding against iron-base strip under electric current[J]. Wear,1998,216(2):179-183. doi: 10.1016/S0043-1648(97)00162-2
    [14] Senouci A, Frene J, Zaidi H. Wear mechanism in graphite–copper electrical sliding contact[J]. Wear,1999,225(6):949-953.
    [15] Kato H, Takama M, Iwai Y, et al. Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide[J]. Wear,2003,255(1):573-578.
    [16] Shangguan B, Zhang Y, Xing J, et al. Comparative study on wear behaviors of metal-impregnated carbon material and C/C composite under electrical sliding[J]. Tribology transactions,2010,53(6):933-938.
    [17] Fu X L, Wang Y, Pan Y Z, et al. Friction-reducing, anti-wear and self-repairing properties of sulfonated graphene[J]. Journal of Wuhan University of Technology (Materials Science),2017,32(2):54-59.
    [18] Young R J, Kinloch I A, Gong L, et al. The mechanics of graphene nanocomposites: A review[J]. Composites Science and Technology,2012,72(12):1459-1476. doi: 10.1016/j.compscitech.2012.05.005
    [19] Jia Y, Yan H X, Gong C, et al. The surface modification of graphene and its application in the friction field[J]. Materials Review A,2013,27(3):18-21.
    [20] Safari F, Khosroshahia R A, Zolriasateinbet A, et al. Wear behavior of copper matrix composites reinforced by γ-Cu5Zn8 nanoparticles[J]. Powder Technology,2017,318(4):549-557.
    [21] Tu C J, Hong L R, Song T H, et al. Superior mechanical properties of sulfonated graphene reinforced carbon-graphite composites[J]. Carbon,2019,148(6):378-386.
    [22] Song T H, Tu C J, Feng P Y, et al. A novel preparation of resin-based electrical contact material impregnated with sulfonated graphene[J]. RSC Advances,2017,7(2):43390-43395.
    [23] Feng P Y, Tu C J, Chen Z K, et al. The effect of sulfonated graphene oxide on the current-carrying wear characteristics of a resin matrix carbon brush[J]. New Carbon Materials,2017,32(4):352-357.
    [24] Wei X K, Meng H F, He J H, et al. Wear analysis and prediction of rigid catenary contact wire and pantograph strip for railway system[J]. Wear,2020:442-443.
    [25] Ding T, Chen G X, Wang X, et al. Friction and wear behavior of pure carbon strip sliding against copper contact wire under AC passage at high speeds[J]. Tribology International,2011,44(4):437-444. doi: 10.1016/j.triboint.2010.11.022
    [26] Bo Z, Umehara N. Hydrodynamic lubrication theory considering electric double layer for very thin water film lubrication of ceramics[J]. JSME International Journal Series C,1998,41(2):285-290. doi: 10.1299/jsmec.41.285
    [27] Bai S X. Theoretical and experimental study on mechanism of influence of electric double layer on film lubrication characteristics[D]. Guangdong: South China University and Technology, 2004.
    [28] Wen S Z, Huang P, Tian Y, et al. Principles of Tribology (Third Edition) [M]. Peking: Tsinghua University Press, 2008: 43-46.
    [29] Wang M. Research on the friction and wear behavior of slide plate under wet conditions[D]. Liaoning: Liaoning Technology University, 2018.
    [30] Ding T, Chen G X, Li Y M, et al. Arc erosive characteristics of a carbon strip sliding against a copper contact wire in a high-speed electrified railway[J]. Tribology International,2014,79(5):8-15.
    [31] Bucca G, Collina A. A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system[J]. Wear,2009,266(1):46-59.
    [32] Csapo E, Zaidi H, Paulmier D, et al. Influence of the electrical current on the graphite surface in an electrical sliding contact[J]. Surface and Coatings Technology,1995,76(7):421-424.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  166
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-22
  • 修回日期:  2020-04-27
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回