留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Topography changes and microstructural evolution of nuclear graphite (IG-110) induced by Xe26+ irradiation

ZHANG He-yao CHENG Jin-xing SONG Jin-liang YIN Hui-qin TANG Zhong-feng LIU Zhan-jun LIU Xiang-dong

张鹤耀, 程金星, 宋金亮, 阴慧琴, 唐忠锋, 刘占军, 刘向东. IG-110核石墨经Xe26+辐照后的形貌和微观结构演化. 新型炭材料(中英文), 2023, 38(2): 393-404. doi: 10.1016/S1872-5805(23)60708-5
引用本文: 张鹤耀, 程金星, 宋金亮, 阴慧琴, 唐忠锋, 刘占军, 刘向东. IG-110核石墨经Xe26+辐照后的形貌和微观结构演化. 新型炭材料(中英文), 2023, 38(2): 393-404. doi: 10.1016/S1872-5805(23)60708-5
ZHANG He-yao, CHENG Jin-xing, SONG Jin-liang, YIN Hui-qin, TANG Zhong-feng, LIU Zhan-jun, LIU Xiang-dong. Topography changes and microstructural evolution of nuclear graphite (IG-110) induced by Xe26+ irradiation. New Carbon Mater., 2023, 38(2): 393-404. doi: 10.1016/S1872-5805(23)60708-5
Citation: ZHANG He-yao, CHENG Jin-xing, SONG Jin-liang, YIN Hui-qin, TANG Zhong-feng, LIU Zhan-jun, LIU Xiang-dong. Topography changes and microstructural evolution of nuclear graphite (IG-110) induced by Xe26+ irradiation. New Carbon Mater., 2023, 38(2): 393-404. doi: 10.1016/S1872-5805(23)60708-5

IG-110核石墨经Xe26+辐照后的形貌和微观结构演化

doi: 10.1016/S1872-5805(23)60708-5
基金项目: 国家自然科学基金项目(No.52072397);中国科学院洁净能源创新研究院合作基金 (DNL202012)
详细信息
    通讯作者:

    宋金亮,博士,研究员. E-mail:songjinliang@sinap.ac.cn

    阴慧琴,博士,副研究员. E-mail:yinhuiqin@sinap.ac.cn

    唐忠锋,博士,研究员. E-mail:tangzhongfeng@sinap.ac.cn

  • 中图分类号: TL342

Topography changes and microstructural evolution of nuclear graphite (IG-110) induced by Xe26+ irradiation

Funds: This work was supported by the National Natural Science Foundation of China (No. 52072397) and the DNL Cooperation Fund, CAS(DNL202012)
More Information
  • 摘要: 核石墨作为核反应堆的关键材料,受到核反应堆内的高通量辐照后其微观结构会产生损伤,直接影响反应堆的安全运行。为研究核石墨的辐照损伤行为,以IG-110核石墨为研究对象,研究了7 MeV Xe26+辐照对核石墨的形貌和微观结构影响。采用扫描电子显微镜、原子力显微镜、掠入射X射线衍射仪、拉曼光谱仪和纳米压痕仪对IG-110核石墨的形貌和微观结构进行了表征。结果表明,在0.11 dpa剂量辐照后,IG-110核石墨表面出现“ridge-like”结构,该结构主要在黏结剂区出现,且表面粗糙度略有增加。随着剂量的进一步增加,填料区也出现“ridge-like”结构。在0.55 dpa的剂量下,因表面孔结构的闭合而引起的新孔增多,表面粗糙度增加。这种形貌和微观结构的变化归因于石墨沿C轴方向的膨胀,且石墨薄片中的缺陷密度和面内无序度随剂量的增加而增加,但力学性能呈先增加后降低的趋势。前者是由位错钉扎和微孔闭合引起的,而高剂量辐照后力学性能下降归因于孔隙率的增加和非晶结构的产生。
  • FIG. 2243.  FIG. 2243.

    FIG. 2243..  FIG. 2243.

    Figure  1.  SEM images of IG-110 graphite (a, c, e and g) before and after irradiation at surface damage doses of (b) 0.02 dpa, (d) 0.11 dpa, (f) 0.55 dpa and (h) 1.25 dpa. (F, B, P and R refer to filler particle, binder phase, pores and ridge-like structures, respectively)

    Figure  2.  The average ΔL versus the surface irradiation damage dose

    Figure  3.  Magnified SEM images of IG-110 graphite (a, c, e and g) before and after irradiation at surface damage doses of (b) 0.02 dpa, (d) 0.11 dpa, (f) 0.55 dpa and (h) 1.25 dpa (F, B, C and H refer to filler particle, binder phase and crack, respectively)

    Figure  4.  AFM images of IG-110 graphite (a) before and after irradiation at surface damage dose of (b) 0.02 dpa, (c) 0.11 dpa, (d) 0.55 dpa and (e) 1.25 dpa. (f) The surface roughness and peak-to-peak distance varies with the surface damage dose

    Figure  5.  GIXRD patterns and (002) peaks of IG-110 graphite (a) before and (b) after irradiation. (c) Lc and d002 as functions of the irradiation damage dose

    Figure  6.  Raman spectra with linear background subtraction of IG-110 graphite (a) before and after irradiation at surface damage doses of (b) 0.02 dpa and (c) 0.11 dpa. All spectra are fitted with the Lorentz line shape. (d) ID/IG and (e) position and FWHM of the G peak as functions of the irradiation damage dose

    Figure  7.  (a) Young's modulus and (b) hardness of IG-110 graphite before and after irradiation and their average values as a function of the depth under different irradiation damage doses

  • [1] Fermi E. Experimental production of a divergent chain reaction[J]. American Journal of Physics,1952,20:536-558. doi: 10.1119/1.1933322
    [2] Nightingale R E. Nuclear Graphite[M]. Academic Press, 1962.
    [3] Jing S P, Zhang C, Pu J, et al. 3D microstructures of nuclear graphite: IG-110, NBG-18 and NG-CT-10[J]. Nuclear Science and Techniques,2016,27:66. doi: 10.1007/s41365-016-0071-0
    [4] Qi W, He Z T, Zhang B L, et al. Behaviors of fine (IG-110) and ultra-fine (HPG-510) grain graphite irradiated by 7 MeV Xe26+ ions[J]. Nuclear Science and Techniques,2017,28:144. doi: 10.1007/s41365-017-0292-x
    [5] Karthik C, Kane J, Butt D P, et al. Neutron irradiation induced microstructural changes in NBG-18 and IG-110 nuclear graphites[J]. Carbon,2015,86:124-131. doi: 10.1016/j.carbon.2015.01.036
    [6] Chi S H, Kim G C, Hong J H, et al. Changes in the microhardness and Young’s modulus in 2 MeV C+ ion-irradiated IG-110 nuclear graphite[J]. Materials Science Forum,2005,475:1471-1474.
    [7] Chi S H, Kim G C. Comparison of 3 MeV C+ ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes[J]. Journal of Nuclear Materials,2008,381:98-105. doi: 10.1016/j.jnucmat.2008.08.001
    [8] Zhang B L, Xia H H, He X J, et al. Characterization of the effects of 3-MeV proton irradiation on fine-grained isotropic nuclear graphite[J]. Carbon,2014,77:311-318.
    [9] Huang Q, Lei Q T, Deng Q, et al. Raman spectra and modulus measurement on the cross section of proton-irradiated graphite[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2017,412:221-226.
    [10] Huang Q, Tang H, Liu Y, et al. Pore structure evolution of IG-110 graphite during argon ion irradiation at 600 °C[J]. Journal of Materials Science,2019,54:6098-6110. doi: 10.1007/s10853-019-03329-7
    [11] Huang Q, Li J J, Liu R D, et al. Surface morphology and microstructure evolution of IG-110 graphite after xenon ion irradiation and subsequent annealing[J]. Journal of Nuclear Materials,2017,491:213-220. doi: 10.1016/j.jnucmat.2017.05.013
    [12] He X J, Song J L, Xia H H, et al. Direct characterization of ion implanted pyrolytic carbon coatings deposited from natural gas[J]. Carbon,2014,68:95-103. doi: 10.1016/j.carbon.2013.10.058
    [13] Zhang H Y, Lei Q T, Song J L, et al. Direct characterization of ion implanted nanopore pyrolytic graphite coatings for molten salt nuclear reactors[J]. RSC Advances,2018,8:33927-33938. doi: 10.1039/C8RA06953K
    [14] Zheng G Q, Xu P, Sridharan K, et al. Pore Structure Analysis of Nuclear Graphites IG‐110 and NBG‐18[M]. Advances in Materials Science for Environmental and Nuclear Technology II, Volume 227. John Wiley & Sons, Inc. 2011.
    [15] Kelly B T, Burchell T D. Structure-related property changes in polycrystalline graphite under neutron irradiation[J]. Carbon,1994,32:499-505. doi: 10.1016/0008-6223(94)90172-4
    [16] Wen K Y, Marrow T J, Marsden B J. The microstructure of nuclear graphite binders[J]. Carbon,2008,46:62-71. doi: 10.1016/j.carbon.2007.10.025
    [17] Burchell T D. A microstructurally based fracture model for polygranular graphites[J]. Carbon,1996,34:297-316. doi: 10.1016/0008-6223(95)00171-9
    [18] Ishiyama S, Burchell T D, Strizak J P, et al. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite[J]. Journal of Nuclear Materials,1996,230:1-7. doi: 10.1016/0022-3115(96)00005-0
    [19] Snead L L, Burchell T D, Katoh Y. Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature[J]. Journal of Nuclear Materials,2008,381:55-61. doi: 10.1016/j.jnucmat.2008.07.033
    [20] Pimenta M A, Dresselhaus G, Dresselhaus M S, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics,2007,9:1276-1291. doi: 10.1039/B613962K
    [21] Ferrari A C, Robertson J. Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond[J]. Physical Review B,2001,63:121405-1-4. doi: 10.1103/PhysRevB.63.121405
    [22] Tuinstra F, Koenig J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics,1970,53:1126-1130. doi: 10.1063/1.1674108
    [23] Krishna R, Wade J, Jones A N, et al. An understanding of lattice strain, defects and disorder in nuclear graphite[J]. Carbon,2017,124:314-333. doi: 10.1016/j.carbon.2017.08.070
    [24] Elman B S, Dresselhaus M S, Dresselhaus G, et al. Raman scattering from ion-implanted graphite[J]. Physical Review B,1981,24:1027-1034. doi: 10.1103/PhysRevB.24.1027
    [25] Niwase K, Tanabe T. Defect structure and amorphization of graphite irradiated by D+ and He+[J]. Materials Transactions,1993,34:1111-1121. doi: 10.2320/matertrans1989.34.1111
    [26] Beeman D, Silverman J, Lynds R, et al. Modeling studies of amorphous carbon[J]. Physical Review B,1984,30:870-875. doi: 10.1103/PhysRevB.30.870
    [27] Burchell T D, Eatherly W P. The effects of irradiation-damage on the properties of graph NOL N3M[J]. Journal of Nuclear Materials,1991,179:205-208.
    [28] Snead L L, Hay J C. Neutron irradiation induced amorphization of silicon carbide[J]. Journal of Nuclear Materials,1999,273(2):213-20. doi: 10.1016/S0022-3115(99)00023-9
    [29] Simmons J H W. Radiation Damage in Graphite[M]. Pergamon Press, 1965.
    [30] Zhang H Y, Song J L, Tang Z F, et al. The surface topography and microstructure of self-sintered nanopore graphite by Xe ions irradiation[J]. Applied Surface Science,2020,515:146022. doi: 10.1016/j.apsusc.2020.146022
    [31] Matsuo H. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite[R]. JAERI-M 91-090, 1991.
    [32] Zhang H Y, He Z, Song J L, et al. Characterization of the effect of He+ irradiation on nanoporous-isotropic graphite for molten salt reactors[J]. Nuclear Engineering and Technology, 2020, 1243-1251.
    [33] Freeman H M, Scott A J, Brydson R M D. Thermal annealing of nuclear graphite during in-situ electron irradiation[J]. Carbon,2017,115:659-664. doi: 10.1016/j.carbon.2017.01.057
  • 加载中
图(8)
计量
  • 文章访问数:  245
  • HTML全文浏览量:  153
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-05
  • 修回日期:  2020-04-01
  • 网络出版日期:  2022-11-03
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回