留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性树脂炭的石墨化及应用进展

杨平军 李铁虎 李昊 党阿磊 袁磊

杨平军, 李铁虎, 李昊, 党阿磊, 袁磊. 改性树脂炭的石墨化及应用进展. 新型炭材料(中英文), 2023, 38(1): 96-110. doi: 10.1016/S1872-5805(23)60715-2
引用本文: 杨平军, 李铁虎, 李昊, 党阿磊, 袁磊. 改性树脂炭的石墨化及应用进展. 新型炭材料(中英文), 2023, 38(1): 96-110. doi: 10.1016/S1872-5805(23)60715-2
YANG Ping-jun, LI Tie-hu, LI Hao, DANG A-lei, YUAN Lei. Progress in the graphitization and applications of modified resin carbons. New Carbon Mater., 2023, 38(1): 96-110. doi: 10.1016/S1872-5805(23)60715-2
Citation: YANG Ping-jun, LI Tie-hu, LI Hao, DANG A-lei, YUAN Lei. Progress in the graphitization and applications of modified resin carbons. New Carbon Mater., 2023, 38(1): 96-110. doi: 10.1016/S1872-5805(23)60715-2

改性树脂炭的石墨化及应用进展

doi: 10.1016/S1872-5805(23)60715-2
基金项目: 国家自然科学基金项目(51872235),陕西省重点产业链项目(2020ZDLGY11-04),中央高校基本科研业务费项目(3102021TS0405)。
详细信息
    作者简介:

    杨平军,博士生. E-mail:pjyang@mail.nwpu.edu.cn

    通讯作者:

    李铁虎,教授. E-mail:litiehu@nwpu.edu.cn

    李 昊,讲师. E-mail:lihao@nwpu.edu.cn

    党阿磊,副教授. E-mail:dangalei@nwpu.edu.cn

  • 中图分类号: TQ127.1+1

Progress in the graphitization and applications of modified resin carbons

Funds: National Natural Science Foundation of China (51872235), Key Industrial Chain Project of Shaanxi Province (2020ZDLGY11-04), Fundamental Research Funds for the Central Universities (3102021TS0405).
More Information
  • 摘要: 树脂炭具有良好的力学、电学以及热物理性能,是广泛应用于航空、航天、能源等领域的结构功能一体化材料。树脂固有的分子结构特性导致树脂炭难石墨化,限制了树脂炭的广泛应用。本文综述了近年来改性树脂炭石墨化及应用的研究进展,系统介绍了催化剂、碳纳米材料、易石墨化共炭化剂三类树脂改性剂,可提高树脂炭的石墨化炭含量并降低其石墨化温度。其中催化剂和碳纳米材料改性剂方面的研究较多,催化剂改性剂在较低温度下(低于1400 °C)便能使树脂炭的石墨化度达74%,而碳纳米材料改性剂需要在2000 °C以上才能较明显地提高树脂炭的石墨化度。相比前两种改性剂,易石墨化的共炭化改性剂不仅能提高树脂炭的石墨化度,还能提高树脂的残炭率。在应用方面,提高树脂炭的石墨化度能提高炭/炭复合材料的导热和导电性能,也能提高超级电容器材料和二次电池电极材料的导电性能、倍率性能和功率密度。最后探讨了改性树脂炭的石墨化及应用面临的挑战和发展方向。
  • FIG. 2064.  FIG. 2064.

    FIG. 2064..  FIG. 2064.

    图  1  (a)软炭和(b)硬炭的结构[11]

    Figure  1.  Structure of (a) soft carbon and (b) hard carbon[11]. Reprinted with permission

    图  2  (a)800 °C炭化1 h后的每平方厘米1015 Fe+离子改性酚醛树脂炭TEM,(b)不同离子束强度改性后800 °C炭化1 h的酚醛树脂炭Raman[12],(c1)焦耳加热镍改性的非晶炭纤维,(c2和c3)多孔和管状石墨化炭纤维的TEM和HRTEM[19],(d)60%的Co(NO3)2·6H2O在800 °C炭化1 h催化形成多孔石墨炭纤维过程[20]

    Figure  2.  TEM images of the obtained carbon materials with the ion implantation (1×1015 ions/cm2): typical results of measurement of interlayer distance (a), Proportion of raman spectra peak area obtained by the peak with the ion implantation (b) after carbonization at 800 °C for 1 h [12], Nickel modification amorphous carbon fiber modified by Joule heat (c1), TEM and HRTEM of porous and tubular graphitization carbon fibers (c2 and c3)[19], Porous graphite carbon fibers prepared by carbonization of 60% Co(NO3)2·6H2O and phenolic resin at 800 °C for 1 h[20]. Reprinted with permission

    图  3  酚醛树脂/氧化石墨烯、炭/石墨烯气凝胶制备工艺路线图[29]

    Figure  3.  Preparation process of phenolic resin/graphene oxide and carbon/graphene aerogels[29]. Reprinted with permission

    图  4  (a)煤沥青和片状酚醛树脂为前体驱体合成多孔炭制备工艺,(b)75 wt%的煤沥青改性酚醛树脂800 °C炭化2 h的TEM,(c,d)不同质量分数(0、50 wt%、75 wt%、85 wt%、100 wt%)的煤沥青改性酚醛树脂800 °C炭化2 h的XRD和Raman[31]

    Figure  4.  (a) Preparation porous carbon using coal tar pitch and flake phenolic resin as precursors, (b) TEM of 75 wt% coal tar pitch modification phenolic resin carbonization at 800 °C for 2 h, (c, d) XRD and Raman of different mass fractions (0, 50 wt%, 75 wt%, 85 wt%, 100 wt%) coal tar pitch modification phenolic resin carbonization at 800 °C for 2 h[31]. Reprinted with permission

    图  5  炭/炭复合材料制备流程图[35]

    Figure  5.  Fabrication flow of carbon/carbon composites[35]. Reprinted with permission

    图  6  (a)PGCFs-0.3M的详细制备工艺,(b)PGCFs-0 g,PGCFs-O-0.25 g,和PGCFs-0.25 g的XRD图,(c)PGCFs 的Raman光谱图,(d)10-300 A·g−1电流密度范围的比容量图,(e) PGCFs-0.3M 在6 mol.L−1 KOH和1 mol.L−1 Na2SO4电解液中的Ragone图[46]

    Figure  6.  (a) The detailed preparation process of PGCFs-0.3M, (b) XRD patterns of PGCFs-0g, PGCFs-O-0.25g, and PGCFs-0.25g, (c) Raman spectra image of the PGCFs, (d) Specific capacitance at current density of 10-300 A·g−1, (e) Ragone plots of PGCFs-0.3M in 6 mol.L−1 KOH and 1 mol.L−1 Na2SO4[46]. Reprinted with permission

    图  7  (a,b)C9树脂和萘沥青共炭化炭的比容量和库仑效率随温度变化,(c,d,e)900、2000、2800 °C热处理过程中的比容量-循环稳定性曲线,(f)电极材料的微观结构与电化学性能之间的关系[51]

    Figure  7.  (a, b) Specific capacity and coulomb efficiency for C9 resin and naphthalene pitch co-carbonization during temperature variation, (c, d, e) Specific volume-cyclic stability during heat treatment at 900, 2000 and 2800 °C, (f) Relationship between electrode material microstructure and electrochemical performance[51]. Reprinted with permission

    表  1  改性树脂炭的石墨结构

    Table  1.   Graphitization structure of modified resin carbon

    Modifier agentPrecursor resinPreparation methodStructureRef.
    Fe nanoparticlesPhenolic resinIon Implantation, 800 °CNanosized turbostratic graphite[12]
    3 wt% ferroceneNovolak resinUltrasonic mixing, 1000 °C for 5 hOnion-like hollow carbon[13]
    3 wt% ferroceneNovolak and resole resinsVertical and ultrasonic mix, 1000 °C for 5 hGraphitization level, 70%[14]
    1.5 wt% Ni(NO3)2Phenolic resinSolution mixing, 1200 °C for 3 hCystalline carbon observed[16]
    15 wt% Ni-Zn-B alloyPhenolic resin1400 °C28.42% ordered graphite[17]
    6 wt% Ni(NO3)2Phenolic resinMagnetic stirrer mixing, 1250 °C for 3 hGraphitization level, 74.41%[18]
    60 wt% Co(NO3)2.6H2OPhenolic resinElectrospinning technique, 800°C for 3 hThin graphitic nanoshells[20]
    Cobalt acetatePhenolic resinOne-pot hydrothermal synthesis, First at 350 °C
    for 2 h, then at 700°C for 2 h
    Presence of graphitic domains[22]
    10 wt% H3BO3Novolac resinMechanical mixer and ultrasonic mixing
    1000 °C for 5 h
    Graphitization level, 49%[23]
    Boron powderPolyacrylonitrileSolution method, 2100 °C for 1 hGraphitization level, 88.1%[25]
    1.5 wt% MWNTsFuran resin as C/C composite matrixUltrasound dispersion, 2300 °CGraphitization level, 88%[26]
    0.5 wt% carbon nanotubesPhenolic resinUltrasonic vibration, 1400 °C for 3 hIncreased graphitization degree[27]
    Three-dimensional graphenePhenolic resinIn situ polymerization, 800 °C for 3 hIG/ID (1.15)[28]
    26 wt% Graphite oxideFuran resinUltrasonic vibration, 2400 °CGraphitization level, 66%[30]
    下载: 导出CSV
  • [1] Yin X M, Han L Y, Liu H M, et al. Recent progress in 1D nanostructures reinforced carbon/ carbon composites[J]. Advanced Function Materials,2022,32:2204965. doi: 10.1002/adfm.202204965
    [2] Zhang C, Liu H, Zhou Y, et al. The effect of high temperature heat treatment on the tribological property of a carbon fiber/pyrolytic carbon /silicon carbide composite using polycarbosilane[J]. Ceramics International,2020,46(4):4493-4501. doi: 10.1016/j.ceramint.2019.10.176
    [3] Yin J, Zhang W, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [4] Kubota K, Shimadzu S, Yabuuchi N, et al. Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium Insertion[J]. Chemistry of Materials,2020,32(7):2961-2977. doi: 10.1021/acs.chemmater.9b05235
    [5] Liu S, Chevali V S, Xu Z, et al. A review of extending performance of epoxy resins using carbon nanomaterials[J]. Composites Part B:Engineering,2018,136:197-214. doi: 10.1016/j.compositesb.2017.08.020
    [6] Sun Y, Peng Y, Zhang Y. A Study on the synthesis, curing behavior and flame retardance of a novel flame retardant curing agent for epoxy resin[J]. Polymers,2022,14(2):245. doi: 10.3390/polym14020245
    [7] Song P, Ma Z, Qiu H, et al. High-Efficiency Electromagnetic Interference Shielding of rGO@FeNi/Epoxy Composites with Regular Honeycomb Structures[J]. Nano-Micro Lett,2022(003):014.
    [8] Yun J, Chen L, Zhao H, et al. Boric acid as a coupling agent for preparation of phenolic resin containing boron and silicon with enhanced char yield[J]. Macromolecular Rapid Communications,2019,40(17):1800702. doi: 10.1002/marc.201800702
    [9] Lu X F, Peng X, Chen J, et al. Oxidation behavior of C/C composites with the fibre/matrix interface modified by carbon nanotubes grown in situ at low temperature[J]. Corrosion Science,2012,55:20-25.
    [10] Yuan G, Li X, Dong Z, et al. Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity[J]. Carbon,2014,68:413-425. doi: 10.1016/j.carbon.2013.11.018
    [11] 陈鸯飞. 高成炭率酚醛树脂的制备及其在C/C复合材料中的应用[D],.湖南大学, 2013.

    Chen Y . Research on preparation of high char yield PF resin and its applications in C/C composite material[D]. Hunan University, 2013.
    [12] Idesaki A, Yamamoto S, Sugimoto M, et al. Formation of Fe nanoparticles by ion implantation technique for catalytic graphitization of a phenolic resin[J]. Quantum Beam Science,2020,4(1):11. doi: 10.3390/qubs4010011
    [13] Renda C G, Contreras Medrano C P, Costa L J D, et al. Role of ferrocene-derived iron species in the catalytic graphitization of novolak resins[J]. Journal of Materials Science,2021,56(2):1298-1311. doi: 10.1007/s10853-020-05312-z
    [14] Renda C G, Bertholdo R, Venâncio T, et al. Influence of the mixing process on the graphitization of phenolic resins[J]. Ceramics International,2019,45(9):12196-12204. doi: 10.1016/j.ceramint.2019.03.124
    [15] Bitencourt C S, Luz A P, Pagliosa C, et al. Role of catalytic agents and processing parameters in the graphitization process of a carbon-based refractory binder[J]. Ceramics International,2015,41(10):13320-13330. doi: 10.1016/j.ceramint.2015.07.115
    [16] Darban S, Kakroudi M G, Vandchali M B, et al. Characterization of Ni-doped pyrolyzed phenolic resin and its addition to the Al2O3-C refractories[J]. Ceramics International,2020,46(13):20954-20962. doi: 10.1016/j.ceramint.2020.05.153
    [17] Ren Q, He L, Hu S, et al. Formation of highly graphitic char derived from phenolic resin carbonization by Ni-Zn-B alloy[J]. Environmental Science and Pollution Research,2020,27(18):22639-22647. doi: 10.1007/s11356-020-08459-z
    [18] Rastegar H, Mansorizadeh E. In situ formed nano-Ni catalytic effect on graphitization of phenolic resin (thermodynamic and microstructure investigation)[J]. Carbon Letters,2022:1-14.
    [19] Chen Y, Dong J, Qiu L, et al. A catalytic etching-wetting- dewetting mechanism in the formation of hollow graphitic carbon fiber[J]. Chem,2017,2(2):299-310. doi: 10.1016/j.chempr.2017.01.005
    [20] Ma C, Cao E, Li J, et al. Synthesis of mesoporous ribbon- shaped graphitic carbon nanofibers with superior performance as efficient supercapacitor electrodes[J]. Electrochimica Acta,2018,292:364-373. doi: 10.1016/j.electacta.2018.07.135
    [21] Wang S, Zhu Y, Xu X, et al. Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries[J]. Energy,2017,125:569-575. doi: 10.1016/j.energy.2017.02.155
    [22] Dassanayake A C, Gonçalves A A S, Fox J, et al. One-pot synthesis of activated porous graphitic carbon spheres with cobalt nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2019,582:123884. doi: 10.1016/j.colsurfa.2019.123884
    [23] Talabi S I, Luz A P, Pandolfelli V C, et al. Structural evolution during the catalytic graphitization of a thermosetting refractory binder and oxidation resistance of the derived carbons[J]. Materials Chemistry and Physics,2018,212:113-121. doi: 10.1016/j.matchemphys.2018.03.029
    [24] Chandran M S, Sunitha K, Gayathri D S, et al. Boron-containing phenolic-siloxane hybrid polymers through facile click chemistry route[J]. Journal of Materials Science,2018,53(4):2497-2510. doi: 10.1007/s10853-017-1737-7
    [25] Chen L, Fang T, Song C, et al. Catalytic graphitization of boron on the fabrication of high-performance carbon papers for gas diffusion layers in PEMFCs[J]. Catalysis Communications,2021,157:106332. doi: 10.1016/j.catcom.2021.106332
    [26] Chen J, Xiong X, Xiao P. The effect of MWNTs on the microstructure of resin carbon and thermal conductivity of C/C composites[J]. Solid state sciences,2009,11(11):1890-1893. doi: 10.1016/j.solidstatesciences.2009.07.019
    [27] Liang F, Li N, Li X K, et al. Effect of the addition of carbon black and carbon nanotubes on the structure and oxidation resistance of pyrolysed phenolic carbons[J]. New Carbon Materials,2012,27(4):283-287. doi: 10.1016/S1872-5805(12)60018-3
    [28] Yang G, Wang Y, Zhou S, et al. Graphene/phenolic resin-based porous carbon composites with improved conductivity prepared via in situ polymerization in graphene hydrogels[J]. Journal of Materials Science,2019,54(3):2222-2230. doi: 10.1007/s10853-018-2983-z
    [29] Alizadeh O, Hosseini H M, Pourjavadi A, et al. Effect of graphene oxide on morphological and structural properties of graphene reinforced novolac-derived carbon aerogels: A modified Quasi-Percolation Model[J]. Ceramics International,2020,46(8):11179-11188. doi: 10.1016/j.ceramint.2020.01.139
    [30] Yi S, Chen J, Li H, et al. Effect of graphite oxide on graphitization of furan resin carbon[J]. Carbon,2010,48(3):926-928. doi: 10.1016/j.carbon.2009.11.027
    [31] Yan D, Li S H, Guo L P, et al. Hard@ soft integrated morning glory like porous carbon as a cathode for a high-energy lithium ion capacitor[J]. ACS applied materials & interfaces,2018,10(50):43946-43952.
    [32] 金钊. 萘沥青-C9树脂共热聚调制改性中间相沥青及其炭材料[D]. 2020, 武汉科技大学.

    Jin Z. Preparation of modified mesophase pitch byco-thermopolymerization of naphthalenepitch&C9 resinand its derived carbon materials[D]. 2020, WuhanUniversity of Science and Technology.
    [33] 刘丙杨. 童亭煤密中质组制备针状焦研究 [M]. 2021, 中国矿业大学.

    Liu B Y. Preparation of Needle Coke By Dense Medium Component from Tongting Coal[M]. 2021, China University of Mining and Technology.
    [34] 王玉伟. 煤沥青基钠离子电池负极材料制备与性能研究 [D]. 2018, 大连理工大学.

    Wang Y W. Synthesis and electrochemical properties of coal tar pitch-based anode materials for sodium-ion Batteries [D]. 2018, Dalian University of Technology.
    [35] Muhammed F, Lavaggi T, Advani S, et al. Influence of material and process parameters on microstructure evolution during the fabrication of carbon–carbon composites: a review[J]. Journal of Materials Science,2021,56(32):17877-17914. doi: 10.1007/s10853-021-06401-3
    [36] 马媛媛, 杨禹, 吕春祥, 等. 氧化石墨烯和石墨相氮化碳增强炭/酚醛复合材料界面热烧蚀性能对比[J]. 新型炭材料,2019,34(1):29-37. doi: 10.19869/j.ncm.1007-8827.2019.01.003

    MA Y Y, YANG Y, YU C X, etc. A comparative study of the ablation properties of carbon fiber-reinforced phenolic resin composites with a matrix modified with graphene oxide and graphitic carbon nitride[J]. New Carbon Materials,2019,34(1):29-37. doi: 10.19869/j.ncm.1007-8827.2019.01.003
    [37] 查庆芳, 郭燕生, 张玉贞, 等. 沥青树脂和炭纤维的复合性能[J]. 新型炭材料,2007,22(2):109-114.

    Cha Q F, Guo Y S, Zhang Y Z, etc. Composite properties of pitch resin and carbon fiber[J]. New Carbon Materials,2007,22(2):109-114.
    [38] 邓海亮, 郑金煌, 曹军宁, 等. 稀土镧催化热解二甲苯制备炭/炭复合材料的烧蚀与氧化性能[J]. 新型炭材料,2018,33(5):434-441. doi: 10.19869/j.ncm.1007-8827.2018.05.003

    Deng H L, Zheng J H, Chao J N, etc. Ablation and Oxidation resistance properties of C/C composites densified by xylene pyrocarbon using LaCl3 as a catalyst and resin carbon[J]. New Carbon Materials,2018,33(5):434-441. doi: 10.19869/j.ncm.1007-8827.2018.05.003
    [39] Irisawa T, Nishimura K, Yamamoto T, et al. Stress graphitization behavior of C/C composites fabricated from milled short pitch-based carbon fibers and their electrical properties[J]. Journal of Fiber Science and Technology,2012,77(11):296-304.
    [40] Liu X, Deng H, Zheng J, et al. Mechanical and thermal conduction properties of carbon/carbon composites with different carbon matrix microstructures[J]. New Carbon Materials,2020,35(5):576-584. doi: 10.1016/S1872-5805(20)60511-X
    [41] Dong Y, Lin H, Zhou D, et al. Synthesis of mesoporous graphitic carbon fibers with high performance for supercapacitor[J]. Electrochimica Acta,2015,159:116-123. doi: 10.1016/j.electacta.2015.01.152
    [42] Tian Y, Song Y, Tang Z H, et al. Influence of high temperature treatment of porous carbon on the electrochemical performance in supercapacitor[J]. Journal of Power Sources,2008:675-681.
    [43] Yang Y, Zhang F, Wei K Y, et al. Porous carbon microspheres with controlled porosity and graphitization degree for high-performance supercapacitor[J]. Journal of Electroanalytical Chemistry,2022:1572-6657.
    [44] Chang B, Yang B, Guo Y, et al. Preparation and enhanced supercapacitance performance of porous carbon spheres with a high degree of graphitization[J]. Rsc Advances,2014,5(3):2088-2095.
    [45] Xu H. Thermal conversion of an anion-exchange resin: a new catalytic-graphitization route to prepare porous carbons with a high graphitization degree for supercapacitors[J]. Rsc Advances, 2016, 6(113).
    [46] Pang X, Zhou T, Jiang Q T, et al. Porous graphitic carbon fibers for fast-charging supercapacitor applications[J]. Energy Technol, 2020.
    [47] Zhang H, Zhang W, Huang F. Graphene inducing graphitization: Towards a hard carbon anode with ultrahigh initial coulombic efficiency for sodium storage[J]. Chemical Engineering Journal,2022,434:134503. doi: 10.1016/j.cej.2022.134503
    [48] Song D P, Li W, Park J, et al. Millisecond photothermal carbonization for in-situ fabrication of mesoporous graphitic carbon nanocomposite electrode films[J]. Carbon,2020,174:439-444.
    [49] Shi W, Zhang Y, Tian Z Q, et al. Low temperature synthesis of polyhedral hollow porous carbon with high rate capability and long-term cycling stability as Li-ion and Na-ion battery anode material[J]. Journal of power sources,2018,398(SEP.15):149-158.
    [50] Xi Y, Wang Y, Yang D, et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage[J]. Journal of Alloys and Compounds, 2019.
    [51] Jin Z, Cui Z, Long X, et al. Understanding the correlation between microstructure and electrochemical performance of hybridized pitch cokes for lithium-ion battery through tailoring their evolutional structures from ordered soft carbon to disordered hard carbon[J]. Journal of Alloys and Compounds,2021,887:161357. doi: 10.1016/j.jallcom.2021.161357
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  984
  • HTML全文浏览量:  436
  • PDF下载量:  282
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 修回日期:  2022-11-25
  • 网络出版日期:  2022-11-29
  • 刊出日期:  2023-01-06

目录

    /

    返回文章
    返回