-
摘要: 氟化碳(CFx)是一种由碳质材料( 如石墨、 石墨烯、碳纳米管等不同化学结构的炭材料)和氟化试剂在一定条件下发生氟化反应而形成的具有C―F键的碳衍生物,由于多样的碳骨架和可控的极性C―F键,使其具有化学稳定性、带隙可调性以及超疏水性等多种优异性能,是新型碳基材料研究热点之一。本文以氟化碳材料的结构和性质为基础,分别从化学能源、摩擦润滑和半导体等领域的应用综述了近年来我国氟化碳材料的基础研究现状和发展趋势。同时,还介绍了我国氟化碳材料的产业化进程,指出目前在民用领域受限的主要原因,提出了当前氟化碳在不同应用领域存在的问题和未来发展机遇,为氟化碳材料的进一步扩大生产和实际应用提供方向。Abstract: Fluorinated carbon (CFx) are a class of carbon derivatives with C―F bonds formed by the fluorination of carbon materials, including graphite, graphene, and carbon nanotubes. Because of their different carbon skeletons with polar C―F bonds, they have many excellent properties such as chemical stability, band gap adjustability and superhydrophobicity. Based on their structure and properties, we review the status and development trends of CFx for use in chemical energy, lubrication and semiconductors in recent years in China. We discuss the industrialization of CFx in China and the main reasons for their limited use in civil fields, as well as the problems and future development opportunities of CFx, which suggests some practical applications.
-
Key words:
- Fluorinated carbon /
- Status of basic research /
- Development trend
-
图 6 氟化石墨烯和金属锂熔融静置后在金属锂表面形成氟化石墨烯层,由于自放电反应得到氟化锂层,作为人工固体电解质相界面(SEI),优化循环性能[40]
Figure 6. Fluorinated graphene and lithium metal form a fluorinated graphene layer on the surface of lithium metal after melting and standing, and a lithium fluoride layer is obtained by self-discharge reaction, which is used as an artificial SEI to optimize cycling performance[40]. Reprinted with permission
表 1 氟化碳材料的主要性能指标
Table 1. Main performance indexes of CFx
表 2 氟化碳材料在各领域的突出成果
Table 2. Outstanding achievements of CFx in various fields
Field Type of CFx F/C Performance level Comparison to international peers Chemical energy Fluorinated calcined Australian nut shell[24] 1.17 Energy density is 2585.43 Wh kg−1 Energy density is 2398 Wh kg−1[55] CFx nanoribbons[23] 1.21 Energy density is 2738.45 Wh kg−1 Friction lubrication CFx[10] ~1.0 Friction coefficient is 0.09 After 60000 friction cycles, the friction coefficient is 0.05[56] Polyethyleneimine grafted fluorographene[42] ~1.0 Friction coefficient is 0.09 Semiconductor Fluorographene[46] 0.54 Band gap can be expanded to 2.94 eV Band gap can be expanded to 2.93 eV[57] Dielectric properties Fluorographene film[51] 1.09 Dielectric constant 1.30, dielectric loss 0.027 Dielectric constant 1.30[58] -
[1] 穆浩, 刘治钢, 汪静, 等. 锂氟化碳电池对火星探测任务工况适应性研究[J]. 航天器环境工程,2022,39(01):61-68.MU Hao, LIU Zhi-gang, WANG Jing, et al. The adaptability of LiCFx primary battery for Mars exploration mission[J]. Spacecraft Environment Engineering,2022,39(01):61-68. [2] 朴正杰, 时杰, 吕宪俊. 氟化石墨的加工技术及其应用新进展[J]. 化工新型材料,2017(07):33-35.PIAO Zheng-jie, SHI Jie, LV Xian-jun. New advance on process technology and application of graphite fluoride[J]. New Chemical Materials,2017(07):33-35. [3] Feng W, Long P, Feng Y, et al. Two-dimensional fuorinated graphene: synthesis, structures, properties and applications[J]. Advanced Science,2016,3(7):1500413. doi: 10.1002/advs.201500413 [4] Nakajima T. Applications of Fluorinated Carbon Materials to Primary and Secondary Lithium Batteries[M]. Elsevier Science, 2005: 31-59. [5] 蔡彬. 氟化碳纳米材料的制备及应用研究进展[J]. 中国科技信息,2010(18):44-45.CAI Bin. Progress in preparation and application of carbon fluoride nanomaterials[J]. China Science and Technology Information,2010(18):44-45. [6] 征茂平, 金燕苹, 夏金童, 等. 氟化石墨的制备及表征[J]. 机械工程材料,1999(06):26-50.ZHENG Mao-ping, JIN Yan-ping, XIA Jin-tong, et al. Preparation and characterization of fluoridized graphite[J]. Materials for Mechanical Engineering,1999(06):26-50. [7] 王宇飞, 郑丽萍, 姚建华, 等. 氟化富勒烯在电子材料与器件中的应用研究进展[J]. 化工新型材料,2018,46(07):5-13.WANG Yu-fei, ZHENG Li-ping, YAO Jian-hua, et al. Novel progress of fluorofullerene applied in electronic material and device[J]. New Chemical Materials,2018,46(07):5-13. [8] Xu X, Liu C, Sun Z, et al. Interfacial engineering in graphene bandgap[J]. Chemical Society Reviews,2018,47(9):3059-3099. doi: 10.1039/C7CS00836H [9] Lyth S M, Ma W, Liu J, et al. Solvothermal synthesis of superhydrophobic hollow carbon nanoparticles from a fluorinated alcohol[J]. Nanoscale,2015,7(38):16087-16093. doi: 10.1039/C5NR03484A [10] Fan K, Chen X, Wang X, et al. Toward excellent tribological performance as oil-based lubricant additive: particular tribological behavior of fluorinated graphene[J]. ACS applied materials & interfaces,2018,10(34):28828-28838. [11] Nair R R, Ren W, Jalil R, et al. Fluorographene: a two‐dimensional counterpart of Teflon[J]. Small,2010,6(24):2877-2884. doi: 10.1002/smll.201001555 [12] Wang X, Wu P. Fluorinated carbon nanotube/nanofibrillated cellulose composite film with enhanced toughness, superior thermal conductivity, and electrical insulation[J]. ACS applied materials & interfaces,2018,10(40):34311-34321. [13] Liu Y, Jiang L, Wang H, et al. A brief review for fluorinated carbon: synthesis, properties and applications[J]. Nanotechnology Reviews,2019,8(1):573-86. doi: 10.1515/ntrev-2019-0051 [14] Lai W, Wang X, Fu J, et al. Radical chain reaction mechanism of graphene fluorination[J]. Carbon,2018,137:451-7. doi: 10.1016/j.carbon.2018.05.005 [15] 王学军, 李飞, 谷小虎, 等. 氟化石墨烯制备与应用研究进展[J]. 炭素技术,2021,40(06):1-7. doi: 10.14078/j.cnki.1001-3741.2021.06.001WANG Xue-jun, LI Fei, GU Xiao-hu, et al. Research progress on preparation and application of fluorographene[J]. Carbon Techniques,2021,40(06):1-7. doi: 10.14078/j.cnki.1001-3741.2021.06.001 [16] Nakajima T, Gupta V, Ohzawa Y, et al. Influence of cointercalated HF on the electrochemical behavior of highly fluorinated graphite[J]. Journal of Power Sources,2004,137(1):80-87. doi: 10.1016/j.jpowsour.2004.05.042 [17] Sherpa S D, Levitin G, Hess D W. Effect of the polarity of carbon-fluorine bonds on the work function of plasma-fluorinated epitaxial graphene[J]. Applied Physics Letters,2012,101(11):111602. doi: 10.1063/1.4752443 [18] Matsuo Y, Segawa M, Mitani J, et al. Electrochemical Fluorination of graphite in 47% HF aqueous solution[J]. J Fluorine Chem,1998,87(2):145-50. doi: 10.1016/S0022-1139(97)00137-1 [19] Huang S Z, Li Y, Feng Y Y, et al. Nitrogen and fluorine co-doped graphene as a high-performance anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(46):23095-23105. doi: 10.1039/C5TA06012E [20] Zhou R, Li Y, Feng Y. et al. The electrochemical performances of fluorinated hard carbon as the cathode of lithium primary batteries[J]. Composites Communications,2020,21:100396. doi: 10.1016/j.coco.2020.100396 [21] 孟宪光. 氟化石墨及其合成[J]. 炭素,1997(02):29-33.MENG Xian-guang. Graphite fluoride and its synthesis[J]. Carbon (Chinese),1997(02):29-33. [22] Sun C B, Feng Y, Li Y, et al. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries[J]. Nanoscale,2014,6(5):2634-2641. doi: 10.1039/C3NR04609E [23] Peng C, Kong L, Li Y, et al. Fluorinated graphene nanoribbons from unzipped single-walled carbon nanotubes for ultrahigh energy density lithium-fluorinated carbon batteries[J]. Sci China Mater,2021,64(6):1367-77. doi: 10.1007/s40843-020-1551-x [24] Peng C, Li Y, Yao F, et al. Ultrahigh-energy-density fluorinated calcinated macadamia nut shell cathodes for lithium/fluorinated carbon batteries[J]. Carbon,2019,153:783-791. doi: 10.1016/j.carbon.2019.07.065 [25] Lu J C, Liu Z C, Huang P, et al. A new primary lithium battery with fluorinated ketjenblack cathode[J]. Advanced Materials Research,2013,704:98-101. doi: 10.4028/www.scientific.net/AMR.704.98 [26] Liu Z C, Lu J C, Huang P. Fluorinated pyrocarbon prepared from ketjenblack for primary lithium battery[J]. Advanced Materials Research,2014,968:16-20. doi: 10.4028/www.scientific.net/AMR.968.16 [27] Kong L, Li Y, Peng C, et al. Defective nano-structure regulating C-F bond for lithium/fluorinated carbon batteries with dual high-performance[J]. Nano Energy 2022, 104: 107905. [28] Yang Y, Lu G L, Li Y J, et al. One-step preparation of fluorographene: a highly efficient, low-cost, and large-scale approach of exfoliating fluorographite[J]. ACS Applied Materials & Interfaces,2013,5(24):13478-13483. [29] Zhong G M, Chen H X, Huang X K, et al. High-power-density, high-energy-density fluorinated graphene for primary lithium batteries[J]. Frontiers in Chemistry,2018,6:50. doi: 10.3389/fchem.2018.00050 [30] Dai Y, Fang Y, Cai S D, et al. Surface modified pinecone shaped hierarchical structure fluorinated mesocarbon microbeads for ultrafast discharge and improved electrochemical performances[J]. Journal of the Electrochemical Society,2017,164(2):A1-A7. doi: 10.1149/2.0451614jes [31] Yin X, Li Y, Feng Y, et al. Polythiophene/graphite fluoride composites cathode for high power and energy densities lithium primary batteries[J]. Synth Met,2016,220:560-566. doi: 10.1016/j.synthmet.2016.07.032 [32] Zhang Q, d’Astorg S, Xiao P, et al. Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries[J]. Journal of Power Sources,2010,195(9):2914-2917. doi: 10.1016/j.jpowsour.2009.10.096 [33] Dai Y, Cai S D, Wu L J, et al. Surface modified CFx cathode material for ultrafast discharge and high energy density[J]. Journal of Materials Chemistry A,2014,2(48):20896-20901. doi: 10.1039/C4TA05492J [34] Zhou P F, Weng J Y, Liu X L, et al. Urea-assistant ball-milled CFx as electrode material for primary lithium battery with improved energy density and power density[J]. Journal of Power Sources,2019,414:210-217. doi: 10.1016/j.jpowsour.2019.01.007 [35] Pang C K, Ding F, Sun W B, et al. A novel dimethyl sulfoxide/1, 3-dioxolane based electrolyte for lithium/fluorinated carbons batteries with a high discharge voltage plateau[J]. Electrochimica Acta,2015,174:230-237. doi: 10.1016/j.electacta.2015.06.004 [36] Li Y, Feng W. The tunable electrochemical performances of fluorinated carbons/manganese dioxide hybrid cathodes by their arrangements[J]. Journal of Power Sources,2015,274:1292-9. doi: 10.1016/j.jpowsour.2014.10.150 [37] Shao Y, Yue H, Qiao R, et al. Synthesis and reaction mechanism of novel fluorinated carbon fiber as a high-voltage cathode material for rechargeable Na batteries[J]. Chemistry of Materials,2016,28(4):1026-33. doi: 10.1021/acs.chemmater.5b03762 [38] Liu W, Li Y, Zhan B X, et al. Amorphous, highly disordered fluorinated carbons as a novel cathode for sodium secondary batteries[J]. The Journal of Physical Chemistry C,2016,120(44):25203-9. doi: 10.1021/acs.jpcc.6b07126 [39] An H, Li Y, Gao Y, et al. Free-standing fluorine and nitrogen co-doped graphene paper as a high-performance electrode for flexible sodium-ion batteries[J]. Carbon,2017,116:338-346. doi: 10.1016/j.carbon.2017.01.101 [40] Shen X, Li Y, Qian T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature communications,2019,10(1):1-9. doi: 10.1038/s41467-018-07882-8 [41] Yoshida K, Sugawara Y, Saitoh M, et al. Microscopic Characterization of the C―F Bonds in Fluorine-Graphite Intercalation Compounds[J]. J Power Sources,2020,445:227320-227320. [42] Fan K, Liu X, Liu Y, et al. Covalent functionalization of fluorinated graphene through activation of dormant radicals for water-based lubricants[J]. Carbon,2020,167:826-834. [43] Ye X, Liu X, Yang Z, et al. Tribological properties of fluorinated graphene reinforced polyimide composite coatings under different lubricated conditions[J]. Composites Part A:Applied Science and Manufacturing,2016,81:282-288. doi: 10.1016/j.compositesa.2015.11.029 [44] Du S, Lu W, Ali A, et al. A broadband fluorographene photodetector[J]. Advanced Materials,2017,29(22):1700463. doi: 10.1002/adma.201700463 [45] Zhang R, Li H, Zhang Z D, et al. Graphene synthesis on SiC: reduced graphitization temperature by C-cluster and Ar-ion implantation[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2015,356:99-102. [46] Guo L, Cao S, Wang L. Electron beam irradiation of fluorinated graphene[J]. International Journal of Modern Physics B,2017,31(32):1750252. doi: 10.1142/S0217979217502526 [47] Xu Y, Ali A, Shehzad K, et al. Solvent‐based soft‐patterning of graphene lateral heterostructures for broadband high‐speed metal-semiconductor-metal photodetectors[J]. Advanced Materials Technologies,2017,2(2):1600241. doi: 10.1002/admt.201600241 [48] Ali A, Shehzad K, Guo H, et al. High-performance, flexible graphene/ultra-thin silicon ultra-violet image sensor[C]. 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 2017: 8.6. 1-8.6. 4. [49] Feng Q, Zheng W H, Tang N J, et al. Obtaining high localized spin magnetic moments by fluorination of reduced graphene oxide[J]. ACS Nano,2013,7(8):6729-6734. doi: 10.1021/nn4027905 [50] Gong P, Yang Z, Hong W, et al. To lose is to gain: Effective synthesis of water-soluble graphene fluoroxide quantum dots by sacrificing certain fluorine atoms from exfoliated fluorinated graphene[J]. Carbon,2015,83:152-161. doi: 10.1016/j.carbon.2014.11.027 [51] 王旭, 陈新宇, 樊坤, 等. 基于直接氟化技术的氟化石墨烯制备与应用研究[J]. 固体火箭技术,2021,44(06):726-736. doi: 10.7673/j.issn.1006-2793.2021.06.004WANG Xu, CHEN Xin-yu, FAN Kun, et al. Preparation and application of fluorinated graphene bas sed on direct fluorination technology[J]. Journal of Solid Rocket Technology,2021,44(06):726-736. doi: 10.7673/j.issn.1006-2793.2021.06.004 [52] Yin X, Feng Y, Zhao Q, et al. Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant[J]. Journal of Materials Chemistry C,2018,6(24):6378-6384. doi: 10.1039/C8TC00998H [53] Ye X, Wang M. Impacts of polyimide enhanced by amino-modified fluorinated graphene: Thermal, mechanical and tribological behaviors[J]. High Performance Polymers,2022,34(5):524-532. doi: 10.1177/09540083221079507 [54] 王旭, 陈腾, 刘洋, 等. 直接氟化技术在绝缘材料方面的应用研究[J]. 绝缘材料,2016,49(12):8-12. doi: 10.16790/j.cnki.1009-9239.im.2016.12.002Wang Xu, Chen Teng, Liu Yang, et al. Application research of direct fluorination in insulating material[J]. Insulating Materials,2016,49(12):8-12. doi: 10.16790/j.cnki.1009-9239.im.2016.12.002 [55] Mar M, Dubois M, Gu K, et al. Tuning fluorine and oxygen distribution in graphite oxifluorides for enhanced performances in primary lithium battery[J]. Carbon,2019,141:6-15. doi: 10.1016/j.carbon.2018.09.037 [56] Kinoshita H, Nishina Y, Alias A, et al. Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives[J]. Carbon,2014,66:720-723. doi: 10.1016/j.carbon.2013.08.045 [57] Jeremy T, James S, Chad E, et al. Properties of fluorinated graphene films[J]. Nano letter,2010,10:3001-3005. doi: 10.1021/nl101437p [58] Ho K, Huang C, Liao J, et al. Fluorinated graphene as high-performance dielectric materials and the applications for graphene nanoelectronics[J]. Scientific reports,2014,4:5893. -