留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Biomass-derived carbon anodes for sodium-ion batteries

HUANG Si QIU Xue-qing WANG Cai-wei ZHONG Lei ZHANG Zhi-hong YANG Shun-sheng SUN Shi-rong YANG Dong-jie ZHANG Wen-li

黄思, 邱学青, 王才威, 钟磊, 张志鸿, 杨顺生, 孙世荣, 杨东杰, 张文礼. 生物质基炭负极材料在钠离子电池中的应用. 新型炭材料(中英文), 2023, 38(1): 40-72. doi: 10.1016/S1872-5805(23)60718-8
引用本文: 黄思, 邱学青, 王才威, 钟磊, 张志鸿, 杨顺生, 孙世荣, 杨东杰, 张文礼. 生物质基炭负极材料在钠离子电池中的应用. 新型炭材料(中英文), 2023, 38(1): 40-72. doi: 10.1016/S1872-5805(23)60718-8
HUANG Si, QIU Xue-qing, WANG Cai-wei, ZHONG Lei, ZHANG Zhi-hong, YANG Shun-sheng, SUN Shi-rong, YANG Dong-jie, ZHANG Wen-li. Biomass-derived carbon anodes for sodium-ion batteries. New Carbon Mater., 2023, 38(1): 40-72. doi: 10.1016/S1872-5805(23)60718-8
Citation: HUANG Si, QIU Xue-qing, WANG Cai-wei, ZHONG Lei, ZHANG Zhi-hong, YANG Shun-sheng, SUN Shi-rong, YANG Dong-jie, ZHANG Wen-li. Biomass-derived carbon anodes for sodium-ion batteries. New Carbon Mater., 2023, 38(1): 40-72. doi: 10.1016/S1872-5805(23)60718-8

生物质基炭负极材料在钠离子电池中的应用

doi: 10.1016/S1872-5805(23)60718-8
基金项目: 国家自然科学基金项目(No.22108044);广东省重点领域研发计划项目(No.2020B1111380002);广州市基础研究与应用基础研究(No.202201010290);广东省植物资源生物炼制重点实验室开放课题项目(No.2021GDKLPRB07)
详细信息
    通讯作者:

    邱学青,博士,教授. E-mail:cexqqiu@scut.edu.cn

    孙世荣,博士. E-mail:shirongsun@gdut.edu.cn

    张文礼,博士,教授. E-mail:wlzhang@gdut.edu.cn; wlzhang@gdut.edu.cn

  • 中图分类号: TQ127.1+1

Biomass-derived carbon anodes for sodium-ion batteries

Funds: This work was supported by National Natural Science Foundation of China (22108044), the Research and Development Program in Key Fields of Guangdong Province (2020B1111380002), the Basic Research and Applicable Basic Research in Guangzhou City (202201010290), the financial support from the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (2021GDKLPRB07), and the financial support from the Innovation and Entrepreneurship Plan for College Students of China
More Information
  • 摘要: 钠离子电池在未来大规模固定式电网储能中的潜在应用引起了人们的广泛关注。随着钠离子电池的商业化发展,利用可持续生物质资源开发高性能炭负极材料已成为制造低成本钠离子电池的一项重要策略。本文综述了以生物质废弃物为原料制备先进炭负极材料用于钠离子电池的最新进展。首先,系统地讨论了炭负极储钠机制的历史观点,以明确其构效关系。其次,介绍了炭材料孔结构设计、杂原子掺杂、晶体结构控制和形貌调控等策略有效地提高生物质基炭负极的储钠性能。最后,从合成方法、微观结构和生产成本的角度,展望了生物质基炭负极材料用于商业化钠离子电池的可能以及未来的研究方向和挑战。
  • FIG. 2062.  FIG. 2062.

    FIG. 2062..  FIG. 2062.

    Figure  1.  (a) Ragone plot of electrochemical energy storage devices, the relationship between power density versus energy density[69]. (b) Elemental abundance in the earth’s crust[70]. (c) Cost comparison of model SIBs and LIBs[71]. (d) Schematic illustration of the architecture of SIBs. Reprinted with permission

    Figure  2.  Proposed sodiation mechanisms for carbon anodes. (a) “Insertion-filling” model[83]. (b) “Adsorption-insertion” model[83]. (c) “Adsorption-insertion” model[76]. (d) “Adsorption-filling” mechanism[78]. (e) “Adsorption-insertion-filling” mechanism[79]. (f) “Adsorption-insertion-filling” mechanism[82]. (g) “Adsorption/insertion-filling” mechanism[84]. Reprinted with permission

    Figure  3.  The microstructure-dependent sodium storage mechanism of HCs[88]. Reprinted with permission

    Figure  4.  (a) Schematic illustration of the natural structure of wood, and the composition of the cell wall[96]. (b) Schematic representation for the typical microstructures of the carbons obtained at 1000 and 3000 °C[99]. Scanning electron microscopy images of (c) cucumber stem-derived carbon[101], (d) poplar wood-derived carbon[102], (e) lotus stem-derived carbon[103], (f) cherry petals derived carbon[104], (g) apricot shells derived carbon[105], (h) beechwood derived carbon[106], (i) pine pollen derived carbon[107], and (j) bamboo-like derived carbon[108]. Reprinted with permission

    Figure  5.  Preparation of porous carbons by chemical activation strategy. (a) Peanut shell-derived porous carbon prepared by KOH activation[117]. (b) Cotton seed hull-derived porous carbon prepared by fungi-enabled degradation and KOH activation[119]. (c) Samara-derived porous carbon prepared by KHCO3 activation[120]. (d) Peanut shell-derived porous carbon prepared by H3PO4 activation[124]. (e) Magnolia petals derived porous carbon prepared by ZnCl2 activation[128]. (f) Platanus bark-derived porous carbon prepared by H2SO4 washing[129]. Reprinted with permission

    Figure  6.  Heteroatom doped carbons. (a) N-doped carbon derived from onion[139]. (b) N, P co-doped carbon derived from corn stalk[142]. (c) N, S co-doped carbon derived from cotton[143]. (d) N, S co-doped carbon derived from tangerine peel[144]. Reprinted with permission

    Figure  7.  Preparation of hard carbons by direct carbonization. (a) A freestanding and thick hard carbon with well-defined channels in original wood[157]. (b) Walnut shell derived hard carbon[158]. (c) Argan shells derived hard carbon[159]. (d) Cork-derived hard carbon[160]. (e) Date palm derived hard carbon[161]. Reprinted with permission

    Figure  8.  (a) Evolution of crystalline structure in hard carbon at 600-2500 °C[76]. (b) Sodium storage state in hard carbon[103]. (c) Mechanism of Na+ ions insertion into pseudo-graphitic domains[162]. Reprinted with permission

    Figure  9.  Preparation of the nanostructured carbons. (a) Zero-dimensional carbon spherules[165]. (b) One-dimensional hollow carbon microtubes[168]. (c) One-dimensional hard carbon microtubes[85]. (d) Two-dimensional sulfur-doped carbon sheets[172]. (e) Two-dimensional carbon nanosheets[173]. (f) Three-dimensional honeycomb-like carbon[131]. Reprinted with permission

    Figure  10.  Capacity comparison of hard carbons derived from typical biomass wastes in reported literatures[85,159,160,183-186]

    Figure  11.  Sodium storage performance of hard carbons derived from various biomass. (a) Hard carbon derived from cork at 1200-1600 °C[160]. (b) Hard carbon derived from corn cob at 1000-1600 °C[184]. (c) Hard carbon derived from pinecone at 500-1600 °C[189]. (d) Hard carbon from starch at 900-1700 °C[183]. (e) Hard carbon from waste tea at 1000-1600 °C[185]. Reprinted with permission

    Figure  12.  Summary of future directions and challenging perspectives of biomass-derived carbon anodes for practical SIBs applications

    Table  1.   Electrochemical performances of biomass-derived carbon materials with different sources and structures

    Biomass precursorTemperature (°C)Structures Electrochemical performanceRef.
    BET
    (m2 g−1)
    Interlayer spacing
    (nm)
    ID/IG ICE
    (%)
    Reversible capacity
    (mAh g−1)
    Cycling
    stabilitya
    Rate
    performanceb
    Cotton 1000 538 4.14 - 26 88 - - [85]
    1300 38 4.1 83 315 97/0.1C 180/1C
    1600 14 4.02 85 294 - -
    Wheat starch 900 6.33 3.75 1.36 80 256 92.5/0.4C 51/4C [183]
    1100 5.44 3.74 1.28 85.2 320 93.2/0.4C 83/4C
    1300 3.67 3.73 1.24 86.5 336 93.8/0.4C 122/4C
    1500 1.6 3.68 1.23 90.5 305 94.5/0.4C 156/4C
    1700 1.5 3.51 1.04 93.9 235 94.7/0.4C 82/4C
    Argan shell 800 99 4 - 66.2 232 91.3/25 mA g−1 - [159]
    1000 7.7 4 77.9 286 93.1/25 mA g−1
    1200 3.9 3.93 81.2 296 96.6/25 mA g−1
    1300 2.6 3.88 83.9 300 98.3/25 mA g−1
    Acid-treated argan shell 800 380 3.91 - 76.9 286 94.5/25 mA g−1 - [159]
    1000 270 3.9 83.9 299 95.9/25 mA g−1
    1200 23 3.93 79 333 96.9/25 mA g−1
    1300 24 3.85 86.8 312 98.4/25 mA g−1
    Wine cork 800 11.67 4.03 2.87 61 256 80.8/0.1C 170/2C [160]
    1200 9.23 3.97 2.47 71 311 84.8/0.1C 140/2C
    1400 8.57 3.92 2.22 76 326 88/0.1C 116/2C
    1600 5.54 3.76 1.89 81 358 87/0.1C 108/2C
    Corn cob 1000 5.49 4.08 - 81 267 93.9/0.2C 120/2C [184]
    1300 3.73 3.98 86 298 97/0.2C 95/2C
    1600 1.43 3.89 87 286 93.1/0.2C 80/2C
    Waste tea 1000 56 3.79 - 67 218 81/0.2C 47/2C [185]
    1200 38 3.75 68 230.5 82/0.2C 58.1/2C
    1400 14 3.73 69 282.4 83/0.2C 67.3/2C
    1600 4 3.66 73 226.3 85/0.2C 35/2C
    Rice husk 1100 2.68 4.03 1.16 64 323 - 150/1000 mA g−1 [186]
    1300 0.27 3.95 1.23 66 372 183/1000 mA g−1
    1500 0.23 3.84 1.31 68 327 166/1000 mA g−1
    Cellulose 800 425 4.09 - 55.2 197 - - [159]
    Acid-treated cellulose 800 352 4.05 - 78.9 285 - - [159]
    Lignin 800 4.4 3.91 - 64 158 - - [159]
    Acid treated Lignin 800 287 4.04 - 75.4 285 - - [159]
    Note: a Capacity retention (%)/current density. b Rate capacity (mAh g−1)/current density.
    下载: 导出CSV
  • [1] Janoschka T, Martin N, Martin U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature,2015,527(7576):78-81. doi: 10.1038/nature15746
    [2] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science,2011,334(6058):928-935. doi: 10.1126/science.1212741
    [3] Wu Y P, Huang X K, Huang L, et al. Strategies for rational design of high-power lithium-ion batteries[J]. Energy & Environmental Materials,2021,4(1):19-45.
    [4] Alvira D, Antoran D, Manya J J. Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research[J]. Chemical Engineering Journal,2022,447:137468. doi: 10.1016/j.cej.2022.137468
    [5] Yan L, Shu J, Li C X, et al. W3Nb14O44 nanowires: Ultrastable lithium storage anode materials for advanced rechargeable batteries[J]. Energy Storage Materials,2019,16:535-544. doi: 10.1016/j.ensm.2018.09.008
    [6] Zhang W L, Sun M L, Yin J, et al. Rational design of carbon anodes by catalytic pyrolysis of graphitic carbon nitride for efficient storage of Na and K mobile ions[J]. Nano Energy,2021,87:106184. doi: 10.1016/j.nanoen.2021.106184
    [7] Yu Y. Sodium ion energy storage materials and devices[J]. Acta Physico-Chimica Sinica,2020,36(5):1910068.
    [8] Li X, Wang X Y, Sun J. Recent progress in the carbon-based frameworks for high specific capacity anodes/cathode in lithium/sodium ion batteries[J]. New Carbon Materials,2021,36(1):106-114. doi: 10.1016/S1872-5805(21)60008-2
    [9] Zhang W, Liu Y, Guo Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering[J]. Science advances,2019,5(5):eaav7412. doi: 10.1126/sciadv.aav7412
    [10] Zhang T, Li C, Wang F, et al. Recent advances in carbon anodes for sodium-ion batteries[J]. The Chemical Record,2022,22(10):202200083.
    [11] Wang C W, Yang, D J, Qiu, X Q, et al. Applications of Lignin over line Derived Porous Carbons for Electrochemical Energy Storage[J]. Progress in Chemistry,2022,34(2):285-300.
    [12] Usiskin R, Lu Y X, Popovic J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials,2021,6(11):1020-1035. doi: 10.1038/s41578-021-00324-w
    [13] Tarascon J M. Na-ion versus Li-ion batteries: Complementarity rather than competitiveness[J]. Joule,2020,4(8):1616-1620. doi: 10.1016/j.joule.2020.06.003
    [14] Hou B H, Wang Y Y, Ning Q L, et al. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1d microbelts: Superb room/low-temperature sodium storage and working mechanism[J]. Advanced Materials,2019,31(40):1903125. doi: 10.1002/adma.201903125
    [15] Delmas C, Braconnier J, Fouassier C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics,1981,3-4:165-169. doi: 10.1016/0167-2738(81)90076-X
    [16] Komaba S, Takei C, Nakayama T, et al. Electrochemical intercalation activity of layered NaCrO2 vs LiCrO2[J]. Electrochemistry Communications,2010,12(3):355-358. doi: 10.1016/j.elecom.2009.12.033
    [17] Vassilaras P, Ma X H, Li X, et al. Electrochemical properties of monoclinic NaNiO2[J]. Journal of The Electrochemical Society,2013,160(2):A207-A211. doi: 10.1149/2.023302jes
    [18] Yuan S, Liu Y B, Xu D, et al. Pure single-crystalline Na1. 1V3O79 nanobelts as superior cathode materials for rechargeable sodium-ion batteries[J]. Advanced Science,2015,2(3):1400018. doi: 10.1002/advs.201400018
    [19] Ma X H, Chen H L, Ceder G. Electrochemical properties of monoclinic NaMnO2[J]. Journal of The Electrochemical Society,2011,158(12):A1307-A1312. doi: 10.1149/2.035112jes
    [20] Doeff M M, Peng M Y, Ma Y, et al. Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries[J]. Journal of The Electrochemical Society,2019,141(11):L145-L147.
    [21] Cao Y, Xiao L, Wang W, et al. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life[J]. Advanced Materials,2011,23(28):3155-3160. doi: 10.1002/adma.201100904
    [22] Wessells C D, Huggins R A, Cui Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power[J]. Nature communications,2011,2:550. doi: 10.1038/ncomms1563
    [23] Wang L, Lu Y, Liu J, et al. A superior low-cost cathode for a Na-ion battery[J]. Angewandte Chemie, International Edition in English,2013,52(7):1964-1967. doi: 10.1002/anie.201206854
    [24] Lee H W, Wang R Y, Pasta M, et al. Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J]. Nature communications,2014,5:5280. doi: 10.1038/ncomms6280
    [25] Song J, Wang L, Lu Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society,2015,137(7):2658-2664. doi: 10.1021/ja512383b
    [26] Li Y M, Lu Y X, Zhao C L, et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Materials,2017,7:130-151. doi: 10.1016/j.ensm.2017.01.002
    [27] Moreau P, Guyomard D, Gaubicher J, et al. Structure and stability of sodium intercalated phases in olivine FePO4[J]. Chemistry of Materials,2010,22(14):4126-4128. doi: 10.1021/cm101377h
    [28] Jian Z L, Zhao L, Pan H L, et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochemistry Communications,2012,14(1):86-89. doi: 10.1016/j.elecom.2011.11.009
    [29] Zhou W, Xue L, Lu X, et al. NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction[J]. Nano Letters,2016,16(12):7836-7841. doi: 10.1021/acs.nanolett.6b04044
    [30] Zhong L, Qiu, X Q, Zhang, W L. Advances in lignin-derived carbon anodes for alkali metal ion batteries[J]. CIESC Journal,2022,73(08):3369-3380.
    [31] Chen X Y, Liu C Y, Fang Y J, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy,2022,4(6):1133-1150. doi: 10.1002/cey2.196
    [32] Xiong H, Slater M D, Balasubramanian M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries[J]. Journal of Physical Chemistry Letters,2011,2(20):2560-2565. doi: 10.1021/jz2012066
    [33] Senguttuvan P, Rousse G, Seznec V, et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chemistry of Materials,2011,23(18):4109-4111. doi: 10.1021/cm202076g
    [34] Fang S, Bresser D, Passerini S. Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries[J]. Advanced Energy Materials,2019,10(1):1902485.
    [35] Jian Z, Zhao B, Liu P, et al. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries[J]. Chemical Communications,2014,50(10):1215-1217. doi: 10.1039/C3CC47977C
    [36] Su D, Ahn H J, Wang G. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance[J]. Chemical Communications,2013,49(30):3131-3133. doi: 10.1039/c3cc40448j
    [37] Zhang W J, Dahbi M, Amagasa S, et al. Iron phosphide as negative electrode material for Na-ion batteries[J]. Electrochemistry Communications,2016,69:11-14. doi: 10.1016/j.elecom.2016.05.005
    [38] Su H, Zhang Y, Liu X, et al. Construction of CoP@C embedded into N/S-co-doped porous carbon sheets for superior lithium and sodium storage[J]. Journal of Colloid and Interface Science, 2021, 582(Pt B): 969-976.
    [39] Su H, Chang K, Ma Y H, et al. Hierarchical flower-like structures composed of cross-shaped vanadium dioxide nanobelts as superior performance anode for lithium and sodium ions batteries[J]. Applied Surface Science,2019,480:882-887. doi: 10.1016/j.apsusc.2019.03.048
    [40] Li S, Zhao Z, Li C, et al. SnS2@C hollow nanospheres with robust structural stability as high-performance anodes for sodium ion batteries[J]. Nanomicro Lett,2019,11(1):19.
    [41] Yi Y, Du X, Zhao Z, et al. Coupling of metallic VSe2 and conductive polypyrrole for boosted sodium-ion storage by reinforced conductivity within and outside[J]. ACS Nano,2022,16(5):7772-7782. doi: 10.1021/acsnano.2c00169
    [42] Xu Y N, Liu X F, Su H, et al. Fueladvanced energy materialshierarchical bimetallic selenides CoSe2-MoSe2/rGO for sodium/potassium-ion batteries anode: Insights into the intercalation and conversion mechanism[J]. Energy & Environmental Materials,2022,5(2):627-636.
    [43] Li H, Wang K, Zhou M, et al. Facile tailoring of multidimensional nanostructured Sb for sodium storage applications[J]. ACS Nano,2019,13(8):9533-9540. doi: 10.1021/acsnano.9b04520
    [44] Ma J, Prieto A L. Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode[J]. Chemical Communications,2019,55(48):6938-6941. doi: 10.1039/C9CC00001A
    [45] Xiao L, Cao Y, Xiao J, et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications[J]. Chemical Communications,2012,48(27):3321-3323. doi: 10.1039/c2cc17129e
    [46] Liu X F, Si Y B, Li K, et al. Exploring sodium storage mechanism of topological insulator Bi2Te3 nanosheets encapsulated in conductive polymer[J]. Energy Storage Materials,2021,41:255-263. doi: 10.1016/j.ensm.2021.06.004
    [47] Yin J, Zhang W, Huang G, et al. Fly ash carbon anodes for alkali metal-ion batteries[J]. ACS Appl Mater Interfaces,2021,13(22):26421-26430. doi: 10.1021/acsami.1c06543
    [48] Wenli Z, Fan Z, Fangwang M, et al. Sodium-ion battery anodes: Status and future trends[J]. EnergyChem,2019,1(2):100012. doi: 10.1016/j.enchem.2019.100012
    [49] Wang Y Y, Liu J B, Chen X C, et al. Structural engineering of tin sulfides anchored on nitrogen/phosphorus dual-doped carbon nanofibres in sodium/potassium-ion batteries[J]. Carbon,2022,189:46-56. doi: 10.1016/j.carbon.2021.12.051
    [50] Lenchuk O, Adelhelm P, Mollenhauer D. New insights into the origin of unstable sodium graphite intercalation compounds[J]. Physical Chemistry Chemical Physics,2019,21(35):19378-19390. doi: 10.1039/C9CP03453F
    [51] Zhu Y Y, Wang Y H, Wang Y T, et al. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries[J]. Carbon Energy,2022,4(6):1182-1213. doi: 10.1002/cey2.221
    [52] Li H Q, He X J, Wu T T, et al. Synthesis, modification strategies and applications of coal-based carbon materials[J]. Fuel Processing Technology,2022,230:107203. doi: 10.1016/j.fuproc.2022.107203
    [53] Liu C, Zheng H, Wang Y, et al. Microstructure regulation of pitch-based soft carbon anodes by iodine treatment towards high-performance potassium-ion batteries[J]. Journal of Colloid and Interface Science,2022,615:485-493. doi: 10.1016/j.jcis.2022.01.178
    [54] Liu C, Zheng H J, Yu K, et al. Direct synthesis of P/O-enriched pitch-based carbon microspheres from a coordinated emulsification and pre-oxidation towards high-rate potassium-ion batteries[J]. Carbon,2022,194:176-184. doi: 10.1016/j.carbon.2022.03.064
    [55] Yin J, Zhang W L, Alhebshi N A, et al. Synthesis strategies of porous carbon for supercapacitor applications[J]. Small Methods,2020,4(3):1900853. doi: 10.1002/smtd.201900853
    [56] Shen X, Zhang C, Han B, et al. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: Road to the carbon-neutral future[J]. Chem Soc Rev,2022,51(5):1608-1628. doi: 10.1039/D1CS00908G
    [57] Zhang W, Yin J, Wang C, et al. Lignin derived porous carbons: Synthesis methods and supercapacitor applications[J]. Small Methods,2021,5(11):e2100896. doi: 10.1002/smtd.202100896
    [58] Zhang X S, Jian W B, Zhao L, et al. Direct carbonization of sodium lignosulfonate through self-template strategies for the synthesis of porous carbons toward supercapacitor applications[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2022:636.
    [59] Zhang W L, Jian W B, Yin J, et al. A comprehensive green utilization strategy of lignocellulose from rice husk for the fabrication of high-rate electrochemical zinc ion capacitors[J]. Journal of Cleaner Production,2021:327.
    [60] Zhang W L, Yin J, Jian W B, et al. Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors[J]. Nano Energy,2022,103(PB):107827.
    [61] Wang C W, Zhang S Y, Wu S Y, et al. Multi-purpose production with valorization of wood vinegar and briquette fuels from wood sawdust by hydrothermal process[J]. Fuel,2020:282.
    [62] Jiang F, Cao D, Hu S, et al. High-pressure carbon dioxide-hydrothermal enhance yield and methylene blue adsorption performance of banana pseudo-stem activated carbon[J]. Bioresource Technology,2022,354:127137. doi: 10.1016/j.biortech.2022.127137
    [63] Wu S Y, Zhang S Y, Wang C W, et al. High-strength charcoal briquette preparation from hydrothermal pretreated biomass wastes[J]. Fuel Processing Technology,2018,171:293-300. doi: 10.1016/j.fuproc.2017.11.025
    [64] Zhu J, Roscow J, Chandrasekaran S, et al. Biomass-derived carbons for sodium-ion batteries and sodium-ion capacitors[J]. ChemSusChem,2020,13(6):1275-1295. doi: 10.1002/cssc.201902685
    [65] Jian W, Zhang W, Wu B, et al. Enzymatic hydrolysis lignin-derived porous carbons through ammonia activation: Activation mechanism and charge storage mechanism[J]. ACS Appl Mater Interfaces,2022,14(4):5425-5438. doi: 10.1021/acsami.1c22576
    [66] Zhao L, Jian W B, Zhang X S, et al. Multi-scale self-templating synthesis strategy of lignin-derived hierarchical porous carbons toward high-performance zinc ion hybrid supercapacitors[J]. Journal of Energy Storage,2022:53.
    [67] Zhao L, Jian W, Zhu J, et al. Molten salt self-template synthesis strategy of oxygen-rich porous carbon cathodes for zinc ion hybrid capacitors[J]. ACS Appl Mater Interfaces,2022,14(38):43431-43441. doi: 10.1021/acsami.2c13886
    [68] Jian W B, Zhang W L, Wei X E, et al. Engineering pore nanostructure of carbon cathodes for zinc ion hybrid supercapacitors[J]. Advanced Functional Materials, 2022, Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges: 2209914.
    [69] Permatasari F A, Irham M A, Bisri S Z, et al. Carbon-based quantum dots for supercapacitors: Recent advances and future challenges[J]. Nanomaterials,2021,11(1):91. doi: 10.3390/nano11010091
    [70] Yabuuchi N, Kubota K, Dahbi M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews,2014,114(23):11636-11682. doi: 10.1021/cr500192f
    [71] Kim Y, Ha K H, Oh S M, et al. High-capacity anode materials for sodium-ion batteries[J]. Chemistry,2014,20(38):11980-11992. doi: 10.1002/chem.201402511
    [72] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. Journal of The Electrochemical Society,2000,147(4):1271-1273. doi: 10.1149/1.1393348
    [73] Stevens D A, Dahn J R. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell[J]. Journal of The Electrochemical Society,2000,147(12):4428-4431. doi: 10.1149/1.1394081
    [74] Stevens D A, Dahn J R. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of The Electrochemical Society,2001,148(8):A803-A811. doi: 10.1149/1.1379565
    [75] Cao Y, Xiao L, Sushko M L, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters,2012,12(7):3783-3787. doi: 10.1021/nl3016957
    [76] Sun N, Guan Z R X, Liu Y W, et al. Extended "adsorption-insertion" model: A new insight into the sodium storage mechanism of hard carbons[J]. Advanced Energy Materials,2019,9(32):1901351. doi: 10.1002/aenm.201901351
    [77] Zhang B A, Ghimbeu C M, Laberty C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials,2016,6(1):1501588. doi: 10.1002/aenm.201501588
    [78] Bai P X, He Y W, Zou X X, et al. Elucidation of the sodium-storage mechanism in hard carbons[J]. Advanced Energy Materials,2018,8(15):1703217. doi: 10.1002/aenm.201703217
    [79] Bommier C, Surta T W, Dolgos M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters,2015,15(9):5888-5892. doi: 10.1021/acs.nanolett.5b01969
    [80] Jin Y, Sun S X, Ou M Y, et al. High-performance hard carbon anode: Tunable local structures and sodium storage mechanism[J]. ACS Applied Energy Materials,2018,1(5):2295-2305. doi: 10.1021/acsaem.8b00354
    [81] Morikawa Y, Nishimura S I, Hashimoto R I, et al. Mechanism of sodium storage in hard carbon: An X-ray scattering analysis[J]. Advanced Energy Materials,2019,10(3):1903176.
    [82] Yin X, Zhao Y, Wang X, et al. Modulating the graphitic domains of hard carbons derived from mixed pitch and resin to achieve high rate and stable sodium storage[J]. Small,2022,18(5):2105568. doi: 10.1002/smll.202105568
    [83] Sun N, Qiu J S, Xu B. Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate[J]. Advanced Energy Materials,2022,12(27):2200715. doi: 10.1002/aenm.202200715
    [84] Au H, Alptekin H, Jensen A C S, et al. A revised mechanistic model for sodium insertion in hard carbons[J]. Energy & Environmental Science,2020,13(10):3469-3479.
    [85] Li Y M, Hu Y S, Titirici M M, et al. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Advanced Energy Materials,2016,6(18):1600659. doi: 10.1002/aenm.201600659
    [86] Reddy M A, Helen M, Gross A, et al. Insight into sodium insertion and the storage mechanism in hard carbon[J]. Acs Energy Letters,2018,3(12):2851-2857. doi: 10.1021/acsenergylett.8b01761
    [87] Lyu T Y, Lan X X, Liang L Z, et al. Natural mushroom spores derived hard carbon plates for robust and low-potential sodium ion storage[J]. Electrochimica Acta,2021:365.
    [88] Chen X Y, Tian J Y, Li P, et al. An overall understanding of sodium storage behaviors in hard carbons by an "adsorption-intercalation/filling" hybrid mechanism[J]. Advanced Energy Materials,2022,12(24):2200886. doi: 10.1002/aenm.202200886
    [89] Balat M, Balat M, Kirtay E, et al. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems[J]. Energy Conversion and Management,2009,50(12):3147-3157. doi: 10.1016/j.enconman.2009.08.014
    [90] Wang S R, Dai G X, Yang H P, et al. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Progress in Energy and Combustion Science,2017,62:33-86. doi: 10.1016/j.pecs.2017.05.004
    [91] Wang C W, Zhang S Y, Huang S, et al. Effect of hydrothermal treatment on biomass structure with evaluation of post-pyrolysis process for wood vinegar preparation[J]. Fuel,2021:305.
    [92] Wang C W, Yang D J, Zhu Y P, et al. Pyrolytic gas exfoliation and template mediation inducing defective mesoporous carbon network from industrial lignin for advanced lithium-ion storage[J]. Industrial Crops and Products,2022,180:114748. doi: 10.1016/j.indcrop.2022.114748
    [93] Wang C, Zhang S, Wu S, et al. Effect of oxidation processing on the preparation of post-hydrothermolysis acid from cotton stalk[J]. Bioresource Technology,2018,263:289-296. doi: 10.1016/j.biortech.2018.05.008
    [94] Wang C, Zhang S, Wu S, et al. Study on an alternative approach for the preparation of wood vinegar from the hydrothermolysis process of cotton stalk[J]. Bioresource Technology,2018,254:231-238. doi: 10.1016/j.biortech.2018.01.088
    [95] Zhong D, Zeng K, Li J, et al. Characteristics and evolution of heavy components in bio-oil from the pyrolysis of cellulose, hemicellulose and lignin[J]. Renewable & Sustainable Energy Reviews,2022:157.
    [96] Huang J L, Zhao B T, Liu T, et al. Wood-derived materials for advanced electrochemical energy storage devices[J]. Advanced Functional Materials,2019,29(31):1902255. doi: 10.1002/adfm.201902255
    [97] Wang C W, Huang S, Zhu Y P, et al. Comparative study on the characteristics of hydrothermal products from lignocellulosic wastes[J]. Journal of Analytical and Applied Pyrolysis,2022,161:105408. doi: 10.1016/j.jaap.2021.105408
    [98] Jiang F H, Cao D F, Zhang Y, et al. Combustion of the banana pseudo-stem hydrochar by the high-pressure CO2-hydrothermolysis: Thermal conversion, kinetic, and emission analyses[J]. Fuel,2023,331(P2):125798.
    [99] Saurel D, Orayech B, Xiao B W, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials,2018,8(17):1703268. doi: 10.1002/aenm.201703268
    [100] Leng E W, Zhang Y, Peng Y, et al. In situ structural changes of crystalline and amorphous cellulose during slow pyrolysis at low temperatures[J]. Fuel,2018,216:313-321. doi: 10.1016/j.fuel.2017.11.083
    [101] Li C J, Li J Y, Zhang Y C, et al. Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries[J]. Journal of Materials Science,2019,54(7):5641-5657. doi: 10.1007/s10853-018-03229-2
    [102] Zheng Y H, Lu Y X, Qi X G, et al. Superior electrochemical performance of sodium-ion full-cell using poplar wood derived hard carbon anode[J]. Energy Storage Materials,2019,18:269-279. doi: 10.1016/j.ensm.2018.09.002
    [103] Zhang N, Liu Q, Chen W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources,2018,378:331-337. doi: 10.1016/j.jpowsour.2017.12.054
    [104] Zhu Z Y, Liang F, Zhou Z R, et al. Expanded biomass-derived hard carbon with ultrastable performance in sodium-ion batteries[J]. Journal of Materials Chemistry A,2018,6(4):1513-1522. doi: 10.1039/C7TA07951F
    [105] Zhu Y Y, Chen M M, Li Q, et al. A porous biomass-derived anode for high-performance sodium-ion batteries[J]. Carbon,2018,129:695-701. doi: 10.1016/j.carbon.2017.12.103
    [106] Rios C D S, Simonin L, De Geyer A, et al. Unraveling the properties of biomass-derived hard carbons upon thermal treatment for a practical application in Na-ion batteries[J]. Energies,2020,13(14):3513. doi: 10.3390/en13143513
    [107] Zhang Y, Li X, Dong P, et al. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries[J]. ACS Appl Mater Interfaces,2018,10(49):42796-42803. doi: 10.1021/acsami.8b13160
    [108] Li D, Zhang L, Chen H, et al. Nitrogen-doped bamboo-like carbon nanotubes: Promising anode materials for sodium-ion batteries[J]. Chemical Communications,2015,51(89):16045-16048. doi: 10.1039/C5CC06266G
    [109] Karatrantos A, Cai Q. Effects of pore size and surface charge on Na ion storage in carbon nanopores[J]. Physical Chemistry Chemical Physics,2016,18(44):30761-30769. doi: 10.1039/C6CP04611H
    [110] Cao B, Li X F. Recent progress on carbon-based anode materials for Na-ion batteries[J]. Acta Physico-Chimica Sinica,2020,36(5):1905003.
    [111] Li W B, Huang J F, Feng L L, et al. Controlled synthesis of macroscopic three-dimensional hollow reticulate hard carbon as long-life anode materials for Na-ion batteries[J]. Journal of Alloys and Compounds,2017,716:210-219. doi: 10.1016/j.jallcom.2017.05.062
    [112] Raj K A, Panda M R, Dutta D P, et al. Bio-derived mesoporous disordered carbon: An excellent anode in sodium-ion battery and full-cell lab prototype[J]. Carbon,2019,143:402-412. doi: 10.1016/j.carbon.2018.11.038
    [113] Huang S, Yang D J, Zhang W L, et al. Dual-templated synthesis of mesoporous lignin-derived honeycomb-like porous carbon/SiO2 composites for high-performance Li-ion battery[J]. Microporous and Mesoporous Materials,2021,317:111004. doi: 10.1016/j.micromeso.2021.111004
    [114] Gao Z, Zhang Y Y, Song N N, et al. Biomass-derived renewable carbon materials for electrochemical energy storage[J]. Materials Research Letters,2017,5(2):69-88. doi: 10.1080/21663831.2016.1250834
    [115] Singh G, Ruban A M, Geng X, et al. Recognizing the potential of K-salts, apart from KOH, for generating porous carbons using chemical activation[J]. Chemical Engineering Journal,2023,451:139045. doi: 10.1016/j.cej.2022.139045
    [116] Wang C, Yang D, Qiu X, et al. Applications of lignin-derived porous carbons for electrochemical energy storage[J]. Progress in Chemistry,2021:210116.
    [117] Lv W M, Wen F S, Xiang J Y, et al. Peanut shell derived hard carbon as ultralong cycling anodes for lithium and sodium batteries[J]. Electrochimica Acta,2015,176:533-541. doi: 10.1016/j.electacta.2015.07.059
    [118] Senthil C, Park J W, Shaji N, et al. Biomass seaweed-derived nitrogen self-doped porous carbon anodes for sodium-ion batteries: Insights into the structure and electrochemical activity[J]. Journal of Energy Chemistry,2022,64:286-295. doi: 10.1016/j.jechem.2021.04.060
    [119] Wang P, Ye H, Yin Y X, et al. Fungi-enabled synthesis of ultrahigh-surface-area porous carbon[J]. Advanced Materials,2019,31(4):1805134. doi: 10.1002/adma.201805134
    [120] Zhang J, Zhang D, Li K, et al. N, O and S co-doped hierarchical porous carbon derived from a series of samara for lithium and sodium storage: Insights into surface capacitance and inner diffusion[J]. Journal of Colloid and Interface Science,2021,598:250-259. doi: 10.1016/j.jcis.2021.04.047
    [121] Li Y X, Zhang X, Yang R G, et al. The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue[J]. RSC Advances,2015,5(41):32626-32636. doi: 10.1039/C5RA04634C
    [122] Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation[J]. Carbon,1998,36(7-8):1085-1097. doi: 10.1016/S0008-6223(98)00082-7
    [123] Hong K L, Qie L, Zeng R, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A,2014,2(32):12733-12738. doi: 10.1039/C4TA02068E
    [124] Dou X, Hasa I, Saurel D, et al. Impact of the acid treatment on lignocellulosic biomass hard carbon for sodium-ion battery anodes[J]. ChemSusChem,2018,11(18):3276-3285. doi: 10.1002/cssc.201801148
    [125] Shen Y L, Sun S J, Yang M, et al. Typha-derived hard carbon for high-performance sodium ion storage[J]. Journal of Alloys and Compounds,2019,784:1290-1296. doi: 10.1016/j.jallcom.2019.01.021
    [126] Xu Z P, Huang Y, Ding L, et al. Highly stable basswood porous carbon anode activated by phosphoric acid for a sodium ion battery[J]. Energy & Fuels,2020,34(9):11565-11573.
    [127] Yu C Y, Hou H Y, Liu X X, et al. Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery[J]. International Journal of Hydrogen Energy,2018,43(6):3253-3260. doi: 10.1016/j.ijhydene.2017.12.151
    [128] Yu Z Q, Zhao Z Q, Peng T Y. Coralloid carbon material based on biomass as a promising anode material for lithium and sodium storage[J]. New Journal of Chemistry,2021,45(16):7138-7144. doi: 10.1039/D0NJ01769H
    [129] Wang X K, Shi J, Mi L W, et al. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries[J]. Rare Metals,2020,39(9):1053-1062. doi: 10.1007/s12598-020-01469-3
    [130] Yan Z H, Yang Q W, Wang Q H, et al. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries[J]. Chinese Chemical Letters,2020,31(2):583-588. doi: 10.1016/j.cclet.2019.11.002
    [131] Huang S, Yang D J, Qiu X Q, et al. Boosting surface-dominated sodium storage of carbon anode enabled by coupling graphene nanodomains, nitrogen-doping, and nanoarchitecture engineering[J]. Advanced Functional Materials,2022,32(33):2203279. doi: 10.1002/adfm.202203279
    [132] Geng C, Chen Y X, Shi L L, et al. Design of active sites in carbon materials for electro-chemical potassium storage[J]. New Carbon Materials,2022,37(3):461-483. doi: 10.1016/S1872-5805(22)60612-7
    [133] Sun Z F, Chen Y X, Xi B J, et al. Edge-oxidation-induced densification towards hybrid bulk carbon for low-voltage, reversible and fast potassium storage[J]. Energy Storage Materials,2022,53:482-491. doi: 10.1016/j.ensm.2022.09.031
    [134] Wu F, Liu L, Yuan Y, et al. Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage[J]. ACS Appl Mater Interfaces,2018,10(32):27030-27038. doi: 10.1021/acsami.8b08380
    [135] Han L, Li Z M, Yang F, et al. Enhancing capacitive storage of carbonaceous anode by surface doping and structural modulation for high-performance sodium-ion battery[J]. Powder Technology,2021,382:541-549. doi: 10.1016/j.powtec.2021.01.020
    [136] Chen Y, Xi B, Huang M, et al. Defect-selectivity and "order-in-disorder" engineering in carbon for durable and fast potassium storage[J]. Advanced Materials,2022,34(7):2108621. doi: 10.1002/adma.202108621
    [137] Zhang W L, Sun M L, Yin J, et al. Accordion-like carbon with high nitrogen doping for fast and stable K ion storage[J]. Advanced Energy Materials,2021,11(41):2101928. doi: 10.1002/aenm.202101928
    [138] Zhang W, Yin J, Sun M, et al. Direct pyrolysis of supermolecules: An ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries[J]. Advanced Materials,2020,32(25):2000732. doi: 10.1002/adma.202000732
    [139] Khan M, Ahmad N, Lu K W, et al. Nitrogen-doped carbon derived from onion waste as anode material for high performance sodium-ion battery[J]. Solid State Ionics,2020,346:115223. doi: 10.1016/j.ssi.2020.115223
    [140] Gaddam R R, Niaei A H F, Hankel M, et al. Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon[J]. Journal of Materials Chemistry A,2017,5(42):22186-22192. doi: 10.1039/C7TA06754B
    [141] Romero-Cano L A, Garcia-Rosero H, Carrasco-Marin F, et al. Surface functionalization to abate the irreversible capacity of hard carbons derived from grapefruit peels for sodium-ion batteries[J]. Electrochimica Acta,2019,326:134973. doi: 10.1016/j.electacta.2019.134973
    [142] Qin D C, Liu Z Y, Zhao Y Z, et al. A sustainable route from corn stalks to N, P-dual doping carbon sheets toward high performance sodium-ion batteries anode[J]. Carbon,2018,130:664-671. doi: 10.1016/j.carbon.2018.01.007
    [143] Yang C H, Xiong J W, Ou X, et al. A renewable natural cotton derived and nitrogen/sulfur co-doped carbon as a high-performance sodium ion battery anode[J]. Materials Today Energy,2018,8:37-44. doi: 10.1016/j.mtener.2018.02.001
    [144] Shaji N, Ho C W, Nanthagopal M, et al. Biowaste-derived heteroatoms-doped carbon for sustainable sodium-ion storage[J]. Journal of Alloys and Compounds,2021,872:159670. doi: 10.1016/j.jallcom.2021.159670
    [145] Wang C W, Yang D J, Huang S, et al. Multi-stage explosion of lignin: A new horizon for constructing defect-rich carbon towards advanced lithium ion storage[J]. Green Chemistry,2022,24(15):5941-5951. doi: 10.1039/D2GC01635D
    [146] Wang H L, Yu W H, Mao N, et al. Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery[J]. Microporous and Mesoporous Materials,2016,227:1-8. doi: 10.1016/j.micromeso.2016.02.003
    [147] Guo M Q, Huang J Q, Kong X Y, et al. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J]. New Carbon Materials,2016,31(3):352-362. doi: 10.1016/S1872-5805(16)60019-7
    [148] Li Y, Yuan Y F, Bai Y, et al. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes[J]. Advanced Energy Materials,2018,8(18):1702781. doi: 10.1002/aenm.201702781
    [149] Zhao Q, Meng Y, Yang L, et al. Facile synthesis of phosphorus-doped carbon under tuned temperature with high lithium and sodium anodic performances[J]. Journal of Colloid and Interface Science,2019,551:61-71. doi: 10.1016/j.jcis.2019.05.021
    [150] Puziy A M, Poddubnaya O I, Martinez-Alonso A, et al. Synthetic carbons activated with phosphoric acid - I. Surface chemistry and ion binding properties[J]. Carbon,2002,40(9):1493-1505. doi: 10.1016/S0008-6223(01)00317-7
    [151] Zhu Y D, Huang Y, Chen C, et al. Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage[J]. Electrochimica Acta,2019,321:134698. doi: 10.1016/j.electacta.2019.134698
    [152] Huang S F, Lv Y, Wen W, et al. Three-dimensional hierarchical porous hard carbon for excellent sodium/potassium storage and mechanism investigation[J]. Materials Today Energy,2021,20:100673. doi: 10.1016/j.mtener.2021.100673
    [153] Li W, Zhou M, Li H M, et al. A high performance sulfur-doped disordered carbon anode for sodium ion batteries[J]. Energy & Environmental Science,2015,8(10):2916-2921.
    [154] Wan H, Hu X. Sulfur-doped honeycomb-like carbon with outstanding electrochemical performance as an anode material for lithium and sodium ion batteries[J]. Journal of Colloid and Interface Science,2020,558:242-250. doi: 10.1016/j.jcis.2019.09.124
    [155] Jin Q Z, Li W, Wang K L, et al. Experimental design and theoretical calculation for sulfur-doped carbon nanofibers as a high performance sodium-ion battery anode[J]. Journal of Materials Chemistry A,2019,7(17):10239-10245. doi: 10.1039/C9TA02107H
    [156] Zhao G G, Zou G Q, Hou H S, et al. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior[J]. Journal of Materials Chemistry A,2017,5(46):24353-24360. doi: 10.1039/C7TA07860A
    [157] Shen F, Luo W, Dai J Q, et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries[J]. Advanced Energy Materials,2016,6(14):1600377. doi: 10.1002/aenm.201600377
    [158] Wahid M, Gawli Y, Puthusseri D, et al. Nutty carbon: Morphology replicating hard carbon from walnut shell for Na ion battery anode[J]. ACS Omega,2017,2(7):3601-3609. doi: 10.1021/acsomega.7b00633
    [159] Dahbi M, Kiso M, Kubota K, et al. Synthesis of hard carbon from argan shells for Na-ion batteries[J]. Journal of Materials Chemistry A,2017,5(20):9917-9928. doi: 10.1039/C7TA01394A
    [160] Li Y Q, Lu Y X, Meng Q S, et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Advanced Energy Materials,2019,9(48):1902852. doi: 10.1002/aenm.201902852
    [161] Izanzar I, Dahbi M, Kiso M, et al. Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries[J]. Carbon,2019,146:844-844. doi: 10.1016/j.carbon.2019.02.062
    [162] Wang C W, Huang J F, Qi H, et al. Controlling pseudographtic domain dimension of dandelion derived biomass carbon for excellent sodium-ion storage[J]. Journal of Power Sources,2017,358:85-92. doi: 10.1016/j.jpowsour.2017.05.011
    [163] Liu Q N, Hu Z, Zou C, et al. Structural engineering of electrode materials to boost high-performance sodium-ion batteries[J]. Cell Reports Physical Science,2021,2(9):100551. doi: 10.1016/j.xcrp.2021.100551
    [164] Zheng J, Wu Y, Sun Y, et al. Advanced anode materials of potassium ion batteries: From zero dimension to three dimensions[J]. Nanomicro Lett,2020,13(1):1-37.
    [165] Li Y M, Xu S Y, Wu X Y, et al. Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(1):71-77. doi: 10.1039/C4TA05451B
    [166] Yan D, Yu C Y, Zhang X J, et al. Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery[J]. Electrochimica Acta,2016,191:385-391. doi: 10.1016/j.electacta.2016.01.105
    [167] Wang J, Chen W, Yang D, et al. Monodispersed lignin colloidal spheres with tailorable sizes for bio-photonic materials[J]. Small,2022,18(30):e2203561. doi: 10.1002/smll.202203561
    [168] Yang D, Li S J, Cheng D J, et al. Nitrogen, sulfur, and phosphorus codoped hollow carbon microtubes derived from silver willow blossoms as a high-performance anode for sodium-ion batteries[J]. Energy & Fuels,2021,35(3):2795-2804.
    [169] Huang Y, Wang L, Lu L, et al. Preparation of bacterial cellulose based nitrogen-doped carbon nanofibers and their applications in the oxygen reduction reaction and sodium-ion battery[J]. New Journal of Chemistry,2018,42(9):7407-7415. doi: 10.1039/C8NJ00708J
    [170] Zhang W, Qiu X, Wang C, et al. Lignin derived carbon materials: Current status and future trends[J]. Carbon Research,2022,1(1):14. doi: 10.1007/s44246-022-00009-1
    [171] Garcia-Mateos F J, Berenguer R, Valero-Romero M J, et al. Phosphorus functionalization for the rapid preparation of highly nanoporous submicron-diameter carbon fibers by electrospinning of lignin solutions[J]. Journal of Materials Chemistry A,2018,6(3):1219-1233. doi: 10.1039/C7TA08788H
    [172] Zhao G Y, Yu D F, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy,2020:67.
    [173] Wang H L, Mitlin D, Ding J, et al. Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes[J]. Journal of Materials Chemistry A,2016,4(14):5149-5158. doi: 10.1039/C6TA01392A
    [174] Shi L, Zhao T S. Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries[J]. Journal of Materials Chemistry A,2017,5(8):3735-3758. doi: 10.1039/C6TA09831B
    [175] Mao J F, Zhou T F, Zheng Y, et al. Two-dimensional nanostructures for sodium-ion battery anodes[J]. Journal of Materials Chemistry A,2018,6(8):3284-3303. doi: 10.1039/C7TA10500B
    [176] Wu Y, Yu Y. 2D material as anode for sodium ion batteries: Recent progress and perspectives[J]. Energy Storage Materials,2019,16:323-343. doi: 10.1016/j.ensm.2018.05.026
    [177] Kim N R, Yun Y S, Song M Y, et al. Citrus-peel-derived, nanoporous carbon nanosheets containing redox-active heteroatoms for sodium-ion storage[J]. ACS Appl Mater Interfaces,2016,8(5):3175-3181. doi: 10.1021/acsami.5b10657
    [178] Xu J, Wang X F, Wang X W, et al. Three-dimensional structural engineering for energy-storage devices: From microscope to macroscope[J]. Chemelectrochem,2014,1(6):975-1002. doi: 10.1002/celc.201400001
    [179] Liu Z C, Yuan X H, Zhang S S, et al. Three-dimensional ordered porous electrode materials for electrochemical energy storage[J]. Npg Asia Materials,2019,11:1-21. doi: 10.1038/s41427-018-0100-z
    [180] Chen L F, Feng Y, Liang H W, et al. Macroscopic-scale three-dimensional carbon nanofiber architectures for electrochemical energy storage devices[J]. Advanced Energy Materials,2017,7(23):1700826. doi: 10.1002/aenm.201700826
    [181] Li J Y, Qi H, Wang Q G, et al. Constructing graphene-like nanosheets on porous carbon framework for promoted rate performance of Li-ion and Na-ion storage[J]. Electrochimica Acta,2018,271:92-102. doi: 10.1016/j.electacta.2018.02.147
    [182] Torres-Canas F, Bentaleb A, Follmer M, et al. Improved structure and highly conductive lignin-carbon fibers through graphene oxide liquid crystal[J]. Carbon,2020,163:120-127. doi: 10.1016/j.carbon.2020.02.077
    [183] Yang B, Wang J, Zhu Y Y, et al. Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries[J]. Journal of Power Sources,2021,492:229656. doi: 10.1016/j.jpowsour.2021.229656
    [184] Liu P, Li Y M, Hu Y S, et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. Journal of Materials Chemistry A,2016,4(34):13046-13052. doi: 10.1039/C6TA04877C
    [185] Pei L Y, Cao H L, Yang L T, et al. Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries[J]. Ionics,2020,26(11):5535-5542. doi: 10.1007/s11581-020-03723-1
    [186] Wang Q Q, Zhu X S, Liu Y H, et al. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries[J]. Carbon,2018,127:658-666. doi: 10.1016/j.carbon.2017.11.054
    [187] Chen Y N, Wang Y L, Zhu S Z, et al. Nanomanufacturing of graphene nanosheets through nano-hole opening and closing[J]. Materials Today,2019,24:26-32. doi: 10.1016/j.mattod.2018.09.001
    [188] Lee M E, Kwak H W, Jin H J, et al. Waste beverage coffee-induced hard carbon granules for sodium-ion batteries[J]. Acs Sustainable Chemistry & Engineering,2019,7(15):12734-12740.
    [189] Zhang T, Mao J, Liu X L, et al. Pinecone biomass-derived hard carbon anodes for high-performance sodium-ion batteries[J]. RSC Advances,2017,7(66):41504-41511. doi: 10.1039/C7RA07231G
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  1904
  • HTML全文浏览量:  959
  • PDF下载量:  623
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2022-12-01
  • 网络出版日期:  2022-12-08
  • 刊出日期:  2023-01-06

目录

    /

    返回文章
    返回