留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photothermal catalysis in CO2 reduction reaction: Principles, materials and applications

ZHAO Shan-hai WANG Hai-bing LI Qiang DING Hao QIAN Cheng WANG Qi LI Hui-yu JIANG Feng CAO Hai-jing LI Chun-he ZHU Yan-yan

赵善海, 王海兵, 李强, 丁皓, 钱程, 汪琪, 李慧玉, 蒋锋, 曹海静, 李春鹤, 朱燕艳. 光热催化在二氧化碳还原反应中的原理,材料和应用. 新型炭材料(中英文), 2023, 38(2): 283-304. doi: 10.1016/S1872-5805(23)60722-X
引用本文: 赵善海, 王海兵, 李强, 丁皓, 钱程, 汪琪, 李慧玉, 蒋锋, 曹海静, 李春鹤, 朱燕艳. 光热催化在二氧化碳还原反应中的原理,材料和应用. 新型炭材料(中英文), 2023, 38(2): 283-304. doi: 10.1016/S1872-5805(23)60722-X
ZHAO Shan-hai, WANG Hai-bing, LI Qiang, DING Hao, QIAN Cheng, WANG Qi, LI Hui-yu, JIANG Feng, CAO Hai-jing, LI Chun-he, ZHU Yan-yan. Photothermal catalysis in CO2 reduction reaction: Principles, materials and applications. New Carbon Mater., 2023, 38(2): 283-304. doi: 10.1016/S1872-5805(23)60722-X
Citation: ZHAO Shan-hai, WANG Hai-bing, LI Qiang, DING Hao, QIAN Cheng, WANG Qi, LI Hui-yu, JIANG Feng, CAO Hai-jing, LI Chun-he, ZHU Yan-yan. Photothermal catalysis in CO2 reduction reaction: Principles, materials and applications. New Carbon Mater., 2023, 38(2): 283-304. doi: 10.1016/S1872-5805(23)60722-X

光热催化在二氧化碳还原反应中的原理,材料和应用

doi: 10.1016/S1872-5805(23)60722-X
基金项目: 微机电系统浙江省工程研究中心(No.MEMSZJERC2205);中国博士后科学基金(No. 2021M692459) ;浙江省自然科学基金(No. LQ21B030005)
详细信息
    通讯作者:

    曹海静,副教授. E-mail:caohj@shiep.edu.cn

    李春鹤,副教授. E-mail:chunhe@whu.edu.cn

    朱燕艳,教授. E-mail:yyzhu@shiep.edu.cn

  • 中图分类号: TQ127.1+1

Photothermal catalysis in CO2 reduction reaction: Principles, materials and applications

Funds: This work is supported by Zhejiang Engineering Research Center of MEMS (No.MEMSZJERC2205), Postdoctoral Science Foundation, China (No. 2021M692459), and the Natural Science Foundation of Zhejiang Province, China ( No. LQ21B030005)
More Information
  • 摘要: 碳元素消耗导致了大量的CO2排放,这引起了人们的广泛关注。发展可再生能源和减少CO2排放的技术已成为世界上最迫切需要解决的问题之一。其中,太阳能作为地球上最理想的清洁能源,已成为当前研究的热点。如果可以利用太阳能将CO2转化为有价值的碳基化学品,以上两个问题可以同时解决。光催化法和热催化法在CO2还原中的应用已有许多报道。但关于光热催化还原二氧化碳的研究较少。本文综述了光热催化在CO2还原中的研究现状,介绍了光热催化的概念和原理,催化剂的分类(新型炭材料、氧化物材料、金属硫化物材料、MOF材料、层状双氢氧化物材料)和催化剂的改性,以及其在CO2还原方面的应用。最后,本文对催化剂的发展趋势进行了预测。因此,合理开发碳基化学品可以减少传统能源的消耗、碳排放,实现碳的循环利用。
  • FIG. 2233.  FIG. 2233.

    FIG. 2233..  FIG. 2233.

    Figure  1.  (a) Schematic of the solar reactor for the two-step, solar-driven thermochemical production of fuels. Copyright 2010 by the American Association for the Advancement of Science. (b) Schematic diagram of the packed bed photoreactor. Copyright Royal Society of Chemistry 2015

    Figure  2.  (a) Functioning principles and categories of photothermal catalysis. Copyright 2021 Elsevier Ltd. (b) Thermal-assisted photocatalysis. Copyright 2014 the authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Photo-driven thermal catalysis. Copyright 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Photothermal co-catalysis. Copyright 2020 American Chemical Society

    Figure  3.  Total number of publications and citations on the topic over the past decade. The plot was created based on entries in the “Web of Science” (2 August 2022) by using the keywords “CO2 reduction” and “photothermal catalysis”

    Figure  4.  Preparation of catalyst from the classification of catalyst, design of structure and application

    Figure  5.  (a) Schematic diagram. (b) TEM images of g-C3N4-Pd nano-cubes (NCs) with Pd(100) facets and g-C3N4-Pd nano-tetrahedrons (NTs) with Pd(111) facets. Copyright the Royal Society of Chemistry 2014. (c) H2 and (d) CO production as a function of reaction time over the sample of g-C3N4-Pdnanocubes and g-C3N4-Pd nano-tetrahedrons under visible light irradiation. Copyright the Royal Society of Chemistry 2014. (e) Illustration of the visible-light-driven CO2 to CO reduction process (BIH is the sacrificial electron donor). (f) Generation of CO (black squares) and H2 (red circles) over 4 days upon visible-light irradiation (λ > 400 nm) of a CO2-saturated ACN solution containing 6 mg Coqpy@mpg-C3N4, 0.05 M BIH (sacrificial donor) and 0.03 mol L−1 PhOH (proton source). (g) Generation of CO (black squares) and H2 (red circles) during four consecutive 24 h irradiation cycles using the same hybrid material. Copyright 2020 American Chemical Society

    Figure  6.  (a) HRTEM image of Au-Cu/TiO2 material. (b)The top part summarizes the proposal to rationalize the influence of the irradiation wavelength range on the product distribution using (Au, Cu)/TiO2 as photocatalysts. The bottom part presents a plausible route for methane generation in the gas-phase CO2 photoreduction by water. (c) Temporal evolution of H2 and CH4 production throughout 46 h of irradiation time using (Au, Cu)/TiO2 (Au/Cu ratio 1∶2). Copyright 2014 American Chemical Society. (d) Graphical abstract. (e-f) The production rates of CH4 during the photocatalytic CO2 reduction with H2O on STO, B-STO-10, B-STO-20, and B-STO-30. Copyright 2017 Elsevier Ltd

    Figure  7.  (a) Photocatalytic CO2 reduction coupled with oxidative organic synthesis by semiconductor QDs. (b)The rate of photocatalytic CO2 reduction reaction using different semiconductor QDs as the photocatalysts. (c) Photocatalytic CO2 reduction of CdSe QDs modified with a different atomic thickness of CdS shell under the same conditions. (d) Long-time photocatalytic CO2 reduction experiment using CdSe/CdS QDs as photocatalysts and TEA as an electron donor under Xe lamp irradiation (300 mW with 400 nm filter). (e) GC-MS chromatogram of gas products obtained by photocatalytic reaction under CO2 atmosphere with different irradiation times. (f) Growth kinetics of CO and the corresponding decay kinetics of CO2 along with 450 nm LEDs irradiation obtained from GC quantization. Copyright 2019 Elsevier Inc

    Figure  8.  (a) Schematic diagram. (b) The amount of HCOO produced as a function of the time of visible-light irradiation. Copyright 2015 American Chemical Society. (c) Schematic diagram. (d) Plots of CO evolution turnover number CO-TON versus time in the photocatalytic CO2 reduction with MOF-4 (blue square) and homogeneous H2L4 (red circle). Copyright 2011 American Chemical Society

    Figure  9.  (a) Illustration of the different CoFe-x catalysts formed by hydrogen reduction of a CoFeAl-LDH nanosheet precursor at different temperatures. (b) Time course of CO2 conversion and product selectivity for CO2 hydrogenation over CoFe-650 under UV–vis irradiation. (c) The hydrocarbon product distribution was obtained over CoFe-650 under UV–vis irradiation for 2 h. Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Figure  10.  The methods of regulating material properties

    Figure  11.  (a) Band structures of some representative photocatalysts. Copyright 2020 Elsevier Inc. (b) Schematic illustration of TiO2/CsPbBr3 heterojunction: internal electric field (IEF)-induced charge transfer, separation, and the formation of S-scheme heterojunction under UV–visible-light irradiation for CO2 photoreduction. Copyright 2020 Springer Nature Inc. (c) Schematics illustrating the photo-excited electron-hole separation process of BiW heterostructures in photothermal catalysis. Copyright 2019 Elsevier Inc. (d) Schematic representation of the preparation of COF-318-SCs via the condensation of COF-318 and semiconductor. Copyright 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Figure  12.  Crystal structure of MoO3-x and MoO3: (a) XRD patterns. (b) TEM of the MoO3. (c) TEM of the MoO3-x. (d) HRTEM of the MoO3, and (e)HRTEM of the MoO3-x. Copyright the Royal Society of Chemistry 2019. Photothermal catalytic activities of CO2 conversion over TiO2(AB) treated with SPP for 0 and 2 h (samples T-0 h and T-2 h, respectively) upon (f) 100 mW·cm−2 solar and (g) visible ($\lambda $ ≥ 420 nm) light irradiation (N/D: not detected). Acetaldehyde degradation and CO2 evolution over T-0 h and T-2 h: (h) under visible light at room temperature and (i) under UV light with heating at 70 °C. Copyright 2020 The Authors Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Figure  13.  (a) The CO2 cycloaddition of photothermally-driven, Copyright 2022 Elsevier Inc. (b) Graphical abstract. Copyright 2021 American Chemical Society. (c) Schematic illustration of the formation mechanism, catalytic process, and advantages for CO2 photothermal reduction into CO over C-In2O3−x.. (d) CO production rates of Vo-poor In2O3, Vo-rich In2O3−x, and C-In2O3−x with different carbon content. (e) Photothermal CO2 conversion test and selectivity of C-In2O3−x. Copyright 2021 Wiley-VCH GmbH

    Figure  14.  (a) Geometric and electronic structures of a single atom, clusters, and nanoparticles, Copyright 2018 American Chemical Society. (b) Illustration of CO2 conversion mechanism on small and large Cu-Pt nanoclusters on TiO2. (c) Photocatalytic CH4 evolution as a function of time. Copyright the Royal Society of Chemistry 2013. (d) Schematic diagram. Copyright 2013 American Chemical Society

    Figure  15.  (a) Schematic diagram of enhanced carbon dioxide hydrogenation in photothermal process with Au/CeO2. (b) TEM image of Au/CeO2 sample. The inset figure on top is the corresponding HRTEM image. Estimation of (c) CO2 and (d) hydrogen orders from the dependence of kinetic rate on the reactant partial pressure in photothermal or thermal processes over the Au/CeO2 catalysts at 673 K. (e) CO2 conversion on Au/CeO2 in the photothermal or thermal process. (f) CO2 conversion &CO selectivity on Au/CeO2 or CeO2 catalysts at 400 °C under different conditions. Copyright 2019 Elsevier Inc

    Table  1.   Lists the electrochemical CO2 reduction potentials versus the NHE at pH=7

    ReactionsE (V vs NHE, pH=7)
    CO2+e →*CO2 −1.9 V
    CO2+2H+ +2e →HCOOH −0.61 V
    CO2+2H+ +2e → CO+H2O −0.53 V
    CO2+4H+ +4e → HCHO+H2O −0.48 V
    CO2+6H+ +6e→CH3OH+H2O −0.38 V
    CO2+8H+ +8e →CH4+2H2O −0.24 V
    H2O +2e →H2 −0.41 V
    下载: 导出CSV

    Table  2.   Performance of catalyst materials for photothermal reduction reaction of CO2

    PhotothermalcatalystsTest conditionsYield (CO)
    µmol·g−1·h−1
    Yield (CH4)
    µmol·g−1·h−1
    Yield (others)
    µmol·g−1·h−1
    Ref.
    Carbon materials
    gC3N4/ graphdiyneCO2 and H2O under 300 W Xe lamp23.950.40[23]
    TiO2/ graphdiyneCO2, H2O and MeCN under 350 W Xe lamp50.532.80[24]
    Bi2WO6/ Ti3C2CO2 and H2O under 300 W Xe lamp1.78CH3OH: 0.44[25]
    gC3N4/Ti3C2CO2 and H2O under 300 W Xe lamp with 420 nm filter2.420.04[26]
    gC3N4/Ti3C2TxCO2 and H2O under 300 W Xe lamp2.12[27]
    TiO2/Ti3C2CO2 and H2O under 300 W Xe lamp4.40[28]
    P25/Ti3C2CO2 and H2O under 300 W Xe lamp11.7416.61[29]
    ZnO/Ti3C2CO2 and H2O under 300 W Xe lamp30.3020.33[30]
    Ni/Nb2CCO2 and H2O under 300 W Xe lamp72.50[31]
    gC3N4/TiO2/Ti3AlC2CO2 and H2O under 35 WHID car lamp of 20 mW/cm2 in fixed bed reactor297.262103.50[32]
    TiO2-graphene300 W Xe lamp, UV- visible light2.0025.00[33]
    Oxide materials
    LaNixCo1-xO3300 W Xe lamp equipped with a UV-light filter (λ>420 nm); 350 °C113.13CH3OH: 3.47[34]
    Pd-TiO2A mercury lamp (500 W, λ>254 nm); 773 K11.05[35]
    Ni/TiO2-CeO2300 W Xenon arc lamp, UV light; λ>25417.00[36]
    Ni(5)-BaTiO3300 W Xe lamp, UV–visible light103.70[37]
    m-WO3-x300 W high-pressure Xe lamp (λ>420 nm); 250 °C25.77CH3OH: 4.1[38]
    CuS/TiO2300 W Xe lamp, UV- visible light; 99 °C25.97[39]
    (P-R)Ni/TiO2300 W Xe lamp, UV- visible light; 400 °C60 mL[40]
    TiO2/H2-150300 W Xe lamp, UV- visible light; 120 °C23.00[41]
    CoO-CuO/TiO2-CeO2300 W Xe lamp, UV- visible light; 80 °C5.000.50[42]
    BaZr0.5Ce0.3Y0.2O3−δ300 W Xe lamp, UV- visible light; 350 °C39.13C2H6: 8.64, C3H8: 3.22[43]
    Ru/HxMoO3-y300 W Xe lamp, Vis-NIR light; 140 °C20.80[44]
    BiOx/CeO2300 W Xe lamp, UV- visible light; 400 °C31.00[45]
    Pd2Cu/P25300 W Xe lamp, UV- visible light; 150 °CCH3CH2OH: 41[46]
    Ni/TiO2300 W Xe lamp, UV- visible light1.40271.90[47]
    Metal sulfides materials
    CdS/ graphdiyneCO2 and H2O under 300 W Xe lamp of 100 W·cm2 with AM1.516.610.32CH3OH: 1.79[48]
    SnS2CO2 and H2O under 300 W Xe lamp of 100 W·cm2 with AM1.512.28[49]
    ZnIn2S4-In2O3CO2 and H2O under 300 W Xe lamp of 100 W·cm2 with AM1.53075[50]
    In2S3-CdIn2S4300 W Xe lamp, UV- visible light825[51]
    CdSe/CdS300 W Xe lamp, UV- visible light412.80[2]
    MOF materials and derivatives
    (MOF-253–Ru(CO)2Cl2300 W Xe lamp, UV- visible light2.73[52]
    MOFs 1-6300 W Xe lamp, UV- visible light4.35[53]
    TiO2/C@MOF300 W Xe lamp, UV- visible light28.60[54]
    MOF-525- Co300 W Xe lamp, UV- visible light200.6036.67[55]
    UiO-66/CNSS300 W Xe lamp, UV- visible light9.00[56]
    NH2-MIL-101(Fe)300 W Xe lamp, UV- visible light HCOO: 178[57]
    Ren-MOF300 W Xe lamp, UV- visible light6.37[58]
    ZIF-67300 W Xe lamp, UV- visible light37.40[59]
    Layered double hydroxide materials
    Co-Co LDHs/Ti3C2TxCO2, MeCN/H2O/TEOA and
    [Ru(bpy)3]Cl2 6H2O under 5 W LED lamp
    1.25×104[60]
    Niln-LDH/In2S3300 W Xe lamp, UV- visible light88.29[61]
    Ni-Zr-Al300 W Xe lamp, UV- visible light150 mL·g−1·h−1[62]
    Mg-Al300 W Xe lamp, UV- visible light; 350 °C12.60[63]
    NiAl-LDH/CdS300 W Xe lamp, UV- visible light12.45[64]
    下载: 导出CSV
  • [1] Li X, Yu J, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews,2019,119(6):3962. doi: 10.1021/acs.chemrev.8b00400
    [2] Guo Q, Liang F, Li X, et al. Efficient and selective CO2 reduction integrated with organic synthesis by solar energy[J]. Chemistry,2019,5(10):2605. doi: 10.1016/j.chempr.2019.06.019
    [3] She X, Wang Y, Xu H, et al. Challenges and opportunities of electrocatalytic CO2 reduction to chemicals and fuels[J]. Angewandte Chemie International Edition,2022,61(49):202211396.
    [4] Liang Y T, Vijayan B, Gray K, et al. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production[J]. Nano Letters,2011,11(7):2865. doi: 10.1021/nl2012906
    [5] Lee W, Li C, Prajitno H, et al. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review[J]. Catalysis Today,2021,368:2. doi: 10.1016/j.cattod.2020.02.017
    [6] He Y, Zhou Y, Feng J, et al. Photothermal conversion of CO2 to fuel with nickel-based catalysts: A review[J]. Environmental Functional Materials,2022,1(2):204-217. doi: 10.1016/j.efmat.2022.07.003
    [7] Chueh W, Falter C, Abbott M, et al. A High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria[J]. Science,2010,330(6012):1797. doi: 10.1126/science.1197834
    [8] Ghuman K, Wood T, Hoch L, et al. Illuminating CO2 reduction on frustrated Lewis pair surfaces: investigating the role of surface hydroxides and oxygen vacancies on nanocrystalline In2O3-x(OH)y[J]. Physical Chemistry Chemical Physics,2015,17(22):14623. doi: 10.1039/C5CP02613J
    [9] Zheng Y, Wu J, Zhang L, et al. Unravelling the pore templating effect on CO2 adsorption performance of alkali metal nitrates promoted MgO pellets[J]. Chemical Engineering Journal,2022,450:137944. doi: 10.1016/j.cej.2022.137944
    [10] Huang P, Guo Y, Wang G, et al. Insights into nickel-based dual function materials for CO2 sorption and methanation: effect of reduction temperature[J]. Energy & Fuels,2021,35(24):20185.
    [11] Song C, Liu X, Xu M, et al. Photothermal conversion of CO2 with tunable selectivity using Fe-based catalysts: from oxide to carbide[J]. ACS Catalysis,2020,10(18):10364. doi: 10.1021/acscatal.0c02244
    [12] Wei S, Gao J, Wu P, et al. Bi and Al co-doped anatase titania for photosensitized degradation of Rhodamine B under visible-light irradiation[J]. Ceramics International,2021,47(20):28296. doi: 10.1016/j.ceramint.2021.06.246
    [13] Zhang H, Wang T, Wang J, et al. Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers[J]. Advanced Materials,2016,28(19):3703. doi: 10.1002/adma.201505187
    [14] Song C, Wang Z, Yin Z, et al. Principles and applications of photothermal catalysis[J]. Chem Catalysis,2022,2(1):52. doi: 10.1016/j.checat.2021.10.005
    [15] O'Brien P, Sandhel A, Wood T, et al. Photomethanation of gaseous CO2 over Ru/Silicon nanowire catalysts with visible and near-infrared photons[J]. Advanced Science,2014,1(1):1400001. doi: 10.1002/advs.201400001
    [16] Li X, Wang W, Dong F, et al. Recent advances in noncontact external-field-assisted photocatalysis: from fundamentals to applications[J]. ACS Catalysis,2021,11(8):4739. doi: 10.1021/acscatal.0c05354
    [17] Wang J, Li S, Yang K, et al. Bacitracin-controlled BiO/Bi5O7 nanosheet assembly and S-scheme heterojunction formation for enhanced photocatalytic performances[J]. ACS Applied Nano Materials,2022,5(5):6736. doi: 10.1021/acsanm.2c00760
    [18] Nguyen H. Reticular materials for artificial photoreduction of CO2[J]. Advanced Energy Materials,2020,10(46):2002091. doi: 10.1002/aenm.202002091
    [19] Thompson W, Fernandez E, Maroto-Valer M. Review and analysis of CO2 photoreduction kinetics[J]. ACS Sustainable Chemistry & Engineering,2020,8(12):4677-4692.
    [20] Xie S, Zhang Q, Liu G, et al. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chemical Communications,2016,52(1):35. doi: 10.1039/C5CC07613G
    [21] Guo X, He H, Traitangwong A, et al. Ceria imparts superior low temperature activity to nickel catalysts for CO2 methanation[J]. Catalysis Science & Technology,2019,9(20):5636.
    [22] Xie B, Wong R, Tan T, et al. Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina[J]. Nature Communications,2020,11(1):1615. doi: 10.1038/s41467-020-15445-z
    [23] Wang Y, Zhang Y, Wang Y, et al. Constructing van der Waals heterogeneous photocatalysts based on atomically thin carbon nitride sheets and graphdiyne for highly efficient photocatalytic conversion of CO2 into CO[J]. ACS Applied Materials Interfaces,2021,13(34):40629. doi: 10.1021/acsami.1c11081
    [24] Xu F, Meng K, Zhu B, et al. Graphdiyne: A new photocatalytic CO2 reduction cocatalyst[J]. Advanced Functional Materials, 2019, 29 (43).
    [25] Cao S, Shen B, Tong T, et al. 2D/2D Heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction[J]. Advanced Functional Materials, 2018, 28 (21).
    [26] Tang Q, Sun Z, Deng S, et al. Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance[J]. Journal of Colloid and Interface Science,2020,564:406. doi: 10.1016/j.jcis.2019.12.091
    [27] Shen J, Li C, Zhang C, et al. Emerging applications of MXene materials in CO2 photocatalysis[J]. FlatChem,2021,28:100252.
    [28] Low J, Zhang L, Tong T, et al. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity[J]. Journal of Catalysis,2018,361:255. doi: 10.1016/j.jcat.2018.03.009
    [29] Ye M, Wang X, Liu E, et al. Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst[J]. ChemSusChem,2018,11(10):1606. doi: 10.1002/cssc.201800083
    [30] Li J, Wang Z, Chen H, et al. A surface-alkalinized Ti3C2 MXene as an efficient cocatalyst for enhanced photocatalytic CO2 reduction over ZnO[J]. Catalysis Science & Technology,2021,11(14):4953.
    [31] Wu Z, Li C, Li Z, et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis[J]. ACS Nano,2021,15(3):5696. doi: 10.1021/acsnano.1c00990
    [32] Tahir M, Tahir B. Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors[J]. Journal of Materials Science & Technology,2022,106:195.
    [33] Xu M, Hu X, Wang S, et al. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J]. Journal of Catalysis,2019,377:652. doi: 10.1016/j.jcat.2019.08.010
    [34] Wei G, Zheng D, Xu L, et al. Photothermal catalytic activity and mechanism of LaNixCo1−xO3(0 ≤ x ≤ 1) perovskites for CO2 reduction to CH4 and CH3OH with H2O[J]. Materials Research Express, 2019, 6 (8).
    [35] Xu C, Huang W, Li Z, et al. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2[J]. ACS Catalysis,2018,8(7):6582. doi: 10.1021/acscatal.8b00272
    [36] Kho E, Jantarang S, Zheng Z, et al. Harnessing the beneficial attributes of ceria and titania in a mixed-oxide support for nickel-catalyzed photothermal CO2 methanation[J]. Engineering,2017,3(3):393. doi: 10.1016/J.ENG.2017.03.016
    [37] Mateo D, Morlanes N, Maity P, et al. Efficient visible‐light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate[J]. Advanced Functional Materials,2020,31(8):2008244.1-2008244.6.
    [38] Wang L, Wang Y, Cheng Y, et al. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance[J]. Journal of Materials Chemistry A,2016,4(14):5314. doi: 10.1039/C5TA10180H
    [39] Wang L, Liu X, Dang Y, et al. Enhanced solar induced photo-thermal synergistic catalytic CO2 conversion by photothermal material decorated TiO2[J]. Solid State Sciences,2019,89:67. doi: 10.1016/j.solidstatesciences.2018.12.018
    [40] Jantarang S, Ligori S, Horlyck J, et al. Plasma-induced catalyst support defects for the photothermal methanation of carbon dioxide[J]. Materials (Basel),2021,14(15):4195.
    [41] Li D, Huang Y, Li S, et al. Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2[J]. Chinese Journal of Catalysis,2020,41(1):154. doi: 10.1016/S1872-2067(19)63475-3
    [42] Fiorenza R, Bellardita M, Balsamo S, et al. A solar photothermocatalytic approach for the CO2 conversion: investigation of different synergisms on CoO-CuO/brookite TiO2-CeO2 catalysts[J]. Chemical Engineering Journal, 2022, 428.
    [43] Tian J, Ren Y, Liu L, et al. Photothermal catalysis for CO2 convert into C1–C3 hydrocarbons by proton conductor BZCY532[J]. Materials Research Express, 2020, 7 (8).
    [44] Ge H, Kuwahara Y, Kusu K, et al. Ru/HxMoO3-y with plasmonic effect for boosting photothermal catalytic CO2 methanation[J]. Applied Catalysis B:Environmental,2022,317:121734. doi: 10.1016/j.apcatb.2022.121734
    [45] Kang X, Yuan D, Yi Z, et al. Bismuth single atom supported CeO2 nanosheets for oxidation resistant photothermal reverse water gas shift reaction[J]. Catalysis Science & Technology,2022,12(18):5559-5564. doi: 10.1039/D2CY00771A
    [46] Elavarasan M, Yang W, Velmurugan S, et al. Highly efficient photothermal reduction of CO2 on Pd2Cu dispersed TiO2 photocatalyst and operando drift spectroscopic analysis of reactive intermediates[J]. Nanomaterials (Basel), 2022, 12 (3).
    [47] Li Q, Gao Y, Zhang M, et al. Efficient infrared-light-driven photothermal CO2 reduction over MOF-derived defective Ni/TiO2[J]. Applied Catalysis B:Environmental,2022,303:120905. doi: 10.1016/j.apcatb.2021.120905
    [48] Cao S, Wang Y, Zhu B, et al. Enhanced photochemical CO2reduction in the gas phase by graphdiyne[J]. Journal of Materials Chemistry A,2020,8(16):7671. doi: 10.1039/D0TA02256J
    [49] Jiao X, Li X, Jin X, et al. Partially oxidized SnS2 atomic layers achieving efficient visible-light-driven CO2 reduction[J]. Journal of American Chemical Society,2017,139(49):18044. doi: 10.1021/jacs.7b10287
    [50] Wang S, Guan B, Lou X. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction[J]. Journal American Chemical Society,2018,140(15):5037. doi: 10.1021/jacs.8b02200
    [51] Wang S, Guan B, Lu Y, et al. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction[J]. Journal American Chemical Society,2017,139(48):17305. doi: 10.1021/jacs.7b10733
    [52] Sun D, Gao Y, Fu J, et al. Construction of a supported Ru complex on bifunctional MOF-253 for photocatalytic CO2 reduction under visible light[J]. Chemical Communications (Camb),2015,51(13):2645. doi: 10.1039/C4CC09797A
    [53] Wang C, Xie Z, DeKrafft K, et al. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis[J]. Journal of American Chemical Society,2011,133(34):13445. doi: 10.1021/ja203564w
    [54] Zhou A, Dou Y, Zhao C, et al. A leaf-branch TiO2/carbon@MOF composite for selective CO2 photoreduction[J]. Applied Catalysis B: Environmental, 2020: 264.
    [55] Zhang H, Wei J, Dong J, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework[J]. Angewandte Chemie International Edtion,2016,55(46):14310. doi: 10.1002/anie.201608597
    [56] Shi L, Wang T, Zhang H, et al. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2reduction[J]. Advanced Functional Materials,2015,25(33):5360. doi: 10.1002/adfm.201502253
    [57] Wang D, Huang R, Liu W, et al. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways[J]. ACS Catalysis,2014,4(12):4254. doi: 10.1021/cs501169t
    [58] Choi K, Kim D, Rungtaweevoranit B, et al. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light[J]. Journal of American Chemical Society,2017,139(1):356. doi: 10.1021/jacs.6b11027
    [59] Qin J, Wang S, Wang X. Visible-light reduction CO2 with dodecahedral zeolitic imidazolate framework ZIF-67 as an efficient co-catalyst[J]. Applied Catalysis B:Environmental,2017,209:476. doi: 10.1016/j.apcatb.2017.03.018
    [60] Chen W, Han B, Xie Y, et al. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction[J]. Chemical Engineering Journal, 2020: 391.
    [61] Han X, Lu B, Huang X, et al. Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity[J]. Applied Catalysis B: Environmental, 316 (2022):121587.
    [62] He F, Zhuang J, Lu B, et al. Ni-based catalysts derived from Ni-Zr-Al ternary hydrotalcites show outstanding catalytic properties for low-temperature CO2 methanation[J]. Applied Catalysis B: Environmental, 2021: 293.
    [63] Ren J, Mebrahtu C, Palkovits R. Ni-based catalysts supported on Mg–Al hydrotalcites with different morphologies for CO2 methanation: exploring the effect of metal–support interaction[J]. Catalysis Science & Technology,2020,10(6):1902.
    [64] Zhang X, Yang Y, Xiong L, et al. 3D dahlia-like NiAl-LDH/CdS heterosystem coordinating with 2D/2D interface for efficient and selective conversion of CO2[J]. Chinese Chemical Letters,2022,33(4):2111. doi: 10.1016/j.cclet.2021.08.053
    [65] Zheng Y, Lin L, Ye X, et al. Helical graphitic carbon nitrides with photocatalytic and optical activities[J]. Angewandte Chemie International Edtion,2014,53(44):11926. doi: 10.1002/anie.201407319
    [66] Bai S, Wang X, Hu C, et al. Two-dimensional g-C3N4: an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis[J]. Chemical Communication (Camb),2014,50(46):6094. doi: 10.1039/C4CC00745J
    [67] Ma B, Chen G, Fave C, et al. Efficient visible-light-driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride[J]. Journal of Amerian Chemical Society,2020,142(13):6188. doi: 10.1021/jacs.9b13930
    [68] Neatu S, Macia-Agullo J, Concepcion P, et al. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water[J]. Journal of Amerian Chemical Society,2014,136(45):15969. doi: 10.1021/ja506433k
    [69] Shan J, Raziq F, Humayun M, et al. Improved charge separation and surface activation via boron-doped layered polyhedron SrTiO3 for co-catalyst free photocatalytic CO2 conversion[J]. Applied Catalysis B:Environmental,2017,219:10. doi: 10.1016/j.apcatb.2017.07.024
    [70] Zhang Y, Du W, Wang M, et al. Synergy of yolk-shelled structure and tunable oxygen defect over CdS/ CdCO3-CoS2: Wide band-gap semiconductors assist in efficient visible-light-driven H2 production and CO2 reduction[J]. Chemical Engineering Journal,2023,454:140113
    [71] Li X, Wang L, Su W, et al. A review of the research status of CO2 photocatalytic conversion technology based on bibliometrics[J]. New Journal of Chemistry,2021,45(5):2315. doi: 10.1039/D0NJ04597G
    [72] Xu H, Hu J, Wang D, et al. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states[J]. Journal of Amerial Chemical Society,2015,137(42):13440. doi: 10.1021/jacs.5b08773
    [73] Chen X, Guo R, Hong L, et al. Research progress on CO2 photocatalytic reduction with full solar spectral responses[J]. Energy & Fuels,2021,35(24):19920.
    [74] Tan L, Xu S, Wang Z, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm[J]. Angewandte Chemie International Edition,2019,58(34):11860. doi: 10.1002/anie.201904246
    [75] Chen G, Gao R, Zhao Y, et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons[J]. Advanced Materials, 2018, 30 (3).
    [76] Vasileff A, Xu C, Jiao Y, et al. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction[J]. Chem,2018,4(8):1809. doi: 10.1016/j.chempr.2018.05.001
    [77] Xu C, Zhang Y, Pan F, et al. Guiding effective nanostructure design for photo-thermochemical CO2 conversion: From DFT calculations to experimental verifications[J]. Nano Energy,2017,41:308. doi: 10.1016/j.nanoen.2017.09.023
    [78] Yu J, Wang S, Low J, et al. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air[J]. Physical Chemistry Chemical Physics,2013,15(39):16883. doi: 10.1039/c3cp53131g
    [79] Hasija V, Kumar A, Sudhaik A, et al. Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review[J]. Environmental Chemistry Letters,2021,19(4):2941. doi: 10.1007/s10311-021-01231-w
    [80] Xu Q, Zhang L, Cheng B, et al. S-scheme heterojunction photocatalyst[J]. Chem,2020,6(7):1543. doi: 10.1016/j.chempr.2020.06.010
    [81] Xu F, Meng K, Cheng B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nature Communications,2020,11(1):4613. doi: 10.1038/s41467-020-18350-7
    [82] Yan J, Wang C, Ma H, et al. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction[J]. Applied Catalysis B: Environmental, 2020: 268.
    [83] Cai S, Chen J, Li Q, et al. Enhanced photocatalytic CO2 reduction with photothermal effect by cooperative effect of oxygen vacancy and Au cocatalyst[J]. ACS Applied Materials Interfaces,2021,13(12):14221. doi: 10.1021/acsami.0c23036
    [84] Zhang M, Lu M, Lang Z, et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis[J]. Angewandte Chemie International Edition,2020,59(16):6500. doi: 10.1002/anie.202000929
    [85] Li J, Ye Y, Ye L, et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3−x[J]. Journal of Materials Chemistry A,2019,7(6):2821. doi: 10.1039/C8TA10922B
    [86] Yu F, Wang C, Li Y, et al. Enhanced solar photothermal catalysis over solution plasma activated TiO2[J]. Advanced Science, 2020, 7 (16): 2000204.
    [87] Li Z, Zhang X, Zhang L, et al. Pathway alteration of water splitting via oxygen vacancy formation on anatase titanium dioxide in photothermal catalysis[J]. The Journal of Physical Chemistry C,2020,124(48):26214. doi: 10.1021/acs.jpcc.0c07117
    [88] Duan C, Ding M, Feng Y, et al. ZIF-L-derived ZnO/N-doped carbon with multiple active sites for efficient catalytic CO2 cycloaddition[J]. Separation and Purification Technology,2022,285:120359. doi: 10.1016/j.seppur.2021.120359
    [89] Qi Y, Jiang J, Liang X, et al. Fabrication of black In2O3 with dense oxygen vacancy through dual functional carbon doping for enhancing photothermal CO2 hydrogenation[J]. Advanced Functional Materials, 2021, 31 (22).
    [90] Li Z, Zhang L, Huang W, et al. Photothermal catalysis for selective CO2 reduction on the modified anatase TiO2 (101) surface[J]. ACS Applied Energy Materials,2021,4(8):7702. doi: 10.1021/acsaem.1c01062
    [91] Zhao T, Yang Z, Tang Y, et al. Advances and perspectives of photopromoted CO2 hydrogenation for methane production: catalyst development and mechanism investigations[J]. Energy & Fuels,2022,36(13):6711.
    [92] Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews,2019,48(21):5310. doi: 10.1039/C9CS00163H
    [93] Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles[J]. Chemical Reviews,2018,118(10):4981. doi: 10.1021/acs.chemrev.7b00776
    [94] Yang Q, Yang C, Lin C, et al. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion[J]. Angewandte Chemie International Edition,2019,58(11):3511. doi: 10.1002/anie.201813494
    [95] Lee S, Jeong S, Kim W, et al. Low-coordinated surface atoms of CuPt alloy cocatalysts on TiO2 for enhanced photocatalytic conversion of CO2[J]. Nanoscale,2016,8(19):10043. doi: 10.1039/C6NR02124G
    [96] Bahmanpour A, Signorile M, Kröcher. Recent progress in syngas production via catalytic CO2 hydrogenation reaction[J]. Applied Catalysis B: Environmental, 2021: 295.
    [97] Wang Z, Song H, Liu H, et al. Coupling of solar energy and thermal energy for carbon dioxide reduction: status and prospects[J]. Angewandte Chemie International Edition,2020,59(21):8016. doi: 10.1002/anie.201907443
    [98] Su X, Yang X, Zhao B, et al. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions[J]. Journal of Energy Chemistry,2017,26(5):854. doi: 10.1016/j.jechem.2017.07.006
    [99] Lu B, Quan F, Sun Z, et al. Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion[J]. Catalysis Communications, 2019: 129.
    [100] Fu J, Jiang K, Qiu X, et al. Product selectivity of photocatalytic CO2 reduction reactions[J]. Materials Today,2020,32:222. doi: 10.1016/j.mattod.2019.06.009
    [101] Habisreutinger S, Schmidt-Mende L, Stolarczyk J. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition,2013,52(29):7372. doi: 10.1002/anie.201207199
    [102] Zhao Y, Waterhouse G, Chen G, et al. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks[J]. Chemical Society Reviews,2019,48(7):1972. doi: 10.1039/C8CS00607E
    [103] Wittich K, Krämer M, Bottke N, et al. Catalytic dry reforming of methane: insights from model systems[J]. ChemCatChem,2020,12(8):2130. doi: 10.1002/cctc.201902142
    [104] Kathiraser Y, Oemar U, Saw E, et al. Kinetic and mechanistic aspects for CO2 reforming of methane over Ni based catalysts[J]. Chemical Engineering Journal,2015,278:62. doi: 10.1016/j.cej.2014.11.143
    [105] Foppa L, Silaghi M, Larmier K, et al. Intrinsic reactivity of Ni, Pd and Pt surfaces in dry reforming and competitive reactions: Insights from first principles calculations and microkinetic modeling simulations[J]. Journal of Catalysis,2016,343:196. doi: 10.1016/j.jcat.2016.02.030
    [106] Zhao J, Guo X, Shi R, et al. NiFe nanoalloys derived from layered double hydroxides for photothermal synergistic reforming of CH4 with CO2[J]. Advanced Functional Materials, 2022: 2204056.
    [107] Chen G, Waterhouse G, Shi R, et al. From solar energy to fuels: recent advances in light-driven C1 chemistry[J]. Angewandte Chemie International Edition,2019,58(49):17528. doi: 10.1002/anie.201814313
    [108] Sharma P, Sebastian J, Ghosh S, et al. Recent advances in hydrogenation of CO2 into hydrocarbons via methanol intermediate over heterogeneous catalysts[J]. Catalysis Science & Technology,2021,11(5):1665.
    [109] Li Z, Liu J, Shi R, et al. Fe‐based catalysts for the direct photohydrogenation of CO2 to value‐added hydrocarbons[J]. Advanced Energy Materials, 2021, 11(12).
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  210
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-28
  • 录用日期:  2023-02-06
  • 修回日期:  2023-02-02
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回