留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of nitrogen-doped carbon materials for lithium-ion battery anodes

Majid Shaker Ali Asghar Sadeghi Ghazvini Taieb Shahalizade Mehran Ali Gaho Asim Mumtaz Shayan Javanmardi Reza Riahifar MENG Xiao-min JIN Zhan GE Qi

Majid Shaker, Ali Asghar Sadeghi Ghazvini, Taieb Shahalizade, Mehran Ali Gaho, Asim Mumtaz, Shayan Javanmardi, Reza Riahifar, MENG Xiao-min, JIN Zhan, GE Qi. 氮掺杂炭材料在锂离子电池负极的研究进展. 新型炭材料(中英文), 2023, 38(2): 247-282. doi: 10.1016/S1872-5805(23)60724-3
引用本文: Majid Shaker, Ali Asghar Sadeghi Ghazvini, Taieb Shahalizade, Mehran Ali Gaho, Asim Mumtaz, Shayan Javanmardi, Reza Riahifar, MENG Xiao-min, JIN Zhan, GE Qi. 氮掺杂炭材料在锂离子电池负极的研究进展. 新型炭材料(中英文), 2023, 38(2): 247-282. doi: 10.1016/S1872-5805(23)60724-3
Majid Shaker, Ali Asghar Sadeghi Ghazvini, Taieb Shahalizade, Mehran Ali Gaho, Asim Mumtaz, Shayan Javanmardi, Reza Riahifar, MENG Xiao-min, JIN Zhan, GE Qi. A review of nitrogen-doped carbon materials for lithium-ion battery anodes. New Carbon Mater., 2023, 38(2): 247-282. doi: 10.1016/S1872-5805(23)60724-3
Citation: Majid Shaker, Ali Asghar Sadeghi Ghazvini, Taieb Shahalizade, Mehran Ali Gaho, Asim Mumtaz, Shayan Javanmardi, Reza Riahifar, MENG Xiao-min, JIN Zhan, GE Qi. A review of nitrogen-doped carbon materials for lithium-ion battery anodes. New Carbon Mater., 2023, 38(2): 247-282. doi: 10.1016/S1872-5805(23)60724-3

氮掺杂炭材料在锂离子电池负极的研究进展

doi: 10.1016/S1872-5805(23)60724-3
详细信息
    通讯作者:

    Majid Shaker. E-mail: majidshacker@outlook.com

  • 中图分类号: TQ127.1+1

A review of nitrogen-doped carbon materials for lithium-ion battery anodes

  • 摘要:

    硬碳、活性炭、碳纳米管(CNTs)、石墨烯、多孔炭和炭纤维等炭材料替代锂离子电池的石墨阳极是目前的研究热点。与石墨相比,这种材料已表现出更好的储锂电化学性能,但仍有待进一步发展空间。其中一种有效的方法是在炭材料结构中加入杂原子(例如氮),提高其作为锂离子负极时的电化学性能。本综述首先描述了氮掺杂如何对锂离子电池的性能产生积极影响,并举例说明了氮掺杂炭材料的优势。然后,比较了不同N掺杂炭材料中的X射线光电子能谱和扫描隧道显微镜的表征结果,通过统计分析了掺氮量对掺氮碳材料比容量的影响。

  • FIG. 2232.  FIG. 2232.

    FIG. 2232..  FIG. 2232.

    Figure  1.  Various sites of doped nitrogen atoms in carbon materials, reproduced with permission[96], Copyright 2021 John Wiley and Sons

    Figure  2.  Configurations of N defect in graphene on Ni (111). The two top rows demonstrate the experimental and simulated STM images for various defects caused by N doping with the image size of 1 nm×1 nm. (3) N graphitic top (I = 3 nA, V = −0.2 V), (b) N graphitic fcc (I = 4 nA, V = −0.2 V), (c) 2N pyridinic fcc (I = 0.6 nA, V = −0.2 V), (d) 3N pyridinic fcc (I = 0.6 nA, V = −0.2 V) and (e) 3N pyridinic top (I = 0.6 nA, V = −0.2 V). For computational details, the readers can read reference[113]. The bottom section shows both the top and side views of the ball-and-stick model of DFT relaxed structures. Ni atoms are shown in dark grey, C atoms that delimit the defect cite in red, N atoms in blue, and graphene network in black, reproduced with permission[113], Copyright 2021 Elsevier

    Figure  3.  Initial CV curves of (a) rGO and (b) NrGO anodes at 0.1 mV s−1; galvanostatic curves of (c) rGO and (d) NrGO anodes measured at 0.1 A g−1; life cycle of (e) rGO and (f) NrGO electrodes measured at the current densities of 0.1, 2 and 10 Ag−1 over 100 cycles between 0.01 and 3.0 V; reproduced with permission[165] Copyright 2021 Elsevier

    Figure  4.  (a) Raman spectra of GNSPs and N-GNSPs; (b) XPS spectrum and (c) high-resolution N 1s XPS spectrum of N-GNSPs, adapted and reproduced with permission[156], Copyright 2020 Royal Society of Chemistry

    Figure  5.  N1s XPS peak profiles in the course of LIB operation, adapted and reproduced with permission[156], Copyright 2020 Royal Society of Chemistry

    Figure  6.  (a) SEM and (b) TEM images of NCNFs, adapted and reproduced with permission[184], Copyright 2019 John Wiley & Sons

    Figure  7.  Schematic illustration of some biomass-derived electrode materials and their intrinsic advantages, reproduced with permission[193], Copyright 2022 MDPI

    Figure  8.  Typical methods for the production of activated carbon materials from biomass, reproduced with permission[205], Copyright 2020 Taylor & Francis Group

    Figure  9.  SEM images of (a, b) oyster shell and (c, d) a sheet-like carbon sample, (e) its TEM image, and (f) SEM image of C-900; reproduced with permission[218], Copyright 2018 Elsevier

    Figure  10.  (a, b) FESEM images at two different magnifications (c) SEM and (d) TEM images of BNCMs; Reproduced with permission[227], Copyright 2019 Elsevier

    Figure  11.  Suggested formation mechanism for the CDots and N-PCFs; reproduced with permission[228]. Copyright 2019 American Chemical Society

    Figure  12.  Carbon plates in hard carbon, soft carbon , and graphite , adapted with permission[241], Copyright 2018, John Wiley and Sons

    Figure  13.  Initial (a) CV at 0.1 mV s−1 (The inset is for CLM.) and (b) CDC profiles of CLM-Ni at 0.1 A g−1; (c) galvanic CDC profiles of the fifth cycle of the samples at 0.1 A g−1; (d) Rate capability of the probing samples at multiple current densities; (e) Nyquist plots obtained after 5 cycles at 0.1 A g−1; (f) Long cycle performance of the samples at 0.1 A g−1, reproduced with permission[247], Copyright 2018 Elsevier

    Figure  14.  Lithium specific storage capacity vs nitrogen content of (a) all carbonaceous materials surveyed in this study, (d) graphene; histogram distribution curves of lithium specific storage capacity of (b) all carbonaceous materials surveyed in this study and (e) graphene; histogram distribution curves of N content of (c) all carbonaceous materials surveyed in this study and (f) graphene. The points shown in these plots are taken from the references depicted in the Tables of this review paper

    Figure  15.  Lithium storage specific capacity vs the atomic percentage of (a) pyridinic, (b) pyrrolic, and (c) graphitic doped N; Histograms of (d) pyridinic, (e) pyrrolic and (f) graphitic doped N

    Table  1.   Precursors, constituting elements, electrolyte and lithium storage capacity of N-doped graphenes

    SampleMaterialC sourceN sourceN (at.%)Capacity
    ( mAh g−1)
    ElectrolyteCDC rateRef.
    NGS1 N-doped graphene Glucose Melamine 12.68 780 1 mol L−1 LiPF6
    EC/DMC/ EMC (1/1/1 V)
    100 mA g−1 [132]
    NGS2 S Glucose Urea 17.25 687 S S [132]
    NGS3 S Glucose Dicyandiamide 19.59 662 S S [132]
    NGS4 S Methyl cellulose Melamine 16.34 600 S S [132]
    NGS5 S Sucrose Melamine 11.58 660 S S [132]
    N-rGO N-doped graphene Expanded graphite Ammonium hydroxide 7.98 530 1 mol L−1 LiPF6
    EC/DMC (1/1 V)
    S [133]
    NPGM N-doped
    porous graphene
    GO Melamine- formaldehyde 5.80 672 S S [134]
    PGM Porous graphene S S 0 450 S S [134]
    N-GS N-doped graphene GO Poly(aniline) PANi 7.17 384 1 mol L−1 LiPF6
    EC/DEC (1/1 V)
    S [135]
    GN N-doped graphene Black graphene (TCNQ) Acetonitrile 3.90 977 1 mol L−1 LiPF6
    EC/DEC (1/1 V)
    C/5 [106]
    G Graphene Black graphene - - 878 S C/5 [106]
    NGSs N-doped graphene sheets Monohydrate glucose Dicyandiamide 19.46 727 1 mol L−1 LiPF6 in
    (EC, DMC, DEC)
    S [136]
    MLG Multilayer graphene S S 6.20 435 S S [136]
    GNSs Graphene nanosheets Exfoliated graphite oxides - 2.04 478 S S [136]
    NDG N-doped graphene Monohydrate glucose Dicyandiamide 13.10 1 mol L−1 LiPF6 in
    EC/DMC/DEC
    (1∶1∶1 V)
    S [137]
    NG2 N-doped graphene Natural flake graphite powder NH3 3.06 896 S 50 mA g−1 [138]
    NG1 S S S 2.04 467 S 500 mA g−1 [138]
    NG2 S S S 3.06 470 S 500 mA g−1 [138]
    NG3 S S S 3.18 509 S 500 mA g−1 [138]
    N-FLGS N-doped few-layer graphene sheets Pyrolytic graphite Aqueous ammonia 6.05 318 S 100 mA g−1 [139]
    NGHS N-doped graphene Hollow microspheres GO Melamine 9.37 1400 S 0.5 C [140]
    NHGHS N-doped holey graphene hollow microspheres Holey GO Melamine 9.63 1580 S S [140]
    GP Graphene paper Graphite oxide - 0 161 S S [141]
    N-GP N-doped GP Graphite oxide Concentrated ammonia 6.81 316 S S [141]
    N-C-700 N-doped graphene ZIF-8 ZIF-8 22.80 1030 1 mol L−1 LiPF6
    EC/DEC (1/1 V)
    100 mA g−1 [142]
    N-C-800 S S S 16.98 2163 1746@40 cycles S S [142]
    N-C-900 S S S 10.10 882 S S [142]
    N-rGO N-doped reduced graphene oxide GO Melamine 5.00 519 1 mol L−1 LiPF6
    EC/DMC (1/1 V)
    S [143]
    N-rGO GO Hydrazine hydrate 7.05 1401 1 mol L−1 LiPF6
    EC/DMC (1/1 V)
    100 mA g−1 [144]
    MC-650 Nitrogen self-doped graphene nanosheets Melamine Melamine - 859 1 mol L−1 LiPF6 in
    EC, DMC, and EMC
    (1/1/1 V)
    0.1 C [145]
    MC-750 S S S - 1248 S S [145]
    MC-850 S S S - 1554 S S [145]
    N-3D GFs N-doped 3D graphene frameworks GO NH3 2.02 1006 1 mol L−1 LiPF6
    EC/DEC (1/1 V)
    100 mA g−1 [146]
    3D GFs 3D graphene frameworks S - 0 865 S S [146]
    N-GA 3D N-doped graphene aerogel Graphite Ammonia 4.45 690 - S [147]
    GA 3D graphene aerogel S - 0 480 - S [147]
    NGNS N-doped graphene nanosheets - - 4.17 wt.% 437 1 mol L−1 LiPF6
    EC/DEC (1/1 V)
    S [148]
    GNS Graphene nanosheets - - 0 wt.% 303 S S [148]
    NGHSs N-doped graphene hollow microspheres GO Ammonia 9.37 1386 1 mol L−1 LiPF6
    EC/DMC (1/1 V)
    0.5 C [149]
    GHSs Graphene hollow microspheres S - 0 948 S S [149]
    N-GNS N-doped graphene nanosheets Graphite oxide NH3 2.00% 717 S 0.1 C [150]
    GNS Graphene nanosheets S - 0 366 S S [150]
    N-RGN N-doped reduced graphite oxide Reduced graphite oxide Melamine 8.52 1095.2 1 mol L−1 LiPF6
    EC/DEC (1/1 V)
    100 mA g−1 [151]
    N-GT N-doped graphite oxide Graphite oxide S 11.36 809 S S [151]
    N-GN N-doped graphene oxide Graphene oxide S 12.06 707 S S [151]
    N-rGO N-doped reduced graphene oxide films GO Melamine 7.11 993 1 mol L−1 LiPF6
    EC/DEC/EMC (1/1/1 V)
    100 mA g−1 [152]
    N-doped graphene N-doped graphene Hexamethylenet etramine Hexamethylenet etramine 1.68 655 1 mol L−1 LiPF6
    EC/DMC (1/1 V)
    100 mA g−1 [153]
    N-graphene Nitrogen- self-doped graphene Poly (acrylonitril edivinylbenzene- triallyl isocyanurate) Poly (acrylonitril edivinylbenzene- triallyl isocyanurate) 2.10 776.0 S 100 mA g−1 [154]
    NGr N-doped graphene GO Ammonium hydroxide 2.80% XPS 798 1 mol L−1 LiPF6
    EC/DEC (1/1 V)
    0.5 A g−1 [155]
    N-GNSPs N-doped graphene nanostripes Methane 3-chloropyridine 7.50% XPS 415 1 mol L−1 LiPF6
    EC/DMC (1/1 V)
    0.1 A g−1 [156]
    GNSPs Graphene nanostripes S 1,2-dichlorobenzene - 365 S S [156]
    N-RGO N-doped reduced graphene oxide Natural flake graphite NH3 2.10 wt.% 895 1 mol L−1 LiPF6
    EC/DMC (1/1 V)
    0.1 C [157]
    N-doped graphene N-doped graphene Dimethylforma mide Dimethylforma mide 12.25 wt.% 577 1 mol L−1 LiPF6
    EC/DEC (1/1 V)
    0.2 A g−1 [158]
    Graphene Pristine graphene Methanol Methanol 0.09 wt.% 479 S S [158]
    PGSs Pristine graphene sheets Graphite powder - 0 741 S 0.05 A g−1 [80]
    N-GSs N-doped graphene sheets S Melamine 7.04 1136 S S [80]
    N-RGO N-doped reduced graphene oxide Natural flake graphite Melamine 2.0 wt.% 650 1 mol L−1 LiPF6
    EC/DMC (1/1 Wt.)
    0.1 C [159]
    GP Graphite powder Graphite powder - - 251 S 0.1 A g−1 [160]
    GS Graphene sheets Graphite powder +methyl methacrylate binder - - 291 S S [160]
    NGS-5 N-doped graphene sheets S Melamine 1.96 370 S S [160]
    NGS-9 S S S 4.63 420 S S [160]
    Note: S-Same with the above cell; -No data was found or existed; V-Volume EC-ethylene carbonate; DMC-dimethylcarbonate EMC-ethyl methyl carbonate; DEC-diethyl carbonate; PC-propylene carbonate; Wt-weight
    下载: 导出CSV

    Table  2.   Precursors, constituting elements, electrolyte and lithium storage capacity of N-doped CNTs and fibers

    SampleMaterialC sourceN sourceN (at.%)Capacity
    (mAh g−1)
    ElectrolyteCDC rateRef
    CNTCNTS-0121Commercial LB3030.2 C[180]
    N-CNTN-doped CNTCNTAcetonitrile6.00 wt.%516SS[180]
    N-Gr/CNTN-doped Graphene/
    Carbon nanotube
    GO+CNTUric acid11.2111501 mol L−1 LiPF6 EC/DEC (1/1 V)100 mA g−1[181]
    N-SCNTsN-doped carbon nanotubesFormaldehyde3-aminophenol,
    L-C16PheCOOH template
    9.503781 mol L−1 LiPF6 in a
    1∶1 (w/w) EC/DEC
    S[182]
    N-HCNTs-1SS3-aminophenol,
    L-C16PhgCOOH template
    9.60466SS[182]
    N-HCNTs-2SSS2.00114SS[182]
    CNFWsN-doped Porous carbon
    nanofiber webs
    Polypyrrole nanofiber websPolypyrrole nanofiber webs10.25 wt.%13211 mol L−1 LiPF6 EC/DMC (1/1 V)100 mA g−1[183]
    NCNFNsN-doped carbon fiberCarbon fiberPolyacrylonitrile1.70224commercial LBC3008A50 mA g−1[184]
    NCNFNs-rGO-5N-doped carbon fiber-
    reduced graphene oxide
    Carbon fiber + GOS2.60243SS[184]
    NCNFNs-rGO-10SCarbon fiber + GOS2.90271SS[184]
    N-CNFsCoral-like N-doped
    carbon nanofibers
    AcetyleneImidazole2.838501 mol L−1 LiPF6 EC/DEC (1/1 V)200 mA g−1[185]
    CNFsCoral-like N-doped
    carbon nanofibers
    S-0750SS[185]
    Note: V-Volume, wt-weight percentage.
    下载: 导出CSV

    Table  3.   Precursors, constituting elements, electrolyte, and lithium storage capacity of N-doped porous carbons

    SampleMaterialC sourceN sourceN (at.%)Capacity
    mAh g−1
    ElectrolyteCDC rateRef.
    NPC-1N-doped porous carbonsFoam polystyreneUrea5.747501 mol L−1 LiPF6 EC/
    DMC/EMC (1/1/1 V)
    0.1 A g−1[223]
    NPC-3SSS5.77450SS[223]
    NPC-5SSS7.751101SS[223]
    PC-600N-doped aqueous alkyd
    resin-based carbons
    Soybean oil-based aqueous
    alkyd resin emulsion
    Ammonia1.382850.2 A g−1[224]
    PC-800SSS1.77527S[224]
    N-MCHSs-800N-doped mesoporous carbon
    hollow spheres
    DopamineDopamine4.484861 mol L−1 LiPF6 EC/DEC (1/1 V)0.5 A g−1[225]
    3D NPGS3D N-doped graphene-like
    microspheres
    Polyethylene glycolUrea1.99 wt. %8401 mol L−1 LiPF6 EC/DMC (1/1 V)0.1 A g−1[226]
    BNCMBiogenic N-doped carbon
    microspheres
    Resorcinol, formaldehydeAmmonia8.00%6021 mol L−1 LiPF6 EC/DMC (1/1 V)0.05 A g−1[227]
    N-PCFN-doped carbon dotsCitric acidUrea19.0014371 mol L−1 LiPF6 EC/DMC (1/1 V)0.1 A g−1[228]
    NPC-1N-doped porous carbonTP- pphenylenediamine
    covalent-organic
    Frameworks
    (TPPA-COFs)
    TP- pphenylenediamine
    covalent-organic
    Frameworks
    (TPPA-COFs)
    11.504201 mol L−1 LiPF6 EC/PC (1/1 weight)0.1 A g−1[229]
    NPC-2SSS9.75500SS[229]
    NPC-3SSS8.38480SS[229]
    NPGFMonolithic 3D N-doped
    graphene nanoarchitecture
    PolyimidePolyimide2.6 wt. %6401 mol L−1 LiPF6 EC/DEC (1/1 V)0.5 A g−1[230]
    NFCs-550N-doped 3D flower-like
    carbon
    PolyimidePolyimide15.124001 mol L−1 LiPF6 EC/DMC (1/1 V)0.1 A g−1[231]
    NPC(20Zn-80Co)-600 °CZnCo-ZIF-based N-doped
    porous carbon
    ZIF-8 polyhedraZIF-8 polyhedra9.496001 mol L−1 LiPF6 EC/DEC (1/1 V)1 A g−1[232]
    Zn-Co/NPC-500Zn-Co N-doped porous carbon
    (Zn-Co/NPC)
    Zn-Co-ZIFZn-Co-ZIF-4031 mol L−1 LiPF6 EC/DEC/DMC (1/1/1 V)0.1 A g−1[233]
    Zn-Co/NPC-600SSS-849SS[233]
    Zn-Co/NPC-700SSS-598SS[233]
    PNC@GPorous N-doped
    carbon@ graphene
    ZIF-8, GrapheneZIF-814.806501 mol L−1 LiPF6 EC/DEC (1/1 V)0.1 A g−1[234]
    MPNC@G-1(ZIF)-derived N-doped
    carbon- anchored graphene
    ZIF-8, GrapheneZIF-8, melamine11.90730SS[234]
    MPNC@G-2SSS12.20500SS[234]
    N-C-700N-doped graphene particleZIF-8ZIF-824.45 wt.%1030S0.1 A g−1[142]
    N-C-800SSS17.72 wt.%2132SS[142]
    N-C-900SSS10.73 wt.%882SS[142]
    SNCMs-800N-doped porous carbonDuckweedsDuckweeds4.311091S100 mA g−1[194]
    SNCMs-700SSS4.61-SS[194]
    SNCMs-900SSS2.58-SS[194]
    SPC-700Soybean derived porous carbonSoybeansSoybeans1.668641 mol L−1 LiPF6 EC/DMC (1/1 V)0.1 C[235]
    Note: V-Volume, wt-weight percentage.
    下载: 导出CSV

    Table  4.   Classification of the data of the literature based on the lithium storage specific capacity

    Capacity range (mAh g−1)N range (at.%)Average percentage of N (at.%)Number of dataStandard deviation (at.%)Standard error (at.%)
    Without N-doping00500
    0-5001.96-11.776.2063.461.41
    500-10000.02-14.208.95143.610.96
    1000-15009.37-22.8014.4635.943.43
    Above 15009.63-16.9813.3023.681.94
    下载: 导出CSV

    Table  5.   Classification of the data of the literature based on the N atomic percentage

    N quantity (at. %)Capacity range (mAh g−1)Average Capacity (mAh g−1)Number of dataStandard deviation (mAh g−1)Standard erorr (mAh g−1)
    0161-459305.65101.2420.25
    0-5370-717497.84132.8866.44
    5-10316-1580790.711397.17119.75
    10-15472-1150709.18212.7375.21
    Above 151030-21631596.52566.50400.58
    下载: 导出CSV

    Table  6.   The ratio of N types in the structure of the investigated N-doped carbon LIB anodes

    SampleN (at.%)Pyridinic N (at.%)Pyrrolic N (at.%)Graphitic N (at.%)Capacity (mAh g−1)Ref.
    NGS112.683.272.956.45780[132]
    NGHS9.371.462.172.761400[140]
    NHGHS9.632.032.402.461580[140]
    N-PC11.674.543.423.71580[252]
    N-PGNS9.484.022.293.17741.8[252]
    GP0000161[141]
    N-GP6.811.743.721.35315.6[141]
    C-50011.773.434.812.14472[253]
    C-6009.802.334.282.50539[253]
    C-7009.162.093.292.44369[253]
    N-C-70022.8011.495.106.211030[142]
    N-C-80016.987.343.616.032163[142]
    N-C-90010.103.542.094.47882[142]
    PNC@G14.206.663.494.06570[234]
    MPNC@G-111.905.182.144.58730[234]
    MPNC@G-212.204.531.386.28509[234]
    N-Gr/CNT11.215.151.613.481150[181]
    N-CNS-6007.152.711.642.14953[254]
    N-CNS-7006.302.341.272.07858[254]
    N-CNS-8005.471.671.172.00760[254]
    N-GNS0.020.010.0070.002717[150]
    GNS0000366[150]
    OMC0000458.9[255]
    N-OMC12.840.530.900.94484[255]
    N-OMC25.821.691.761.23645.7[255]
    N-OMC38.573.082.632.22535.5[255]
    GP0000251[160]
    GS0000291[160]
    NGS-51.960.431.00.53370[160]
    NGS-94.630.692.591.34420[160]
    下载: 导出CSV
  • [1] Arbabzadeh M, Johnson J X, Keoleian G A, et al. Twelve principles for green energy storage in grid applications[J]. Environmental science & technology,2016,50(2):1046-1055.
    [2] Manthiram A. An outlook on lithium ion battery technology[J]. ACS central science,2017,3(10):1063-1069. doi: 10.1021/acscentsci.7b00288
    [3] Shaker M, Ghazvini A A S, Yaghmaee M S, et al. Prediction of size- and shape-dependent lithium storage capacity of carbon nano-spheres (quantum dots)[J]. Journal of Nanoparticle Research,2021,23(8):176. doi: 10.1007/s11051-021-05306-1
    [4] Song Z, Wang X, Lv C, et al. Kirigami-based stretchable lithium-ion batteries[J]. Scientific reports,2015,5(1):1-9. doi: 10.9734/JSRR/2015/14076
    [5] Jha M K, Kumari A, Jha A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste management,2013,33(9):1890-1897. doi: 10.1016/j.wasman.2013.05.008
    [6] Scrosati B, Hassoun J, Sun Y-K. Lithium-ion batteries. A look into the future[J]. Energy & Environmental Science,2011,4(9):3287-3295.
    [7] Ghorbanzadeh M, Allahyari E, Riahifar R, et al. Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0. 2Ni0. 13Co0. 13Mn054]O2 for Li-ion battery[J]. Journal of Solid State Electrochemistry,2018,22(4):1155-1163. doi: 10.1007/s10008-017-3824-8
    [8] Allahyari E, Ghorbanzadeh M, Riahifar R, et al. Electrochemical performance of NCM/LFP/Al composite cathode materials for lithium-ion batteries[J]. Materials Research Express,2018,5(5):055503. doi: 10.1088/2053-1591/aac0c7
    [9] Marincaş A H, Goga F, Dorneanu S A, et al. Review on synthesis methods to obtain LiMn2O4-based cathode materials for Li-ion batteries[J]. Journal of Solid State Electrochemistry,2020,24(3):473-497. doi: 10.1007/s10008-019-04467-3
    [10] Pang P, Wang Z, Tan X, et al. LiCoO2@ LiNi0. 45Al0. 05Mn05O2 as high-voltage lithium-ion battery cathode materials with improved cycling performance and thermal stability[J]. Electrochimica Acta,2019,327:135018. doi: 10.1016/j.electacta.2019.135018
    [11] Moradi B, Botte G G. Recycling of graphite anodes for the next generation of lithium ion batteries[J]. Journal of Applied Electrochemistry,2016,46(2):123-148. doi: 10.1007/s10800-015-0914-0
    [12] Shaker M, Ghazvini A A S, Qureshi F R, et al. A criterion combined of bulk and surface lithium storage to predict the capacity of porous carbon lithium-ion battery anodes: lithium-ion battery anode capacity prediction[J]. Carbon Letters,2021,31(5):985-990. doi: 10.1007/s42823-020-00210-5
    [13] Zhang H, Yang Y, Ren D, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials,2021,36:147-170. doi: 10.1016/j.ensm.2020.12.027
    [14] Gong X, Zheng Y, Zheng J, et al. Surface-functionalized graphite as long cycle life anode materials for lithium-ion batteries[J]. ChemElectroChem,2020,7(6):1465-1472. doi: 10.1002/celc.201902098
    [15] Park T-H, Yeo J-S, Seo M-H, et al. Enhancing the rate performance of graphite anodes through addition of natural graphite/carbon nanofibers in lithium-ion batteries[J]. Electrochimica Acta,2013,93:236-240. doi: 10.1016/j.electacta.2012.12.124
    [16] Cheng Q, Yuge R, Nakahara K, et al. KOH etched graphite for fast chargeable lithium-ion batteries[J]. Journal of Power Sources,2015,284:258-263. doi: 10.1016/j.jpowsour.2015.03.036
    [17] Lu W, López C M, Liu N, et al. Overcharge effect on morphology and structure of carbon electrodes for lithium-ion batteries[J]. Journal of The Electrochemical Society,2012,159(5):A566. doi: 10.1149/2.jes035205
    [18] Nitta N, Yushin G. High‐capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles[J]. Particle & Particle Systems Characterization,2014,31(3):317-336.
    [19] Wang H, Tan H, Luo X, et al. The progress on aluminum-based anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A,2020,8(48):25649-25662. doi: 10.1039/D0TA09762D
    [20] Hu R, Liu H, Zeng M, et al. Progress on Sn-based thin-film anode materials for lithium-ion batteries[J]. Chinese Science Bulletin,2012,57(32):4119-4130. doi: 10.1007/s11434-012-5303-z
    [21] Yang W, Zhang X, Tan H, et al. Gallium-based anodes for alkali metal ion batteries[J]. Journal of Energy Chemistry,2021,55:557-571. doi: 10.1016/j.jechem.2020.07.035
    [22] Hu L, Lin X M, Mo J T, et al. Lead-Based Metal-Organic Framework with Stable Lithium Anodic Performance[J]. Inorganic Chemistry,2017,56(8):4289-4295. doi: 10.1021/acs.inorgchem.6b02663
    [23] Jung H, Allan P K, Hu Y Y, et al. Elucidation of the local and long-range structural changes that occur in germanium anodes in lithium-ion batteries[J]. Chemistry of materials,2015,27(3):1031-1041. doi: 10.1021/cm504312x
    [24] He J, Wei Y, Zhai T, et al. Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries[J]. Materials Chemistry Frontiers,2018,2(3):437-455. doi: 10.1039/C7QM00480J
    [25] Yin S Y, Song L, Wang X Y, et al. Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction[J]. Electrochimica Acta,2009,54(24):5629-5633. doi: 10.1016/j.electacta.2009.04.067
    [26] Huang B, Li X, Pei Y, et al. Novel carbon‐encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability[J]. Small,2016,12(14):1945-1955. doi: 10.1002/smll.201503419
    [27] Zhang L, Wu H B, Lou X W. Iron-oxide-based advanced anode materials for lithium‐ion batteries[J]. Advanced Energy Materials,2014,4(4):1300958. doi: 10.1002/aenm.201300958
    [28] Khalil A, Lalia B S, Hashaikeh R. Nickel oxide nanocrystals as a lithium-ion battery anode: structure-performance relationship[J]. Journal of Materials Science,2016,51(14):6624-6638. doi: 10.1007/s10853-016-9946-z
    [29] Chen C, Xie X, Anasori B, et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium‐ion batteries[J]. Angewandte Chemie International Edition,2018,57(7):1846-1850. doi: 10.1002/anie.201710616
    [30] Zhou L, Yan S, Pan L, et al. A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries[J]. Nano Research,2016,9(3):857-865. doi: 10.1007/s12274-015-0966-9
    [31] Jang J-t, Jeong S, Seo J-w, et al. Ultrathin zirconium disulfide nanodiscs[J]. Journal of the American Chemical Society,2011,133(20):7636-7639. doi: 10.1021/ja200400n
    [32] Winter M, Besenhard J O, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials,1998,10(10):725-763. doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
    [33] Ogata K, Salager E, Kerr C J, et al. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy[J]. Nature communications,2014,5(1):3217. doi: 10.1038/ncomms4217
    [34] Doose S, Mayer J K, Michalowski P, et al. Challenges in ecofriendly battery recycling and closed material cycles: A perspective on future lithium battery generations[J]. Metals,2021,11(2):291. doi: 10.3390/met11020291
    [35] Helbig C, Bradshaw A M, Wietschel L, et al. Supply risks associated with lithium-ion battery materials[J]. Journal of Cleaner Production,2018,172:274-286. doi: 10.1016/j.jclepro.2017.10.122
    [36] Xie L, Tang C, Bi Z, et al. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective[J]. Advanced Energy Materials,2021,11(38):2101650. doi: 10.1002/aenm.202101650
    [37] Li Y, Li C, Qi H, et al. Mesoporous activated carbon from corn stalk core for lithium ion batteries[J]. Chemical Physics,2018,506:10-16. doi: 10.1016/j.chemphys.2018.03.027
    [38] Wang C, Li D, Too C O, et al. Electrochemical properties of graphene paper electrodes used in lithium batteries[J]. Chemistry of materials,2009,21(13):2604-2606. doi: 10.1021/cm900764n
    [39] Zhang Q, d’Astorg S, Xiao P, et al. Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries[J]. Journal of Power Sources,2010,195(9):2914-2917. doi: 10.1016/j.jpowsour.2009.10.096
    [40] Luo Y, Wang K, Li Q, et al. Macroscopic carbon nanotube structures for lithium batteries[J]. Small,2020,16(15):1902719. doi: 10.1002/smll.201902719
    [41] Shaker M, Yaghmaee M S, Shahalizade T, et al. Prediction of the lithium storage capacity of hollow carbon nano-spheres based on their size and morphology[J]. Journal of Materials Science: Materials in Electronics, 2022.
    [42] Yu H-Y, Liang H-J, Gu Z-Y, et al. Waste-to-wealth: Low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries[J]. Electrochimica Acta,2020,361:137041. doi: 10.1016/j.electacta.2020.137041
    [43] Yang J, Zhou X-y, Li J, et al. Study of nano-porous hard carbons as anode materials for lithium ion batteries[J]. Materials Chemistry and Physics,2012,135(2):445-450.
    [44] Sun H, Del Rio Castillo A E, Monaco S, et al. Binder-free graphene as an advanced anode for lithium batteries[J]. Journal of Materials Chemistry A,2016,4(18):6886-6895. doi: 10.1039/C5TA08553E
    [45] Ren W, Li D, Liu H, et al. Lithium storage performance of carbon nanotubes with different nitrogen contents as anodes in lithium ions batteries[J]. Electrochimica Acta,2013,105:75-82. doi: 10.1016/j.electacta.2013.04.145
    [46] Yuan Y, Chen Z, Yu H, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials,2020,32:65-90. doi: 10.1016/j.ensm.2020.07.027
    [47] Wang J, Han W Q. A review of heteroatom doped materials for advanced lithium–sulfur batteries[J]. Advanced Functional Materials,2022,32(2):2107166. doi: 10.1002/adfm.202107166
    [48] Zhang H, Guang H, Li R, et al. Doping engineering: Modulating the intrinsic activity of bifunctional carbon-based oxygen electrocatalysts for high-performance zinc-air batteries[J]. Journal of Materials Chemistry A, 2022.
    [49] Jin-ming X, Rong Z, Yu-xuan D, et al. Advances of sulfur-doped carbon materials as anode for sodium-ion batteries, New Carbon Materials, 2023, 38(1): 1-13.
    [50] Lei H, Li J, Zhang X, et al. A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries[J]. InfoMat,2022,4(2):e12272.
    [51] Yu S, Guo B, Zeng T, et al. Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective[J]. Composites Part B: Engineering, 2022, 110232.
    [52] Feng X, Bai Y, Liu M, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials[J]. Energy & Environmental Science,2021,14(4):2036-2089.
    [53] Ren X, Liu Z, Zhang M, et al. Review of cathode in advanced Li-S batteries: The Effect of Doping Atoms at Micro Levels[J]. ChemElectroChem,2021,8(18):3457-3471. doi: 10.1002/celc.202100462
    [54] Jiang Q, Ren Y, Yang Y, et al. Recent advances in carbon-based electrocatalysts for vanadium redox flow battery: Mechanisms, properties, and perspectives[J]. Composites Part B: Engineering, 2022, 110094.
    [55] Usiskin R, Lu Y, Popovic J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials,2021,6(11):1020-1035. doi: 10.1038/s41578-021-00324-w
    [56] Gürsu H, Güner Y, Dermenci K B, et al. A novel green and one-step electrochemical method for production of sulfur-doped graphene powders and their performance as an anode in Li-ion battery[J]. Ionics,2020,26(10):4909-4919. doi: 10.1007/s11581-020-03671-w
    [57] Li X, Geng D, Zhang Y, et al. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries[J]. Electrochemistry Communications,2011,13(8):822-825. doi: 10.1016/j.elecom.2011.05.012
    [58] Zhang M, Yu J, Ying T, et al. P doped onion-like carbon layers coated FeP nanoparticles for anode materials in lithium ion batteries[J]. Journal of Alloys and Compounds,2019,777:860-865. doi: 10.1016/j.jallcom.2018.11.060
    [59] Sahoo M, Sreena K, Vinayan B, et al. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery[J]. Materials Research Bulletin,2015,61:383-390. doi: 10.1016/j.materresbull.2014.10.049
    [60] Chen J, Wu C, Tang C, et al. Iodine-doped graphene with opportune interlayer spacing as superior anode materials for high-performance lithium-Ion batteries[J]. ChemistrySelect,2017,2(20):5518-5523. doi: 10.1002/slct.201701140
    [61] Li Y, Xia T, Yu T, et al. Nitrogen/chlorine-doped carbon nanodisk-encapsulated hematite nanoparticles for high-performance lithium-ion storage[J]. Journal of Alloys and Compounds,2020,843:156045. doi: 10.1016/j.jallcom.2020.156045
    [62] Geng Z, Li B, Liu H, et al. Oxygen-doped carbon host with enhanced bonding and electron attraction abilities for efficient and stable SnO2/carbon composite battery anode[J]. Science China Materials,2018,61(8):1067-1077. doi: 10.1007/s40843-017-9218-6
    [63] Guo L, He H, Ren Y, et al. Core-shell SiO@ F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries[J]. Chemical Engineering Journal,2018,335:32-40. doi: 10.1016/j.cej.2017.10.145
    [64] Xiong J, Pan Q, Zheng F, et al. N/S Co-doped carbon derived from cotton as high performance anode materials for lithium ion batteries[J]. Frontiers in Chemistry, 2018, 6.
    [65] Wu J, Pan Z, Zhang Y, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries[J]. Journal of Materials Chemistry A,2018,6(27):12932-12944. doi: 10.1039/C8TA03968B
    [66] Jeon I-Y, Noh H-J, Baek J-B. Nitrogen-doped carbon nanomaterials: Synthesis, characteristics and applications[J]. Chemistry-An Asian Journal,2020,15(15):2282-2293. doi: 10.1002/asia.201901318
    [67] Wei D, Liu Y, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano letters,2009,9(5):1752-1758. doi: 10.1021/nl803279t
    [68] Bulusheva L G, Fedorovskaya E O, Kurenya A G, et al. Supercapacitor performance of nitrogen-doped carbon nanotube arrays[J]. physica status solidi (b),2013,250(12):2586-2591. doi: 10.1002/pssb.201300108
    [69] Shaker M, Riahifar R, Li Y. A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors’ performance: Synthesis and application[J]. FlatChem,2020,22:100171. doi: 10.1016/j.flatc.2020.100171
    [70] Kundu M K, Bhowmik T, Mishra R, et al. Platinum nanostructure/nitrogen-doped carbon hybrid: Enhancing its base media HER/HOR activity through Bi-functionality of the catalyst[J]. ChemSusChem,2018,11(14):2388-2401. doi: 10.1002/cssc.201800856
    [71] Andrade A M, Liu Z, Grewal S, et al. MOF-derived Co/Cu-embedded N-doped carbon for trifunctional ORR/OER/HER catalysis in alkaline media[J]. Dalton Transactions,2021,50(16):5473-5482. doi: 10.1039/D0DT04000B
    [72] Antolini E. Nitrogen-doped carbons by sustainable N-and C-containing natural resources as nonprecious catalysts and catalyst supports for low temperature fuel cells[J]. Renewable and Sustainable Energy Reviews,2016,58:34-51. doi: 10.1016/j.rser.2015.12.330
    [73] Zhang H, Liu X, Wang R, et al. Coating of α-MoO3 on nitrogen-doped carbon nanotubes by electrodeposition as a high-performance cathode material for lithium-ion batteries[J]. Journal of Power Sources,2015,274:1063-1069. doi: 10.1016/j.jpowsour.2014.10.136
    [74] Li Y, Wang J, Li X, et al. Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries[J]. Electrochemistry Communications,2011,13(7):668-672. doi: 10.1016/j.elecom.2011.04.004
    [75] Song J, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen‐doped carbon composites for high‐performance lithium–sulfur battery cathodes[J]. Angewandte Chemie,2015,127(14):4399-4403. doi: 10.1002/ange.201411109
    [76] Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science,2013,6(10):2839-2855.
    [77] Qian C, Guo P, Zhang X, et al. Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batteries[J]. Rsc Advances,2016,6(96):93519-93524. doi: 10.1039/C6RA21011B
    [78] Sun Y, Huang F, Li S, et al. Novel porous starfish-like Co3O4@nitrogen-doped carbon as an advanced anode for lithium-ion batteries[J]. Nano Research,2017,10(10):3457-3467. doi: 10.1007/s12274-017-1557-8
    [79] Gomez-Martin A, Martinez-Fernandez J, Ruttert M, et al. An electrochemical evaluation of nitrogen-doped carbons as anodes for lithium ion batteries[J]. Carbon,2020,164:261-271. doi: 10.1016/j.carbon.2020.04.003
    [80] Cai D, Wang S, Lian P, et al. Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries[J]. Electrochimica Acta,2013,90:492-497. doi: 10.1016/j.electacta.2012.11.105
    [81] Li X, Liu J, Zhang Y, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application[J]. Journal of Power Sources,2012,197:238-245. doi: 10.1016/j.jpowsour.2011.09.024
    [82] Yan L, Yu J, Houston J, et al. Biomass derived porous nitrogen doped carbon for electrochemical devices[J]. Green Energy & Environment,2017,2(2):84-99.
    [83] Inagaki M, Toyoda M, Soneda Y, et al. Nitrogen-doped carbon materials[J]. Carbon,2018,132:104-140. doi: 10.1016/j.carbon.2018.02.024
    [84] Zhao L, Ding B, Qin X Y, et al. Revisiting the roles of natural graphite in ongoing lithium-ion batteries[J]. Advanced Materials,2022,34(18):2106704. doi: 10.1002/adma.202106704
    [85] Novák P, Joho F, Lanz M, et al. The complex electrochemistry of graphite electrodes in lithium-ion batteries[J]. Journal of Power Sources,2001,97-98:39-46. doi: 10.1016/S0378-7753(01)00586-9
    [86] Kaskhedikar N A, Maier J. Lithium storage in carbon nanostructures[J]. Advanced Materials,2009,21(25-26):2664-2680. doi: 10.1002/adma.200901079
    [87] Sankar S, Saravanan S, Ahmed A T A, et al. Spherical activated-carbon nanoparticles derived from biomass green tea wastes for anode material of lithium-ion battery[J]. Materials Letters,2019,240:189-192. doi: 10.1016/j.matlet.2018.12.143
    [88] Li Y, Du Y-F, Sun G-H, et al. Self-standing hard carbon anode derived from hyper-linked nanocellulose with high cycling stability for lithium-ion batteries[J]. EcoMat,2021,3(2):e12091.
    [89] Buiel E, Dahn J R. Li-insertion in hard carbon anode materials for Li-ion batteries[J]. Electrochimica Acta,1999,45(1):121-130.
    [90] Shaker M, Sadeghi Ghazvini A A, Riahifar R, et al. On the relationship between the porosity and initial coulombic efficiency of porous carbon materials for the anode in lithium-ion batteries[J]. Electronic Materials Letters,2022,18(4):400-406. doi: 10.1007/s13391-022-00354-8
    [91] Chen T, Pan L, Loh T, et al. Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries[J]. Dalton Transactions,2014,43(40):14931-14935. doi: 10.1039/C4DT01223B
    [92] Niu F, Yang J, Wang N, et al. MoSe2-covered N, P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries[J]. Advanced Functional Materials,2017,27(23):1700522. doi: 10.1002/adfm.201700522
    [93] Huang S, Li Z, Wang B, et al. N‐Doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Advanced Functional Materials,2018,28(10):1706294. doi: 10.1002/adfm.201706294
    [94] Saroja A P V K, Garapati M S, Shyiamala Devi R, et al. Facile synthesis of heteroatom doped and undoped graphene quantum dots as active materials for reversible lithium and sodium ions storage[J]. Applied Surface Science,2020,504:144430. doi: 10.1016/j.apsusc.2019.144430
    [95] Hong W, Ge P, Jiang Y, et al. Yolk-shell-structured bismuth@N-doped carbon anode for lithium-ion battery with high volumetric capacity[J]. ACS Applied Materials & Interfaces,2019,11(11):10829-10840.
    [96] He H, Xu X, Liu D, et al. The impacts of nitrogen doping on the electrochemical hydrogen storage in a carbon[J]. International Journal of Energy Research,2021,45(6):9326-9339. doi: 10.1002/er.6463
    [97] Zhu R, Wang Z, Hu X, et al. Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high Performance, and flexible anode for lithium-ion batteries[J]. Advanced Functional Materials,2021,31(33):2101487. doi: 10.1002/adfm.202101487
    [98] Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study[J]. Journal of Materials Chemistry,2012,22(18):8911-8915. doi: 10.1039/c2jm00166g
    [99] Bie C, Yu H, Cheng B, et al. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst[J]. Advanced Materials,2021,33(9):2003521. doi: 10.1002/adma.202003521
    [100] Chan L, Hong K, Xiao D, et al. Resolution of the binding configuration in nitrogen-doped carbon nanotubes[J]. Physical Review B,2004,70(12):125408. doi: 10.1103/PhysRevB.70.125408
    [101] Shen W, Wang C, Xu Q, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate na-storage in electrode materials[J]. Advanced Energy Materials,2015,5(1):1400982. doi: 10.1002/aenm.201400982
    [102] Schiros T, Nordlund D, Pálová L, et al. Connecting dopant bond type with electronic structure in N-doped graphene[J]. Nano letters,2012,12(8):4025-4031. doi: 10.1021/nl301409h
    [103] Lherbier A, Blase X, Niquet Y M, et al. Charge transport in chemically doped 2D graphene[J]. Physical review letters,2008,101(3):036808. doi: 10.1103/PhysRevLett.101.036808
    [104] Cui L, Chen X, Liu B, et al. Highly Conductive nitrogen-doped graphene grown on glass toward electrochromic applications[J]. ACS Applied Materials & Interfaces,2018,10(38):32622-32630.
    [105] Ge J, Fan L, Wang J, et al. MoSe2/N-doped carbon as anodes for potassium-ion batteries[J]. Advanced Energy Materials,2018,8(29):1801477. doi: 10.1002/aenm.201801477
    [106] Wang X, Weng Q, Liu X, et al. Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage[J]. Nano letters,2014,14(3):1164-1171. doi: 10.1021/nl4038592
    [107] Kaur M, Kaur M, Sharma V K. Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment[J]. Advances in colloid and interface science,2018,259:44-64. doi: 10.1016/j.cis.2018.07.001
    [108] Usachov D Y, Fedorov A, Vilkov O Y, et al. Synthesis and electronic structure of nitrogen-doped graphene[J]. Physics of the Solid State,2013,55(6):1325-1332. doi: 10.1134/S1063783413060310
    [109] Andrei E Y, Li G, Du X. Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport[J]. Reports on Progress in Physics,2012,75(5):056501. doi: 10.1088/0034-4885/75/5/056501
    [110] Brox J, Adhikari R, Shaker M, et al. On the adsorption of different tetranaphthylporphyrins on Cu(111) and Ag(111)[J]. Surface Science,2022,720:122047. doi: 10.1016/j.susc.2022.122047
    [111] Marchini S, Günther S, Wintterlin J. Scanning tunneling microscopy of graphene on Ru(0001)[J]. Physical Review B,2007,76(7):075429. doi: 10.1103/PhysRevB.76.075429
    [112] Ćavar E, Westerström R, Mikkelsen A, et al. A single h-BN layer on Pt(111)[J]. Surface Science,2008,602(9):1722-1726. doi: 10.1016/j.susc.2008.03.008
    [113] Fiori S, Perilli D, Panighel M, et al. “Inside out” growth method for high-quality nitrogen-doped graphene[J]. Carbon,2021,171:704-710. doi: 10.1016/j.carbon.2020.09.056
    [114] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [115] Novoselov K S, Colombo L, Gellert P, et al. A roadmap for graphene[J]. nature,2012,490(7419):192-200. doi: 10.1038/nature11458
    [116] Asl V Z, Chini S F, Zhao J, et al. Corrosion properties and surface free energy of the Zn-Al LDH/rGO coating on MAO pretreated AZ31 magnesium alloy[J]. Surface and Coatings Technology, 2021, 127764.
    [117] Shaker M, Salahinejad E, Cao W, et al. The effect of graphene orientation on permeability and corrosion initiation under composite coatings[J]. Construction and Building Materials,2022,319:126080. doi: 10.1016/j.conbuildmat.2021.126080
    [118] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano letters,2008,8(3):902-907. doi: 10.1021/nl0731872
    [119] Fang X-Y, Yu X-X, Zheng H-M, et al. Temperature- and thickness-dependent electrical conductivity of few-layer graphene and graphene nanosheets[J]. Physics Letters A,2015,379(37):2245-2251. doi: 10.1016/j.physleta.2015.06.063
    [120] Cao W, Shaker M, Meng X, et al. Large-scale fabrication of graphene/polyamide-6 composite as a high thermal conductivity engineering composite for thermal radiators[J]. Materials Letters,2022,316:132036. doi: 10.1016/j.matlet.2022.132036
    [121] Huang H, Shi H, Das P, et al. The chemistry and promising applications of graphene and porous graphene materials[J]. Advanced Functional Materials,2020,30(41):1909035. doi: 10.1002/adfm.201909035
    [122] Leng X, Chen S, Yang K, et al. Introduction to two-dimensional materials[J]. Surface Review and Letters,2021(28):2140005.
    [123] Leng X, Chen S, Yang K, et al. Technology and applications of graphene oxide membranes[J]. Surface Review and Letters,2021(28):2140004.
    [124] Luo B, Zhi L. Design and construction of three dimensional graphene-based composites for lithium ion battery applications[J]. Energy & Environmental Science,2015,8(2):456-477.
    [125] Lian P, Zhu X, Liang S, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries[J]. Electrochimica Acta,2010,55(12):3909-3914. doi: 10.1016/j.electacta.2010.02.025
    [126] Shaker M, Sadeghi Ghazvini A A, Feng S, et al. Improving the electrochemical performance of pouch cell electric double-layer capacitors by integrating graphene nanoplates into activated carbon[J]. Energy Technology,2022,10(2):2100735. doi: 10.1002/ente.202100735
    [127] Sadeghi Ghazvini A A, Taheri-Nassaj E, Raissi B, et al. Co-electrophoretic deposition of Co3O4 and graphene nanoplates for supercapacitor electrode[J]. Materials Letters,2021,285:129195. doi: 10.1016/j.matlet.2020.129195
    [128] Pan D, Wang S, Zhao B, et al. Li storage properties of disordered graphene nanosheets[J]. Chemistry of materials,2009,21(14):3136-3142. doi: 10.1021/cm900395k
    [129] Kim H, Park K Y, Hong J, et al. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries[J]. Scientific reports,2014,4(1):5278. doi: 10.1038/srep05278
    [130] Xie G, Zhang K, Guo B, et al. Graphene-based materials for hydrogen generation from light-driven water splitting[J]. Advanced Materials,2013,25(28):3820-3839. doi: 10.1002/adma.201301207
    [131] Guo B, Liu Q, Chen E, et al. Controllable N-doping of graphene[J]. Nano letters,2010,10(12):4975-4980. doi: 10.1021/nl103079j
    [132] Liu H, Deng Y, Mao J, et al. Characteristics and electrochemical performances of nitrogen-doped graphene prepared using different carbon and nitrogen sources as anode for lithium ion batteries[J]. International Journal of Electrochemical Science, 2021, 16(4).
    [133] Fu C, Song C, Liu L, et al. Synthesis and properties of nitrogen-doped graphene as anode materials for lithium-ion batteries[J]. International Journal of Electrochemical Science,2016,11:3876-3886.
    [134] Sui Z Y, Wang C, Yang Q S, et al. A highly nitrogen-doped porous graphene–an anode material for lithium ion batteries[J]. Journal of Materials Chemistry A,2015,3(35):18229-18237. doi: 10.1039/C5TA05759K
    [135] Wang R, Zhao Q, Zheng W, et al. Achieving high energy density in a 4. 5 V all nitrogen-doped graphene based lithium-ion capacitor[J]. Journal of Materials Chemistry A,2019,7(34):19909-19921. doi: 10.1039/C9TA06316A
    [136] Tian L L, Wei X Y, Zhuang Q C, et al. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage[J]. Nanoscale,2014,6(11):6075-6083. doi: 10.1039/C4NR00454J
    [137] Tian L L, Li S B, Zhang M J, et al. Cascading boost effect on the capacity of nitrogen-doped graphene sheets for Li-and Na-ion batteries[J]. ACS Applied Materials & Interfaces,2016,8(40):26722-26729.
    [138] Wu Z S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS nano,2011,5(7):5463-5471. doi: 10.1021/nn2006249
    [139] Yang Y, Shi W, Zhang R, et al. Electrochemical exfoliation of graphite into nitrogen-doped graphene in glycine solution and its energy storage properties[J]. Electrochimica Acta,2016,204:100-107. doi: 10.1016/j.electacta.2016.04.063
    [140] Jiang Z-J, Jiang Z. Fabrication of nitrogen-doped holey graphene hollow microspheres and their use as an active electrode material for lithium ion batteries[J]. ACS Applied Materials & Interfaces,2014,6(21):19082-19091.
    [141] Wen H, Guo B, Kang W, et al. Free-standing nitrogen-doped graphene paper for lithium storage application[J]. Rsc Advances,2018,8(25):14032-14039. doi: 10.1039/C8RA01019F
    [142] Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nature communications,2014,5(1):1-10.
    [143] Fu C J, Li S, Wang Q. High reversible capacity of Nitrogen-doped graphene as an anode material for lithium-ion batteries[J]. Advanced Materials Research, Trans Tech Publ, 2015, pp. 459-464.
    [144] Aphirakaramwong C, Phattharasupakun N, Suktha P, et al. Lightweight multi-walled carbon nanotube/N-doped graphene aerogel composite for high-performance lithium-ion capacitors[J]. Journal of The Electrochemical Society,2019,166(4):A532. doi: 10.1149/2.0251904jes
    [145] Wan H, Hu X. New strategy to prepare nitrogen self-doped graphene nanosheets by magnesiothermic reduction and its application in lithium ion batteries[J]. International Journal of Hydrogen Energy,2019,44(45):24369-24376. doi: 10.1016/j.ijhydene.2019.07.207
    [146] Liu X, Wu Y, Yang Z, et al. Nitrogen-doped 3D macroporous graphene frameworks as anode for high performance lithium-ion batteries[J]. Journal of Power Sources,2015,293:799-805. doi: 10.1016/j.jpowsour.2015.05.074
    [147] Meng J, Suo Y, Li J, et al. Nitrogen-doped graphene aerogels as anode materials for lithium-ion battery: Assembly and electrochemical properties[J]. Materials Letters,2015,160:392-396. doi: 10.1016/j.matlet.2015.08.024
    [148] Liu C, Liu X, Tan J, et al. Nitrogen-doped graphene by all-solid-state ball-milling graphite with urea as a high-power lithium ion battery anode[J]. Journal of Power Sources,2017,342:157-164. doi: 10.1016/j.jpowsour.2016.11.110
    [149] Jiang Z, Jiang Z-J, Tian X, et al. Nitrogen-doped graphene hollow microspheres as an efficient electrode material for lithium ion batteries[J]. Electrochimica Acta,2014,146:455-463. doi: 10.1016/j.electacta.2014.09.069
    [150] Wang H, Zhang C, Liu Z, et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties[J]. Journal of Materials Chemistry,2011,21(14):5430-5434. doi: 10.1039/c1jm00049g
    [151] Jiang M-H, Cai D, Tan N. Nitrogen-doped graphene sheets prepared from different graphene-based precursors as high capacity anode materials for lithium-ion batteries[J]. Int. J. Electrochem. Sci,2017,12:7154-7165.
    [152] Liu S, Wei W, Wang Y, et al. Novel sponge-like N-doped graphene film as high-efficiency electrode for Li-ion battery[J]. Applied Surface Science,2019,485:529-535. doi: 10.1016/j.apsusc.2019.04.209
    [153] Xing Z, Ju Z, Zhao Y, et al. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries[J]. Scientific reports,2016,6(1):1-10. doi: 10.1038/s41598-016-0001-8
    [154] He C, Wang R, Fu H, et al. Nitrogen-self-doped graphene as a high capacity anode material for lithium-ion batteries[J]. Journal of Materials Chemistry A,2013,1(46):14586-14591. doi: 10.1039/c3ta13388e
    [155] Hu T, Sun X, Sun H, et al. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability[J]. Physical Chemistry Chemical Physics,2014,16(3):1060-1066. doi: 10.1039/C3CP54494J
    [156] Bagley J D, Kumar D K, See K A, et al. Selective formation of pyridinic-type nitrogen-doped graphene and its application in lithium-ion battery anodes[J]. Rsc Advances,2020,10(65):39562-39571. doi: 10.1039/D0RA06199A
    [157] Park H-Y, Singh K P, Yang D-S, et al. Simple approach to advanced binder-free nitrogen-doped graphene electrode for lithium batteries[J]. Rsc Advances,2015,5(5):3881-3887. doi: 10.1039/C4RA15541F
    [158] Quan B, Yu S-H, Chung D Y, et al. Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications[J]. Scientific reports,2014,4(1):1-6.
    [159] Du M, Sun J, Chang J, et al. Synthesis of nitrogen-doped reduced graphene oxide directly from nitrogen-doped graphene oxide as a high-performance lithium ion battery anode[J]. Rsc Advances,2014,4(80):42412-42417. doi: 10.1039/C4RA05544F
    [160] Yen P J, Ilango P R, Chiang Y C, et al. Tunable nitrogen-doped graphene sheets produced with in situ electrochemical cathodic plasma at room temperature for lithium-ion batteries[J]. Materials Today Energy,2019,12:336-347. doi: 10.1016/j.mtener.2019.01.003
    [161] Tian L, Zhuang Q, Li J, et al. Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets[J]. Chinese Science Bulletin,2011,56(30):3204-3212. doi: 10.1007/s11434-011-4609-6
    [162] Li Z, Xu Z, Tan X, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy & Environmental Science,2013,6(3):871-878.
    [163] Hou J, Cao C, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J]. ACS nano,2015,9(3):2556-2564. doi: 10.1021/nn506394r
    [164] Zhang C, Mahmood N, Yin H, et al. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries[J]. Advanced Materials,2013,25(35):4932-4937. doi: 10.1002/adma.201301870
    [165] Tasdemir A, Bulut Kopuklu B, Kirlioglu A C, et al. The influence of nitrogen doping on reduced graphene oxide as highly cyclable Li-ion battery anode with enhanced performance[J]. International Journal of Hydrogen Energy,2021,46(21):11865-11877. doi: 10.1016/j.ijhydene.2021.01.099
    [166] Sheng Z H, Shao L, Chen J J, et al. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis[J]. ACS nano,2011,5(6):4350-4358. doi: 10.1021/nn103584t
    [167] Li Z, Lu C, Xia Z, et al. X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon,2007,45(8):1686-1695. doi: 10.1016/j.carbon.2007.03.038
    [168] Wang X, Fulvio P F, Baker G A, et al. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids[J]. Chemical Communications,2010,46(25):4487-4489. doi: 10.1039/c0cc00799d
    [169] Das A, Pisana S, Chakraborty B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor[J]. Nature nanotechnology,2008,3(4):210-215. doi: 10.1038/nnano.2008.67
    [170] Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354:3.
    [171] Savas Berber, Young-Kyun Kwon, Tománek D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters,2000,84:4613-4616. doi: 10.1103/PhysRevLett.84.4613
    [172] Kumanek B, Janas D. Thermal conductivity of carbon nanotube networks: a review[J]. Journal of Materials Science,2019,54:7397-7427. doi: 10.1007/s10853-019-03368-0
    [173] Pop E, Mann D, Wang Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters,2006,6:96-100. doi: 10.1021/nl052145f
    [174] Ebbesen T W, Lezect H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature,1996,382:54-56. doi: 10.1038/382054a0
    [175] Durkop T, Getty S A, Cobas E, et al. Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Letters,2004,4:35-39. doi: 10.1021/nl034841q
    [176] Chae S H, Lee Y H. Carbon nanotubes and graphene towards soft electronics[J]. Nano Convergence,2014,1(15):1-26.
    [177] Casas C d l, Li W. A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources,2012,208:74-85. doi: 10.1016/j.jpowsour.2012.02.013
    [178] Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries[J]. Energy & Environmental Science,2009,2:638-654.
    [179] Sehrawat P, Julien C, Islam S S. Carbon nanotubes in Li-ion batteries: A review[J]. Materials Science and Engineering B,2016,213:12-40. doi: 10.1016/j.mseb.2016.06.013
    [180] Pan Z, Ren J, Guan G, et al. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries[J]. Advanced Energy Materials,2016,6(11):1600271. doi: 10.1002/aenm.201600271
    [181] Faisal S N, Subramaniyam C M, Haque E, et al. Nanoarchitectured nitrogen-doped graphene/carbon nanotube as high performance electrodes for solid state supercapacitors, capacitive deionization, Li-ion battery, and metal-free bifunctional electrocatalysis[J]. ACS Applied Energy Materials,2018,1(10):5211-5223.
    [182] Li J, Zhang F, Wang C, et al. Self nitrogen-doped carbon nanotubes as anode materials for high capacity and cycling stability lithium-ion batteries[J]. Materials & Design,2017,133:169-175.
    [183] Qie L, Chen W M, Wang Z H, et al. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability[J]. Advanced Materials,2012,24(15):2047-2050. doi: 10.1002/adma.201104634
    [184] Shan C, Wang Y, Xie S, et al. Free-standing nitrogen-doped graphene‐carbon nanofiber composite mats: electrospinning synthesis and application as anode material for lithium‐ion batteries[J]. Journal of Chemical Technology & Biotechnology,2019,94(12):3793-3799.
    [185] Yue H, Li F, Yang Z, et al. Nitrogen-doped carbon nanofibers as anode material for high-capacity and binder-free lithium ion battery[J]. Materials Letters,2014,120:39-42. doi: 10.1016/j.matlet.2014.01.049
    [186] Shaker M, Ghazvini A A S, Cao W, et al. Biomass-derived porous carbons as supercapacitor electrodes – A review[J]. New Carbon Materials,2021,36(3):546-572. doi: 10.1016/S1872-5805(21)60038-0
    [187] Sinha P, Banerjee S, Kar K K. Characteristics of activated carbon, Handbook of Nanocomposite Supercapacitor Materials I, 2020, 125-154.
    [188] Kumar R, Sharma A. Morphologically tailored activated carbon derived from waste tires as high-performance anode for Li-ion battery[J]. Journal of Applied Electrochemistry,2018,48(1):1-13. doi: 10.1007/s10800-017-1129-3
    [189] Zhao J, Lai H, Lyu Z, et al. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance[J]. Advanced Materials,2015,27(23):3541-3545. doi: 10.1002/adma.201500945
    [190] Wang S, Xia L, Yu L, et al. Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium‐ion batteries with ultralong cycle life and superior rate capability[J]. Advanced Energy Materials,2016,6(7):1502217. doi: 10.1002/aenm.201502217
    [191] Xiao Y, Wang X, Wang W, et al. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode[J]. ACS Applied Materials & Interfaces,2014,6(3):2051-2058.
    [192] Gao F, Zang Y-h, Wang Y, et al. A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste[J]. New Carbon Materials,2021,36(1):34-48. doi: 10.1016/S1872-5805(21)60003-3
    [193] Yan M, Qin Y, Wang L, et al. Recent advances in biomass-derived carbon materials for sodium-ion energy storage devices[J]. Nanomaterials,2022,12(6):930. doi: 10.3390/nano12060930
    [194] Zheng F, Liu D, Xia G, et al. Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries[J]. Journal of Alloys and Compounds,2017,693:1197-1204. doi: 10.1016/j.jallcom.2016.10.118
    [195] Zhou X-L, Zhang H, Shao L-M, et al. Preparation and application of hierarchical porous carbon materials from waste and biomass: A review[J]. Waste and Biomass Valorization,2020,12(4):1699-1724.
    [196] Sun D, Ban R, Zhang P-H, et al. Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties[J]. Carbon,2013,64:424-434. doi: 10.1016/j.carbon.2013.07.095
    [197] Chen P, Wang L-K, Wang G, et al. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: an efficient catalyst for oxygen reduction reaction[J]. Energy Environ. Sci.,2014,7(12):4095-4103. doi: 10.1039/C4EE02531H
    [198] Saravanan K R, Kalaiselvi N. Nitrogen containing bio-carbon as a potential anode for lithium batteries[J]. Carbon,2015,81:43-53. doi: 10.1016/j.carbon.2014.09.021
    [199] Chen L, Zhang Y, Lin C, et al. Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries[J]. J. Mater. Chem. A,2014,2(25):9684-9690. doi: 10.1039/C4TA00501E
    [200] Arrebola J C, Caballero A, Hernán L, et al. Improving the performance of biomass-derived carbons in li-ion batteries by controlling the lithium insertion process[J]. Journal of The Electrochemical Society, 2010, 157(7).
    [201] Wu  X-L, Chen  L-L, Xin S, et al. Preparation and li storage properties of hierarchical porous carbon fibers derived from alginic acid[J]. ChemSusChem,2010,3(6):703-707. doi: 10.1002/cssc.201000035
    [202] Caballero A, Hernán L, Morales J. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries[J]. ChemSusChem,2011,4(5):658-663. doi: 10.1002/cssc.201000398
    [203] Liu T, Luo R, Qiao W, et al. Microstructure of carbon derived from mangrove charcoal and its application in Li-ion batteries[J]. Electrochimica Acta,2010,55(5):1696-1700. doi: 10.1016/j.electacta.2009.10.051
    [204] Ou J, Zhang Y, Chen L, et al. Heteroatom doped porous carbon derived from hair as an anode with high performance for lithium ion batteries[J]. RSC Adv.,2014,4(109):63784-63791. doi: 10.1039/C4RA12121J
    [205] Reza M S, Yun C S, Afroze S, et al. Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review[J]. Arab Journal of Basic and Applied Sciences,2020,27(1):208-238. doi: 10.1080/25765299.2020.1766799
    [206] Gao Y-P, Zhai Z-B, Huang K-J, et al. Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors[J]. New Journal of Chemistry,2017,41(20):11456-11470. doi: 10.1039/C7NJ02580G
    [207] Mbarki F, Selmi T, Kesraoui A, et al. Hydrothermal pre-treatment, an efficient tool to improve activated carbon performances[J]. Industrial crops and products,2019,140:111717. doi: 10.1016/j.indcrop.2019.111717
    [208] Jain A, Balasubramanian R, Srinivasan M. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review[J]. Chemical Engineering Journal,2016,283:789-805. doi: 10.1016/j.cej.2015.08.014
    [209] Lu H, Zhao X S. Biomass-derived carbon electrode materials for supercapacitors[J]. Sustainable Energy & Fuels,2017,1(6):1265-1281.
    [210] Gaddam R R, Kantheti S, Narayan R, et al. Graphitic nanoparticles from thermal dissociation of camphor as an effective filler in polymeric coatings[J]. RSC Adv.,2014,4(44):23043-23049. doi: 10.1039/C4RA03685A
    [211] Gaddam R R, Vasudevan D, Narayan R, et al. Controllable synthesis of biosourced blue-green fluorescent carbon dots from camphor for the detection of heavy metal ions in water[J]. RSC Adv.,2014,4(100):57137-57143. doi: 10.1039/C4RA10471D
    [212] Gutru R, Turtayeva Z, Xu F, et al. Recent progress in heteroatom doped carbon based electrocatalysts for oxygen reduction reaction in anion exchange membrane fuel cells[J]. International Journal of Hydrogen Energy,2022,48 (9)-3593-3631. doi: https://doi.org/10.1016/j.ijhydene.2022.10.177
    [213] Deng Y, Xie Y, Zou K, et al. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors[J]. Journal of Materials Chemistry A,2016,4(4):1144-1173. doi: 10.1039/C5TA08620E
    [214] Graglia M, Pampel J, Hantke T, et al. Nitro lignin-derived nitrogen-doped carbon as an efficient and sustainable electrocatalyst for oxygen reduction[J]. ACS Nano,2016,10(4):4364-4371. doi: 10.1021/acsnano.5b08040
    [215] Ma Z, Zhang H, Yang Z, et al. Mesoporous nitrogen-doped carbons with high nitrogen contents and ultrahigh surface areas: synthesis and applications in catalysis[J]. Green Chemistry,2016,18(7):1976-1982. doi: 10.1039/C5GC01920F
    [216] Zhu J, Tang Y, Yang C, et al. Composites of TiO2 nanoparticles deposited on Ti3C2 mxene nanosheets with enhanced electrochemical performance[J]. Journal of The Electrochemical Society,2016,163(5):A785-A791. doi: 10.1149/2.0981605jes
    [217] Deng J, Li M, Wang Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion[J]. Green Chemistry,2016,18(18):4824-4854. doi: 10.1039/C6GC01172A
    [218] Gao F, Geng C, Xiao N, et al. Hierarchical porous carbon sheets derived from biomass containing an activation agent and in-built template for lithium ion batteries[J]. Carbon,2018,139:1085-1092. doi: 10.1016/j.carbon.2018.08.010
    [219] Nie Z, Huang Y, Ma B, et al. Nitrogen-doped carbon with modulated surface chemistry and porous structure by a stepwise biomass activation process towards enhanced electrochemical lithium-ion storage[J]. Scientific Reports,2019,9(1):15032. doi: 10.1038/s41598-019-50330-w
    [220] Zhang B, Jiang Y, Balasubramanian R. Synthesis, formation mechanisms and applications of biomass-derived carbonaceous materials: a critical review[J]. Journal of Materials Chemistry A, 2021.
    [221] Jin C, Nai J, Sheng O, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science,2021,14(3):1326-1379.
    [222] Yu W, Wang H, Liu S, et al. N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes[J]. Journal of Materials Chemistry A,2016,4(16):5973-5983. doi: 10.1039/C6TA01821A
    [223] Huang J, Lin Y, Ji M, et al. Nitrogen-doped porous carbon derived from foam polystyrene as an anode material for lithium-ion batteries[J]. Applied Surface Science,2020,504:144398. doi: 10.1016/j.apsusc.2019.144398
    [224] Sun H-g, Xiao H-h, Song W, et al. A novel N-doped organic porous carbon derive from water-based alkyd resin for lithium ion battery anode materials[J]. Journal of Alloys and Compounds,2019,805:984-990. doi: 10.1016/j.jallcom.2019.07.153
    [225] Huo K, An W, Fu J, et al. Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries[J]. Journal of Power Sources,2016,324:233-238. doi: 10.1016/j.jpowsour.2016.05.084
    [226] Sun D, Yan X, Yang J, et al. Hierarchically porous and nitrogen-doped graphene-like microspheres as stable anodes for lithium-ion batteries[J]. ChemElectroChem,2015,2(11):1830-1838. doi: 10.1002/celc.201500145
    [227] Karthikeyan C, Babu G S, Maruthamuthu S, et al. Exploration of biogenic nitrogen doped carbon microspheres derived from resorcinol-formaldehyde as anode for lithium and sodium ion batteries[J]. Journal of colloid and interface science,2019,554:9-18. doi: 10.1016/j.jcis.2019.06.084
    [228] Zhang X, Zhang Z, Hu F, et al. Carbon-dots-derived 3D highly nitrogen-doped porous carbon framework for high-performance lithium ion storage[J]. ACS Sustainable Chemistry & Engineering,2019,7(11):9848-9856.
    [229] Zhang X, Zhu G, Wang M, et al. Covalent-organic-frameworks derived N-doped porous carbon materials as anode for superior long-life cycling lithium and sodium ion batteries[J]. Carbon,2017,116:686-694. doi: 10.1016/j.carbon.2017.02.057
    [230] Jia X, Zhang G, Wang T, et al. Monolithic nitrogen-doped graphene frameworks as ultrahigh-rate anodes for lithium ion batteries[J]. Journal of Materials Chemistry A,2015,3(30):15738-15744. doi: 10.1039/C5TA03706A
    [231] Wu Q, Liu J, Yuan C, et al. Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries[J]. Applied Surface Science,2017,425:1082-1088. doi: 10.1016/j.apsusc.2017.07.118
    [232] Dong S, Cui J, Yu D, et al. Nitrogen-doped porous carbon derived from bimetallic zeolitic imidazolate frameworks for electrochemical Li+/Na+ storage[J]. Journal of Solid State Electrochemistry,2022,26(3):683-693. doi: 10.1007/s10008-021-05100-y
    [233] Zhao J, Li Z, Yao S, et al. Zn/Co-ZIF-derived bi-metal embedded N-doped porous carbon as anodes for lithium-ion batteries[J]. Journal of Materials Science:Materials in Electronics,2020,31(16):13889-13898. doi: 10.1007/s10854-020-03948-w
    [234] Gayathri S, Arunkumar P, Kim E J, et al. Mesoporous nitrogen-doped carbon@graphene nanosheets as ultra-stable anode for lithium-ion batteries–Melamine as surface modifier than nitrogen source[J]. Electrochimica Acta,2019,318:290-301. doi: 10.1016/j.electacta.2019.06.054
    [235] Zhang D, Wang G, Xu L, et al. Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries[J]. Applied Surface Science,2018,451:298-305. doi: 10.1016/j.apsusc.2018.04.251
    [236] Bhattacharjya D, Park H Y, Kim M S, et al. Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries[J]. Langmuir,2014,30(1):318-324. doi: 10.1021/la403366e
    [237] Wu Z, Zou J, Shabanian S, et al. The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries[J]. Chemical Engineering Journal,2022,427:130972. doi: 10.1016/j.cej.2021.130972
    [238] Petrovic S. Battery technology crash course[B/OL]. Springer, 2021.
    [239] Peters J F, Peña Cruz A, Weil M. Exploring the economic potential of sodium-ion batteries[J]. Batteries,2019,5(1):10. doi: 10.3390/batteries5010010
    [240] Chen K H, Goel V, Namkoong M J, et al. Enabling 6C fast charging of Li‐ion batteries with graphite/hard carbon hybrid anodes[J]. Advanced Energy Materials,2021,11(5):2003336. doi: 10.1002/aenm.202003336
    [241] Saurel D, Orayech B, Xiao B, et al. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials,2018,8(17):1703268. doi: 10.1002/aenm.201703268
    [242] Ni J, Huang Y, Gao L. A high-performance hard carbon for Li-ion batteries and supercapacitors application[J]. Journal of Power Sources,2013,223:306-311. doi: 10.1016/j.jpowsour.2012.09.047
    [243] Jiang W, Wu M, Liu F, et al. Variation of carbon coatings on the electrochemical performance of LiFePO4 cathodes for lithium ionic batteries[J]. Rsc Advances,2017,7(70):44296-44302. doi: 10.1039/C7RA08062J
    [244] Jayaraman S, Jain A, Ulaganathan M, et al. Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon[J]. Chemical Engineering Journal,2017,316:506-513. doi: 10.1016/j.cej.2017.01.108
    [245] Kong L, Li Y, Feng W. Fluorine-doped hard carbon as the advanced performance anode material of sodium-ion batteries[J]. Transactions of Tianjin University,2022,28(2):123-131. doi: 10.1007/s12209-021-00311-w
    [246] Zhang K, Li X, Liang J, et al. Nitrogen-doped porous interconnected double-shelled hollow carbon spheres with high capacity for lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta,2015,155:174-182. doi: 10.1016/j.electacta.2014.12.108
    [247] Yang Z, Guo H, Li F, et al. Cooperation of nitrogen-doping and catalysis to improve the Li-ion storage performance of lignin-based hard carbon[J]. Journal of energy chemistry,2018,27(5):1390-1396. doi: 10.1016/j.jechem.2018.01.013
    [248] Tang Y, Wang X, Chen J, et al. High‐level pyridinic-n-doped carbon nanosheets with promising performances severed as li-ion battery anodes[J]. Energy Technology,2020,8(9):2000361. doi: 10.1002/ente.202000361
    [249] Yu Y-X. Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ion batteries?[J]. Physical Chemistry Chemical Physics,2013,15(39):16819-16827. doi: 10.1039/c3cp51689j
    [250] Gu J, Du Z, Zhang C, et al. Pyridinic nitrogen-enriched carbon nanogears with thin teeth for superior lithium storage[J]. Advanced Energy Materials,2016,6(18):1600917. doi: 10.1002/aenm.201600917
    [251] Kong X K, Chen Q W. Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model[J]. Physical Chemistry Chemical Physics,2013,15(31):12982-12987. doi: 10.1039/c3cp51987b
    [252] Yang J, Jia K, Wang M, et al. Fabrication of nitrogen-doped porous graphene hybrid nanosheets from metal-organic frameworks for lithium-ion batteries[J]. Nanotechnology,2020,31(14):145402. doi: 10.1088/1361-6528/ab6475
    [253] Guo W, Li X, Xu J, et al. Growth of highly nitrogen-doped amorphous carbon for lithium-ion battery anode[J]. Electrochimica Acta,2016,188:414-420. doi: 10.1016/j.electacta.2015.12.045
    [254] Guo S, Chen Y, Shi L, et al. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries[J]. Applied Surface Science,2018,437:136-143. doi: 10.1016/j.apsusc.2017.12.144
    [255] Le H T, Dang T-D, Chu N T, et al. Synthesis of nitrogen-doped ordered mesoporous carbon with enhanced lithium storage performance from natural kaolin clay[J]. Electrochimica Acta,2020,332:135399. doi: 10.1016/j.electacta.2019.135399
  • 加载中
图(16) / 表(6)
计量
  • 文章访问数:  1048
  • HTML全文浏览量:  435
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-26
  • 修回日期:  2023-02-11
  • 网络出版日期:  2023-02-17
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回