留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress on freestanding carbon-based anodes for sodium energy storage

HOU Zhi-dong GAO Yu-yang ZHANG Yu WANG Jian-gan

侯志栋, 高语阳, 张玉, 王建淦. 自支撑碳基负极材料的储钠研究进展. 新型炭材料(中英文), 2023, 38(2): 230-246. doi: 10.1016/S1872-5805(23)60725-5
引用本文: 侯志栋, 高语阳, 张玉, 王建淦. 自支撑碳基负极材料的储钠研究进展. 新型炭材料(中英文), 2023, 38(2): 230-246. doi: 10.1016/S1872-5805(23)60725-5
HOU Zhi-dong, GAO Yu-yang, ZHANG Yu, WANG Jian-gan. Research progress on freestanding carbon-based anodes for sodium energy storage. New Carbon Mater., 2023, 38(2): 230-246. doi: 10.1016/S1872-5805(23)60725-5
Citation: HOU Zhi-dong, GAO Yu-yang, ZHANG Yu, WANG Jian-gan. Research progress on freestanding carbon-based anodes for sodium energy storage. New Carbon Mater., 2023, 38(2): 230-246. doi: 10.1016/S1872-5805(23)60725-5

自支撑碳基负极材料的储钠研究进展

doi: 10.1016/S1872-5805(23)60725-5
基金项目: 国家自然科学基金(52272239,22109044,51821091);中央高校基本科研业务费专项资金(3102019JC005,D5000210894)
详细信息
    通讯作者:

    张 玉,研究员. E-mail:yzhang071@ecust.edu.cn

    王建淦,教授. E-mail:wangjiangan@nwpu.edu.cn

  • 中图分类号: TQ127.1+1

Research progress on freestanding carbon-based anodes for sodium energy storage

Funds: The work is financially supported by the National Natural Science Foundation of China (52272239, 22109044 and 51821091), Fundamental Research Funds for the Central Universities (3102019JC005 and D5000210894)
More Information
  • 摘要: 凭借着钠资源储量丰富和成本优势,钠离子电池在电化学储能领域有望成为锂离子电池的重要补充。作为钠离子电池负极材料,炭及其复合材料可以通过合理的结构设计和组分调控获得优异的储钠性能。随着可穿戴电子器件日益普及,人们对电极提出了更高的性能要求。自支撑电极无需使用电化学惰性的黏结剂和导电添加剂等组分,有利于提升电池体系能量密度。本文总结了近年来钠离子电池用自支撑炭基电极材料的最新研究进展,包括碳纳米纤维、碳纳米管、石墨烯及其复合材料,从基底有无的角度详细综述并讨论了自支撑炭基负极的制备策略及其电化学性能,最后对钠离子电池用自支撑炭基负极材料的未来挑战和发展进行了展望。
  • FIG. 2231.  FIG. 2231.

    FIG. 2231..  FIG. 2231.

    Figure  1.  Schematic diagram of freestanding carbon-based anodes for SIBs

    Figure  2.  Schematic diagram of Na storage mechanisms: (a) carbonaceous materials, (b) alloy materials, and (c) metallic compounds

    Figure  3.  (a) Schematic illustration of the fabrication for porous CNFs. (b) Na-ion diffusion mechanism of freestanding porous CNFs electrode. Reproduced with permission[41]. Copyright 2014, Royal Society of Chemistry. (c) Schematic of the preparation for N-doped CNFs. (d) Rate capability of N-doped CNFs. Reproduced with permission[42]. Copyright 2016, Wiley–VCH. (e) Schematic illustration of the synthesis for P-doped CFs. (f) Slope and plateau capacity comparison of CNFs and P-doped CNFs. Reproduced with permission[43]. Copyright 2018, American Chemical Society

    Figure  4.  (a) TEM image of FeP@NPC. (Inset shows flexibility of FeP@NPC film.) (b) Cycling performance of FeP@NPC electrode at 1 A g−1. Reproduced with permission[55]. Copyright 2020, Elsevier. (c) Schematic of the preparation process for CoTe2@NMCNFs. (d) SEM image of CoTe2@NMCNFs. (e) N2 adsorption–desorption isotherms of CoTe2@NMCNFs and CoTe2@NCNFs. Reproduced with permission[56]. Copyright 2021, American Chemical Society. (f) Schematic illustration of the preparation for Sn NDs@PNC nanofibers. (g) Digital photos of electrospinning product before and after calcination. (h) Electrochemical performance of Sn NDs@PNC with different Sn contents. (Inset shows the HRTEM of Sn dots before and after cycling.) Reproduced with permission[32]. Copyright 2015, Wiley-VCH

    Figure  5.  (a) Schematic illustration of the preparation for NCP@FCNT-FS film. (b) SEM image of 2D Ni1.5Co0.5Px nanosheets. (c) Digital image of the bending film. (d) Rate capacities of NCP/C, NCP/CNT, and NCP@FCNT-FS. Reproduced with permission[64]. Copyright 2018, Wiley–VCH. (e) Schematic illustration of construction for Fe1−xS@PCNWs/rGO paper. (f) Digital images for various deformations, (g) SEM images, and (h) cycling stabilities for different mass loading of Fe1−xS@PCNWs/rGO. Reproduced with permission[65]. Copyright 2019, Wiley–VCH. (i) Schematic illustration of preparation for P@NGCA. (j) Compressive stress–strain curves and (k) electronic conductivity of GA, GCA, and NGCA. (l) Cycling performance of P@NGCA. Reproduced with permission[69]. Copyright 2022, Royal Society of Chemistry

    Figure  6.  (a) Schematic of the preparation process for 1T-MoS2/CC. SEM image of (b) MoO3/CC and (c) 1T-MoS2/CC. Reproduced with permission[79]. Copyright 2018, Royal Society of Chemistry. (d) Model diagram, (e) SEM image of CoxP@CFC, and (f) P 2p XPS analysis of CoxP@CFC. (g) TEM image of mixed-valence CoxP. (h) Comparison of cycling performance at 0.1 A g−1. Reproduced with permission[82]. Copyright 2022, Wiley–VCH. (i) Schematic diagram of the morphology change and (j) Na+ diffusion coefficient comparison of CoP@PPy NWs/CP and CoP NWs/CP during cycling processes. Reproduced with permission[85]. Copyright 2018, Wiley–VCH

    Figure  7.  (a) Digital photographs and schematic diagram of preparation for MFCPs. (b) HRTEM of MFCP-1300. (c) ICE and (d) slope/plateau capacity of a series of MFCPs at 20 mA g−1. Reproduced with permission[92]. Copyright 2021, Elsevier. (e) Schematic of the preparation process for MoS2@CSC. (f) Top and sectional SEM images and (g) Rate performance of MoS2@CSC. Reproduced with permission[93]. Copyright 2019, American Chemical Society. (h) Schematic diagram of 3D carbon-networks/Fe7S8/graphene. (i) SEM image and flexibility display of CFG. (j) Na storage performance of CFG. Reproduced with permission[94]. Copyright 2019, Wiley–VCH

    Table  1.   The reported synthetic methods and electrochemical properties of free-standing carbon-based anodes for SIBs

    SubstrateMaterialsSynthetic methodsICEElectrochemical performanceRef.
    FreePorous CNFsSoft template and electrospinning53.5%266 mAh g−1@0.05 A g−1 after 100 cycles[41]
    N-doped CNFsElectrospinning-377 mAh g−1@0.1 A g−1 after 100 cycles[42]
    N/S co-doped CNFsElectrospinning62.0%336 mAh g−1@0.05 A g−1 after 100 cycles[48]
    P-doped CNFsElectrospinning55.7%253 mAh g−1@0.05 A g−1 after 200 cycles[43]
    FeP@NPCElectrospinning and phosphatization49.0%391 mAh g−1@0.1 A g−1 after 1000 cycles[55]
    CoTe2@NMCNFsElectrospinning and tellurization57.1%261.2 mAh g−1@0.2 A g−1 after 300 cycles[56]
    Sn NDs@PNCElectrospinning70.0%483 mAh g−1@2 A g−1 after 1300 cycles[32]
    P/CFs@RGOElectrospinning and vaporization condensation73.8%406.6 mAh g−1@1 A g−1 after 180 cycles[57]
    Sn/CFCElectrospinning42.3%255 mAh g−1@0.05 A g−1 after 200 cycles[58]
    Bi/CNFsElectrospinning53.0%186 mAh g−1@0.05 A g−1 after 100 cycles[59]
    SbNP@CElectrospinning55.5%350 mAh g−1@0.1 A g−1 after 300 cycles[60]
    NCP@FCNT-FSPhosphatization and vacuum filtration-196.6 mAh g−1@0.5 C after 100 cycles[64]
    Fe1−xS@PCNWs/rGOVacuum filtration and sulfuration66.2%573 mAh g−1@0.1 A g−1 after 100 cycles[65]
    P@NGCAFreeze-drying and vaporization condensation80.0%538 mAh g−1@0.2 A g−1 after 100 cycles[69]
    NS-C filmVapor phase polymerization-379.1 mAh g−1@0.1 A g−1 after 1000 cycles[73]
    CC1T-MoS2/CCHydrothermal and sulfuration77.7%576 mAh g−1@0.2 A g−1 after 200 cycles[79]
    CCSnS2@graphene nanosheetHydrothermal57.4%378 mAh g−1@1.2 A g−1 after 200 cycles[80]
    CCCoxP@CFCHydrothermal and phosphatization69.4%814 mAh g−1@0.1 A g−1 after 100 cycles[82]
    CCSb2O3/CCSolvothermal84.5%900 mAh g−1@0.05 A g−1 after 100 cycles[83]
    CPCoP@PPy NWs/CPHydrothermal, phosphization, and polymerization69.1%0.521 mAh cm−2@0.15 mA cm−2 after 100 cycles[85]
    CPMoS2@CHydrothermal and calcintion79.4%286 mAh g−1@0.08 A g−1 after 100 cycles[87]
    CP3D Sn@CNT-CPFreezing-drying and chemical vapourdeposition81.7%0.455 mAh cm−2@0.25 mA cm−2 after 100 cycles[86]
    CFCoP4/CFHydrothermal and phosphatization-851 mAh g−1@0.3 A g−1 after 300 cycles[88]
    CottonCFGVacuum drying and calcintion81.0%0.75 mAh cm−2@6 mA cm−2 after 5000 cycles[94]
    CottonHCF-V2O5Hydrothermal69.4%184 mAh g−1@0.05 A g−1 after 100 cycles[95]
    SilkN-SWC/SnOx@rGOFreezing-drying and calcintion84.1%572.2 mAh g−1@0.1 A g−1 after 100 cycles[96]
    Ni foamNC/NFHydrothermal reactions63.1%225.4 mAh g−1@5 A g−1 after 1000 cycles[97]
    Ni foamNi2P/3DGChemical vapor deposition and hydrothermal reactions88.3%212.4 mAh g−1@0.1 A g−1 after 200 cycles[98]
    下载: 导出CSV
  • [1] Mathis T, Kurra N, Wang X, et al. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems[J]. Advanced Energy Materials,2019,9(39):1902007. doi: 10.1002/aenm.201902007
    [2] Sun H, Zhu J, Baumann D, et al. Hierarchical 3D electrodes for electrochemical energy storage[J]. Nature Reviews Materials,2019,4(1):45-60.
    [3] Tang Y, Zhang Y, Li W, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews,2015,44(17):5926-5940. doi: 10.1039/C4CS00442F
    [4] Goriparti S, Miele E, De Angelis F, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources,2014,257:421-443. doi: 10.1016/j.jpowsour.2013.11.103
    [5] Xu Z L, Park J, Yoon G, et al. Graphitic carbon materials for advanced sodium-ion batteries[J]. Small Methods,2019,3(4):1800227. doi: 10.1002/smtd.201800227
    [6] Jiang M, Hou Z, Wang J, et al. Balanced coordination enables low-defect Prussian blue for superfast and ultrastable sodium energy storage[J]. Nano Energy,2022,102:107708. doi: 10.1016/j.nanoen.2022.107708
    [7] Xiao Y, Abbasi N M, Zhu Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials,2020,30(30):2001334. doi: 10.1002/adfm.202001334
    [8] Gu Z Y, Guo J Z, Cao J M, et al. An advanced high‐entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density[J]. Advanced Materials,2022,34(14):2110108. doi: 10.1002/adma.202110108
    [9] Feng P, Wang W, Wang K, et al. Na3V2(PO4)3/C synthesized by a facile solid-phase method assisted with agarose as a high-performance cathode for sodium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(21):10261-10268. doi: 10.1039/C7TA01946G
    [10] Hou H, Qiu X, Wei W, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials,2017,7(24):1602898. doi: 10.1002/aenm.201602898
    [11] Lu Y, Zhao C, Qi X, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials,2018,8(27):1800108. doi: 10.1002/aenm.201800108
    [12] Yan J, Li H, Wang K, et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode[J]. Advanced Energy Materials,2021,11(21):2003911. doi: 10.1002/aenm.202003911
    [13] Wang Y X, Lai W H, Wang Y X, et al. Sulfur-based electrodes that function via multielectron reactions for room-temperature sodium-ion storage[J]. Angewandte Chemie International Edition,2019,58(51):18324-18337. doi: 10.1002/anie.201902552
    [14] Zhou K, Wang S, Guo X, et al. Bismuth nanoparticles encapsulated in nitrogen-rich porous carbon nanofibers as a high-performance anode for aqueous alkaline rechargeable batteries[J]. Small,2021,18(7):2105770.
    [15] Yang G, Ilango P, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries[J]. Small,2019,15(22):1900628. doi: 10.1002/smll.201900628
    [16] Sun Y, Wu Q, Liang X, et al. Recent developments in carbon-based materials as high-rate anode for sodium ion batteries[J]. Materials Chemistry Frontiers,2021,5(11):4089-4106. doi: 10.1039/D0QM01124J
    [17] Zhang T, Ran F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Advanced Functional Materials,2021,31(17):2010041. doi: 10.1002/adfm.202010041
    [18] Bin D S, Li Y, Sun Y G, et al. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode[J]. Advanced Energy Materials,2018,8(26):1800855. doi: 10.1002/aenm.201800855
    [19] Li R R, Yang Z, He X X, et al. Binders for sodium-ion batteries: progress, challenges and strategies[J]. Chemical Communications,2021,57(93):12406-12416. doi: 10.1039/D1CC04563F
    [20] Liu W, Liu W, Jiang Y, et al. Binder-free electrodes for advanced potassium-ion batteries: A review[J]. Chinese Chemical Letters,2021,32(4):1299-1308. doi: 10.1016/j.cclet.2020.08.032
    [21] Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-73. doi: 10.1002/anie.201403734
    [22] Kim H, Hong J, Park Y, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials,2015,25(4):534-541. doi: 10.1002/adfm.201402984
    [23] Stevens D, Dahn J. High capacity anode materials for rechargeable sodium‐ion batteries[J]. Journal of the Electrochemical Society,2000,147(4):1271. doi: 10.1149/1.1393348
    [24] Stevens D, Dahn J. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society,2001,148(8):A803. doi: 10.1149/1.1379565
    [25] Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7(12):11004-11015. doi: 10.1021/nn404640c
    [26] Zhang B, Ghimbeu C, Laberty C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials,2016,6(1):1501588. doi: 10.1002/aenm.201501588
    [27] Bommier C, Surta T, Dolgos M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters,2015,15(9):5888-5892. doi: 10.1021/acs.nanolett.5b01969
    [28] Ni J, Li L, Lu J. Phosphorus: An anode of choice for sodium-ion batteries[J]. ACS Energy Letters,2018,3(5):1137-1144. doi: 10.1021/acsenergylett.8b00312
    [29] Lao M, Zhang Y, Luo W, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials,2017,29(48):1700622. doi: 10.1002/adma.201700622
    [30] Chevrier V L, Ceder G. Challenges for Na-ion negative electrodes[J]. Journal of the Electrochemical Society,2011,158(9):A1011. doi: 10.1149/1.3607983
    [31] Sun J, Lee H W, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries[J]. Energy Storage Materials,2016,4:130-136. doi: 10.1016/j.ensm.2016.04.003
    [32] Liu Y, Zhang N, Jiao L, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J]. Advanced Materials,2015,27(42):6702-6707. doi: 10.1002/adma.201503015
    [33] Yin H, Li Q, Cao M, et al. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries[J]. Nano Research,2017,10(6):2156-2167. doi: 10.1007/s12274-016-1408-z
    [34] David L, Bhandavat R, Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano,2014,8(2):1759-1770. doi: 10.1021/nn406156b
    [35] Liu Y, Zhang N, Kang H, et al. WS2 nanowires as a high-performance anode for sodium-ion batteries[J]. Chemistry – A European Journal,2015,21(33):11878-11884. doi: 10.1002/chem.201501759
    [36] Ou X, Xiong X, Zheng F, et al. In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries[J]. Journal of Power Sources,2016,325:410-416. doi: 10.1016/j.jpowsour.2016.06.055
    [37] Li C, Qiu M, Li R, et al. Electrospinning engineering enables high-performance sodium-ion batteries[J]. Advanced Fiber Materials,2022,4(1):43-65. doi: 10.1007/s42765-021-00088-6
    [38] Hou Z, Jiang M, Cao Y, et al. Encapsulating ultrafine cobalt sulfides into multichannel carbon nanofibers for superior Li-ion energy storage[J]. Journal of Power Sources,2022,541:231682. doi: 10.1016/j.jpowsour.2022.231682
    [39] Guo X, Zhang X, Song H, et al. Electrospun cross-linked carbon nanofiber films as free-standing and binder-free anodes with superior rate performance and long-term cycling stability for sodium ion storage[J]. Journal of Materials Chemistry A,2017,5(40):21343-21352. doi: 10.1039/C7TA05621D
    [40] Cheng A, Zhang H, Zhong W, et al. Enhanced electrochemical properties of single-layer MoS2 embedded in carbon nanofibers by electrospinning as anode materials for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry,2019,843:31-36. doi: 10.1016/j.jelechem.2019.04.059
    [41] Li W, Zeng L, Yang Z, et al. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers[J]. Nanoscale,2014,6(2):693-698. doi: 10.1039/C3NR05022J
    [42] Wang S, Xia L, Yu L, et al. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability[J]. Advanced Energy Materials,2016,6(7):1502217. doi: 10.1002/aenm.201502217
    [43] Wu F, Dong R, Bai Y, et al. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(25):21335-21342.
    [44] Zhao G, Yu D, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy,2020,67:104219. doi: 10.1016/j.nanoen.2019.104219
    [45] Zhou J, Lian J, Hou L, et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nature communications,2015,6:8503. doi: 10.1038/ncomms9503
    [46] Yuan Y, Chen Z, Yu H, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials,2020,32:65-90. doi: 10.1016/j.ensm.2020.07.027
    [47] Yin B, Liang S, Yu D, et al. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries[J]. Advanced Materials,2021,33(37):2100808. doi: 10.1002/adma.202100808
    [48] Sun X, Wang C, Gong Y, et al. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage[J]. Small,2018,14(35):1802218. doi: 10.1002/smll.201802218
    [49] Li Y, Yuan Y, Bai Y, et al. Insights into the Na+ storage mechanism of phosphorus‐functionalized hard carbon as ultrahigh capacity anodes[J]. Advanced Energy Materials,2018,8(18):1702781. doi: 10.1002/aenm.201702781
    [50] Chen Z, Duan H, Xu Z, et al. Fast sodium storage with ultralong cycle life for nitrogen doped hollow carbon nanofibers anode at elevated temperature[J]. Advanced Materials Interfaces,2020,7(9):1901922. doi: 10.1002/admi.201901922
    [51] Yuan B, Zeng L, Sun X, et al. Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing[J]. Nano Research,2018,11(4):2256-2264. doi: 10.1007/s12274-017-1847-1
    [52] Ding C, Huang L, Lan J, et al. Superresilient hard carbon nanofabrics for sodium-ion batteries[J]. Small,2020,16(11):e1906883. doi: 10.1002/smll.201906883
    [53] Qi Y, Fan W, Nan G. Free-standing, binder-free polyacrylonitrile/asphalt derived porous carbon fiber-A high capacity anode material for sodium-ion batteries[J]. Materials Letters,2017,189:206-209. doi: 10.1016/j.matlet.2016.11.085
    [54] Wang Y, Xiao N, Wang Z, et al. Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries[J]. Carbon,2018,135:187-194. doi: 10.1016/j.carbon.2018.04.031
    [55] Shi S, Li Z, Shen L, et al. Electrospun free-standing FeP@NPC film for flexible sodium ion batteries with remarkable cycling stability[J]. Energy Storage Materials,2020,29:78-83. doi: 10.1016/j.ensm.2020.03.029
    [56] Zhang W, Wang X, Wong K W, et al. Rational design of embedded CoTe2 nanoparticles in freestanding N-doped multichannel carbon fibers for sodium-ion batteries with ultralong cycle lifespan[J]. ACS Applied Materials & Interfaces,2021,13(29):34134-34144.
    [57] Ma X, Chen L, Ren X, et al. High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries[J]. Journal of Materials Chemistry A,2018,6(4):1574-1581. doi: 10.1039/C7TA07762A
    [58] He W, Chen K, Pathak R, et al. High-mass-loading Sn-based anode boosted by pseudocapacitance for long-life sodium-ion batteries[J]. Chemical Engineering Journal,2021,414:128638. doi: 10.1016/j.cej.2021.128638
    [59] Jin Y, Yuan H, Lan J L, et al. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes[J]. Nanoscale,2017,9(35):13298-13304. doi: 10.1039/C7NR04912A
    [60] Zhu Y, Han X, Xu Y, et al. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode[J]. ACS Nano,2013,7(7):6378-6386. doi: 10.1021/nn4025674
    [61] Zhang Y, Xia X, Liu B, et al. Multiscale graphene-based materials for applications in sodium ion batteries[J]. Advanced Energy Materials,2019,9(8):1803342. doi: 10.1002/aenm.201803342
    [62] Tao F, Liu Y, Ren X, et al. Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: Recent advances and perspectives[J]. Journal of Alloys and Compounds,2021,873:159742. doi: 10.1016/j.jallcom.2021.159742
    [63] Wen L, Li F, Cheng H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices[J]. Advanced Materials,2016,28(22):4306-4337. doi: 10.1002/adma.201504225
    [64] Wang X W, Guo H P, Liang J, et al. An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries[J]. Advanced Functional Materials,2018,28(26):1801016. doi: 10.1002/adfm.201801016
    [65] Liu Y, Fang Y, Zhao Z, et al. A ternary Fe1−xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries[J]. Advanced Energy Materials,2019,9(9):1803052. doi: 10.1002/aenm.201803052
    [66] Lu Y, Zhang N, Jiang S, et al. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide–graphene foam architecture[J]. Nano Letters,2017,17(6):3668-3674. doi: 10.1021/acs.nanolett.7b00889
    [67] Liu Y, Zhang A, Shen C, et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries[J]. ACS Nano,2017,11(6):5530-5537. doi: 10.1021/acsnano.7b00557
    [68] Liu Y, Yang Y, Wang X, et al. Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(18):15484-15491.
    [69] Sun Y, Wu Q, Zhang K, et al. A high areal capacity sodium-ion battery anode enabled by a free-standing red phosphorus@N-doped graphene/CNTs aerogel[J]. Chemical Communications,2022,58(51):7120-7123. doi: 10.1039/D2CC02265F
    [70] Li J, Qin W, Xie J, et al. Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries[J]. Chemical Engineering Journal,2018,332:260-266. doi: 10.1016/j.cej.2017.09.088
    [71] Zhang J, Li C, Peng Z, et al. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage[J]. Scientific Reports,2017,7(1):4886. doi: 10.1038/s41598-017-04958-1
    [72] Zhang W, Pan Z Z, Lv W, et al. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries[J]. Carbon,2019,153:625-633. doi: 10.1016/j.carbon.2019.07.040
    [73] Ruan J, Yuan T, Pang Y, et al. Nitrogen and sulfur dual-doped carbon films as flexible free-standing anodes for Li-ion and Na-ion batteries[J]. Carbon,2018,126:9-16. doi: 10.1016/j.carbon.2017.09.099
    [74] Zhang Q, Liu X, Yan L, et al. Designing and preparing a 3D “overpass” hierarchical porous carbon membranes free-standing anode for sodium ion battery[J]. Chemical Engineering Journal,2022,448:137628. doi: 10.1016/j.cej.2022.137628
    [75] Zhang X, Wan Y, Yang K, et al. Cotton cloth-induced flexible hierarchical carbon film for sodium-ion batteries[J]. ChemElectroChem,2020,7(9):2136-2144. doi: 10.1002/celc.202000407
    [76] Guo J Z, Gu Z Y, Zhao X X, et al. Flexible Na/K-ion full batteries from the renewable cotton cloth-derived stable, low-cost, and binder-free anode and cathode[J]. Advanced Energy Materials,2019,9(38):1902056. doi: 10.1002/aenm.201902056
    [77] Long B, Ma J, Song T, et al. Tailoring superficial morphology, defect and functional group of commercial carbon cloth for a flexible, stable and high-capacity anode in sodium ion battery[J]. Electrochimica Acta,2021,374:137934. doi: 10.1016/j.electacta.2021.137934
    [78] Li T, Liu Z, Gu Y, et al. Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency[J]. Journal of Alloys and Compounds,2020,817:152703. doi: 10.1016/j.jallcom.2019.152703
    [79] Tang W J, Wang X L, Xie D, et al. Hollow metallic 1T MoS2 arrays grown on carbon cloth: A freestanding electrode for sodium ion batteries[J]. Journal of Materials Chemistry A,2018,6(37):18318-18324. doi: 10.1039/C8TA06905K
    [80] Xu W, Zhao K, Zhang L, et al. SnS2@Graphene nanosheet arrays grown on carbon cloth as freestanding binder-free flexible anodes for advanced sodium batteries[J]. Journal of Alloys and Compounds,2016,654:357-362. doi: 10.1016/j.jallcom.2015.09.050
    [81] Long B, Zhang J, Luo L, et al. High pseudocapacitance boosts the performance of monolithic porous carbon cloth/closely packed TiO2 nanodots as an anode of an all-flexible sodium-ion battery[J]. Journal of Materials Chemistry A,2019,7(6):2626-2635. doi: 10.1039/C8TA09678C
    [82] Yuan G, Liu D, Feng X, et al. In situ fabrication of porous CoxP hierarchical nanostructures on carbon fiber cloth with exceptional performance for sodium storage[J]. Advanced Materials,2022,34(23):2108985. doi: 10.1002/adma.202108985
    [83] Fei J, Cui Y, Li J, et al. A flexible Sb2O3/carbon cloth composite as a free-standing high performance anode for sodium ion batteries[J]. Chemical Communications,2017,53(98):13165-13167. doi: 10.1039/C7CC06945F
    [84] Pan P, Chen L, Wang F, et al. Cu2NiSnS4 nanosphere array on carbon cloth as free-standing and binder-free electrodes for energy storage[J]. Electrochimica Acta,2018,260:305-313. doi: 10.1016/j.electacta.2017.12.081
    [85] Zhang J, Zhang K, Yang J, et al. Bifunctional conducting polymer coated CoP core–shell nanowires on carbon paper as a free-standing anode for sodium ion batteries[J]. Advanced Energy Materials,2018,8(20):1800283. doi: 10.1002/aenm.201800283
    [86] Xie X, Kretschmer K, Zhang J, et al. Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries[J]. Nano Energy,2015,13:208-217. doi: 10.1016/j.nanoen.2015.02.022
    [87] Xie X, Makaryan T, Zhao M, et al. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries[J]. Advanced Energy Materials,2016,6(5):1502161. doi: 10.1002/aenm.201502161
    [88] Sun D, Zhu X, Luo B, et al. New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery[J]. Advanced Energy Materials,2018,8(26):1801197. doi: 10.1002/aenm.201801197
    [89] Wang M, Yang Z, Li W, et al. Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network[J]. Small,2016,12(19):2559-2566. doi: 10.1002/smll.201600101
    [90] Wang M, Yang Y, Yang Z, et al. Sodium-ion batteries: Improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping[J]. Advanced Science,2017,4(4):1600468. doi: 10.1002/advs.201600468
    [91] Yang H, Xu R, Yu Y. A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial Coulombic efficiency: Free-standing porous carbon nanofiber film derived from bacterial cellulose[J]. Energy Storage Materials,2019,22:105-112. doi: 10.1016/j.ensm.2019.01.003
    [92] Ren Q, Wang J, Yan L, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior[J]. Chemical Engineering Journal,2021,425:131656. doi: 10.1016/j.cej.2021.131656
    [93] Zheng S, Feng D, Xu L, et al. Confined iterative self-assembly of ultrathick freestanding electrodes with vertically aligned channels for high areal capacity sodium-ion batteries[J]. ACS Materials Letters,2022,4(2):432-439. doi: 10.1021/acsmaterialslett.1c00806
    [94] Chen W, Zhang X, Mi L, et al. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries[J]. Advanced Materials,2019,31(8):1806664. doi: 10.1002/adma.201806664
    [95] Zhang X, Liu X, Yang C, et al. A V2O5-nanosheets-coated hard carbon fiber fabric as high-performance anode for sodium ion battery[J]. Surface and Coatings Technology,2019,358:661-666. doi: 10.1016/j.surfcoat.2018.11.096
    [96] Sun Y, Yang Y, Shi X L, et al. N-doped silk wadding-derived carbon/SnOx@reduced graphene oxide film as an ultra-stable anode for sodium-ion half/full battery[J]. Chemical Engineering Journal,2021:133675.
    [97] Li R, Huang J, Li J, et al. Nitrogen-doped hard carbon on nickel foam as free-standing anodes for high-performance sodium-ion batteries[J]. ChemElectroChem,2020,7(3):604-613. doi: 10.1002/celc.201901770
    [98] Li H, Wang X, Zhao Z, et al. Ni2P nanoflake array/three dimensional graphene architecture as integrated free-standing anode for boosting the sodiation capability and stability[J]. ChemElectroChem,2019,6(2):404-412. doi: 10.1002/celc.201801387
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  520
  • HTML全文浏览量:  188
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-24
  • 录用日期:  2023-02-13
  • 修回日期:  2023-02-10
  • 网络出版日期:  2023-02-17
  • 刊出日期:  2023-04-07

目录

    /

    返回文章
    返回