-
摘要: 凭借着钠资源储量丰富和成本优势,钠离子电池在电化学储能领域有望成为锂离子电池的重要补充。作为钠离子电池负极材料,炭及其复合材料可以通过合理的结构设计和组分调控获得优异的储钠性能。随着可穿戴电子器件日益普及,人们对电极提出了更高的性能要求。自支撑电极无需使用电化学惰性的黏结剂和导电添加剂等组分,有利于提升电池体系能量密度。本文总结了近年来钠离子电池用自支撑炭基电极材料的最新研究进展,包括碳纳米纤维、碳纳米管、石墨烯及其复合材料,从基底有无的角度详细综述并讨论了自支撑炭基负极的制备策略及其电化学性能,最后对钠离子电池用自支撑炭基负极材料的未来挑战和发展进行了展望。Abstract: Sodium-ion batteries (SIBs) have received extensive research interest as an important alternative to lithium-ion batteries in the electrochemical energy storage field by virtue of the abundant reserves and low-cost of sodium. In the past few years, carbon and its composite materials used as anode materials have shown excellent sodium storage properties through structural design and composition regulation. The increasing popularity of wearable electronics has demanded higher requirements for electrode materials. A free-standing electrode is able to eliminate the massive use of electrochemical inactive binders and conductive additives, thereby increasing the overall energy density of the battery system. Research progress on carbon materials such as carbon nanofibers, carbon nanotubes and graphene and their composites (metallic compounds and alloy-type materials) is summarized. The preparation strategies and electrochemical properties of free-standing carbon-based anodes with and without substrates are categorized and reviewed. Finally, proposals are made for future research and developments for free-standing carbon-based anodes for SIBs.
-
Figure 3. (a) Schematic illustration of the fabrication for porous CNFs. (b) Na-ion diffusion mechanism of freestanding porous CNFs electrode. Reproduced with permission[41]. Copyright 2014, Royal Society of Chemistry. (c) Schematic of the preparation for N-doped CNFs. (d) Rate capability of N-doped CNFs. Reproduced with permission[42]. Copyright 2016, Wiley–VCH. (e) Schematic illustration of the synthesis for P-doped CFs. (f) Slope and plateau capacity comparison of CNFs and P-doped CNFs. Reproduced with permission[43]. Copyright 2018, American Chemical Society
Figure 4. (a) TEM image of FeP@NPC. (Inset shows flexibility of FeP@NPC film.) (b) Cycling performance of FeP@NPC electrode at 1 A g−1. Reproduced with permission[55]. Copyright 2020, Elsevier. (c) Schematic of the preparation process for CoTe2@NMCNFs. (d) SEM image of CoTe2@NMCNFs. (e) N2 adsorption–desorption isotherms of CoTe2@NMCNFs and CoTe2@NCNFs. Reproduced with permission[56]. Copyright 2021, American Chemical Society. (f) Schematic illustration of the preparation for Sn NDs@PNC nanofibers. (g) Digital photos of electrospinning product before and after calcination. (h) Electrochemical performance of Sn NDs@PNC with different Sn contents. (Inset shows the HRTEM of Sn dots before and after cycling.) Reproduced with permission[32]. Copyright 2015, Wiley-VCH
Figure 5. (a) Schematic illustration of the preparation for NCP@FCNT-FS film. (b) SEM image of 2D Ni1.5Co0.5Px nanosheets. (c) Digital image of the bending film. (d) Rate capacities of NCP/C, NCP/CNT, and NCP@FCNT-FS. Reproduced with permission[64]. Copyright 2018, Wiley–VCH. (e) Schematic illustration of construction for Fe1−xS@PCNWs/rGO paper. (f) Digital images for various deformations, (g) SEM images, and (h) cycling stabilities for different mass loading of Fe1−xS@PCNWs/rGO. Reproduced with permission[65]. Copyright 2019, Wiley–VCH. (i) Schematic illustration of preparation for P@NGCA. (j) Compressive stress–strain curves and (k) electronic conductivity of GA, GCA, and NGCA. (l) Cycling performance of P@NGCA. Reproduced with permission[69]. Copyright 2022, Royal Society of Chemistry
Figure 6. (a) Schematic of the preparation process for 1T-MoS2/CC. SEM image of (b) MoO3/CC and (c) 1T-MoS2/CC. Reproduced with permission[79]. Copyright 2018, Royal Society of Chemistry. (d) Model diagram, (e) SEM image of CoxP@CFC, and (f) P 2p XPS analysis of CoxP@CFC. (g) TEM image of mixed-valence CoxP. (h) Comparison of cycling performance at 0.1 A g−1. Reproduced with permission[82]. Copyright 2022, Wiley–VCH. (i) Schematic diagram of the morphology change and (j) Na+ diffusion coefficient comparison of CoP@PPy NWs/CP and CoP NWs/CP during cycling processes. Reproduced with permission[85]. Copyright 2018, Wiley–VCH
Figure 7. (a) Digital photographs and schematic diagram of preparation for MFCPs. (b) HRTEM of MFCP-1300. (c) ICE and (d) slope/plateau capacity of a series of MFCPs at 20 mA g−1. Reproduced with permission[92]. Copyright 2021, Elsevier. (e) Schematic of the preparation process for MoS2@CSC. (f) Top and sectional SEM images and (g) Rate performance of MoS2@CSC. Reproduced with permission[93]. Copyright 2019, American Chemical Society. (h) Schematic diagram of 3D carbon-networks/Fe7S8/graphene. (i) SEM image and flexibility display of CFG. (j) Na storage performance of CFG. Reproduced with permission[94]. Copyright 2019, Wiley–VCH
Table 1. The reported synthetic methods and electrochemical properties of free-standing carbon-based anodes for SIBs
Substrate Materials Synthetic methods ICE Electrochemical performance Ref. Free Porous CNFs Soft template and electrospinning 53.5% 266 mAh g−1@0.05 A g−1 after 100 cycles [41] N-doped CNFs Electrospinning - 377 mAh g−1@0.1 A g−1 after 100 cycles [42] N/S co-doped CNFs Electrospinning 62.0% 336 mAh g−1@0.05 A g−1 after 100 cycles [48] P-doped CNFs Electrospinning 55.7% 253 mAh g−1@0.05 A g−1 after 200 cycles [43] FeP@NPC Electrospinning and phosphatization 49.0% 391 mAh g−1@0.1 A g−1 after 1000 cycles [55] CoTe2@NMCNFs Electrospinning and tellurization 57.1% 261.2 mAh g−1@0.2 A g−1 after 300 cycles [56] Sn NDs@PNC Electrospinning 70.0% 483 mAh g−1@2 A g−1 after 1300 cycles [32] P/CFs@RGO Electrospinning and vaporization condensation 73.8% 406.6 mAh g−1@1 A g−1 after 180 cycles [57] Sn/CFC Electrospinning 42.3% 255 mAh g−1@0.05 A g−1 after 200 cycles [58] Bi/CNFs Electrospinning 53.0% 186 mAh g−1@0.05 A g−1 after 100 cycles [59] SbNP@C Electrospinning 55.5% 350 mAh g−1@0.1 A g−1 after 300 cycles [60] NCP@FCNT-FS Phosphatization and vacuum filtration - 196.6 mAh g−1@0.5 C after 100 cycles [64] Fe1−xS@PCNWs/rGO Vacuum filtration and sulfuration 66.2% 573 mAh g−1@0.1 A g−1 after 100 cycles [65] P@NGCA Freeze-drying and vaporization condensation 80.0% 538 mAh g−1@0.2 A g−1 after 100 cycles [69] NS-C film Vapor phase polymerization - 379.1 mAh g−1@0.1 A g−1 after 1000 cycles [73] CC 1T-MoS2/CC Hydrothermal and sulfuration 77.7% 576 mAh g−1@0.2 A g−1 after 200 cycles [79] CC SnS2@graphene nanosheet Hydrothermal 57.4% 378 mAh g−1@1.2 A g−1 after 200 cycles [80] CC CoxP@CFC Hydrothermal and phosphatization 69.4% 814 mAh g−1@0.1 A g−1 after 100 cycles [82] CC Sb2O3/CC Solvothermal 84.5% 900 mAh g−1@0.05 A g−1 after 100 cycles [83] CP CoP@PPy NWs/CP Hydrothermal, phosphization, and polymerization 69.1% 0.521 mAh cm−2@0.15 mA cm−2 after 100 cycles [85] CP MoS2@C Hydrothermal and calcintion 79.4% 286 mAh g−1@0.08 A g−1 after 100 cycles [87] CP 3D Sn@CNT-CP Freezing-drying and chemical vapourdeposition 81.7% 0.455 mAh cm−2@0.25 mA cm−2 after 100 cycles [86] CF CoP4/CF Hydrothermal and phosphatization - 851 mAh g−1@0.3 A g−1 after 300 cycles [88] Cotton CFG Vacuum drying and calcintion 81.0% 0.75 mAh cm−2@6 mA cm−2 after 5000 cycles [94] Cotton HCF-V2O5 Hydrothermal 69.4% 184 mAh g−1@0.05 A g−1 after 100 cycles [95] Silk N-SWC/SnOx@rGO Freezing-drying and calcintion 84.1% 572.2 mAh g−1@0.1 A g−1 after 100 cycles [96] Ni foam NC/NF Hydrothermal reactions 63.1% 225.4 mAh g−1@5 A g−1 after 1000 cycles [97] Ni foam Ni2P/3DG Chemical vapor deposition and hydrothermal reactions 88.3% 212.4 mAh g−1@0.1 A g−1 after 200 cycles [98] -
[1] Mathis T, Kurra N, Wang X, et al. Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems[J]. Advanced Energy Materials,2019,9(39):1902007. doi: 10.1002/aenm.201902007 [2] Sun H, Zhu J, Baumann D, et al. Hierarchical 3D electrodes for electrochemical energy storage[J]. Nature Reviews Materials,2019,4(1):45-60. [3] Tang Y, Zhang Y, Li W, et al. Rational material design for ultrafast rechargeable lithium-ion batteries[J]. Chemical Society Reviews,2015,44(17):5926-5940. doi: 10.1039/C4CS00442F [4] Goriparti S, Miele E, De Angelis F, et al. Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources,2014,257:421-443. doi: 10.1016/j.jpowsour.2013.11.103 [5] Xu Z L, Park J, Yoon G, et al. Graphitic carbon materials for advanced sodium-ion batteries[J]. Small Methods,2019,3(4):1800227. doi: 10.1002/smtd.201800227 [6] Jiang M, Hou Z, Wang J, et al. Balanced coordination enables low-defect Prussian blue for superfast and ultrastable sodium energy storage[J]. Nano Energy,2022,102:107708. doi: 10.1016/j.nanoen.2022.107708 [7] Xiao Y, Abbasi N M, Zhu Y F, et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries[J]. Advanced Functional Materials,2020,30(30):2001334. doi: 10.1002/adfm.202001334 [8] Gu Z Y, Guo J Z, Cao J M, et al. An advanced high‐entropy fluorophosphate cathode for sodium-ion batteries with increased working voltage and energy density[J]. Advanced Materials,2022,34(14):2110108. doi: 10.1002/adma.202110108 [9] Feng P, Wang W, Wang K, et al. Na3V2(PO4)3/C synthesized by a facile solid-phase method assisted with agarose as a high-performance cathode for sodium-ion batteries[J]. Journal of Materials Chemistry A,2017,5(21):10261-10268. doi: 10.1039/C7TA01946G [10] Hou H, Qiu X, Wei W, et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials,2017,7(24):1602898. doi: 10.1002/aenm.201602898 [11] Lu Y, Zhao C, Qi X, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials,2018,8(27):1800108. doi: 10.1002/aenm.201800108 [12] Yan J, Li H, Wang K, et al. Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode[J]. Advanced Energy Materials,2021,11(21):2003911. doi: 10.1002/aenm.202003911 [13] Wang Y X, Lai W H, Wang Y X, et al. Sulfur-based electrodes that function via multielectron reactions for room-temperature sodium-ion storage[J]. Angewandte Chemie International Edition,2019,58(51):18324-18337. doi: 10.1002/anie.201902552 [14] Zhou K, Wang S, Guo X, et al. Bismuth nanoparticles encapsulated in nitrogen-rich porous carbon nanofibers as a high-performance anode for aqueous alkaline rechargeable batteries[J]. Small,2021,18(7):2105770. [15] Yang G, Ilango P, Wang S, et al. Carbon-based alloy-type composite anode materials toward sodium-ion batteries[J]. Small,2019,15(22):1900628. doi: 10.1002/smll.201900628 [16] Sun Y, Wu Q, Liang X, et al. Recent developments in carbon-based materials as high-rate anode for sodium ion batteries[J]. Materials Chemistry Frontiers,2021,5(11):4089-4106. doi: 10.1039/D0QM01124J [17] Zhang T, Ran F. Design strategies of 3D carbon-based electrodes for charge/ion transport in lithium ion battery and sodium ion battery[J]. Advanced Functional Materials,2021,31(17):2010041. doi: 10.1002/adfm.202010041 [18] Bin D S, Li Y, Sun Y G, et al. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode[J]. Advanced Energy Materials,2018,8(26):1800855. doi: 10.1002/aenm.201800855 [19] Li R R, Yang Z, He X X, et al. Binders for sodium-ion batteries: progress, challenges and strategies[J]. Chemical Communications,2021,57(93):12406-12416. doi: 10.1039/D1CC04563F [20] Liu W, Liu W, Jiang Y, et al. Binder-free electrodes for advanced potassium-ion batteries: A review[J]. Chinese Chemical Letters,2021,32(4):1299-1308. doi: 10.1016/j.cclet.2020.08.032 [21] Jache B, Adelhelm P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J]. Angewandte Chemie International Edition,2014,53(38):10169-73. doi: 10.1002/anie.201403734 [22] Kim H, Hong J, Park Y, et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Advanced Functional Materials,2015,25(4):534-541. doi: 10.1002/adfm.201402984 [23] Stevens D, Dahn J. High capacity anode materials for rechargeable sodium‐ion batteries[J]. Journal of the Electrochemical Society,2000,147(4):1271. doi: 10.1149/1.1393348 [24] Stevens D, Dahn J. The mechanisms of lithium and sodium insertion in carbon materials[J]. Journal of the Electrochemical Society,2001,148(8):A803. doi: 10.1149/1.1379565 [25] Ding J, Wang H, Li Z, et al. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano,2013,7(12):11004-11015. doi: 10.1021/nn404640c [26] Zhang B, Ghimbeu C, Laberty C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials,2016,6(1):1501588. doi: 10.1002/aenm.201501588 [27] Bommier C, Surta T, Dolgos M, et al. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Letters,2015,15(9):5888-5892. doi: 10.1021/acs.nanolett.5b01969 [28] Ni J, Li L, Lu J. Phosphorus: An anode of choice for sodium-ion batteries[J]. ACS Energy Letters,2018,3(5):1137-1144. doi: 10.1021/acsenergylett.8b00312 [29] Lao M, Zhang Y, Luo W, et al. Alloy-based anode materials toward advanced sodium-ion batteries[J]. Advanced Materials,2017,29(48):1700622. doi: 10.1002/adma.201700622 [30] Chevrier V L, Ceder G. Challenges for Na-ion negative electrodes[J]. Journal of the Electrochemical Society,2011,158(9):A1011. doi: 10.1149/1.3607983 [31] Sun J, Lee H W, Pasta M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries[J]. Energy Storage Materials,2016,4:130-136. doi: 10.1016/j.ensm.2016.04.003 [32] Liu Y, Zhang N, Jiao L, et al. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J]. Advanced Materials,2015,27(42):6702-6707. doi: 10.1002/adma.201503015 [33] Yin H, Li Q, Cao M, et al. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries[J]. Nano Research,2017,10(6):2156-2167. doi: 10.1007/s12274-016-1408-z [34] David L, Bhandavat R, Singh G. MoS2/graphene composite paper for sodium-ion battery electrodes[J]. ACS Nano,2014,8(2):1759-1770. doi: 10.1021/nn406156b [35] Liu Y, Zhang N, Kang H, et al. WS2 nanowires as a high-performance anode for sodium-ion batteries[J]. Chemistry – A European Journal,2015,21(33):11878-11884. doi: 10.1002/chem.201501759 [36] Ou X, Xiong X, Zheng F, et al. In situ X-ray diffraction characterization of NbS2 nanosheets as the anode material for sodium ion batteries[J]. Journal of Power Sources,2016,325:410-416. doi: 10.1016/j.jpowsour.2016.06.055 [37] Li C, Qiu M, Li R, et al. Electrospinning engineering enables high-performance sodium-ion batteries[J]. Advanced Fiber Materials,2022,4(1):43-65. doi: 10.1007/s42765-021-00088-6 [38] Hou Z, Jiang M, Cao Y, et al. Encapsulating ultrafine cobalt sulfides into multichannel carbon nanofibers for superior Li-ion energy storage[J]. Journal of Power Sources,2022,541:231682. doi: 10.1016/j.jpowsour.2022.231682 [39] Guo X, Zhang X, Song H, et al. Electrospun cross-linked carbon nanofiber films as free-standing and binder-free anodes with superior rate performance and long-term cycling stability for sodium ion storage[J]. Journal of Materials Chemistry A,2017,5(40):21343-21352. doi: 10.1039/C7TA05621D [40] Cheng A, Zhang H, Zhong W, et al. Enhanced electrochemical properties of single-layer MoS2 embedded in carbon nanofibers by electrospinning as anode materials for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry,2019,843:31-36. doi: 10.1016/j.jelechem.2019.04.059 [41] Li W, Zeng L, Yang Z, et al. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers[J]. Nanoscale,2014,6(2):693-698. doi: 10.1039/C3NR05022J [42] Wang S, Xia L, Yu L, et al. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability[J]. Advanced Energy Materials,2016,6(7):1502217. doi: 10.1002/aenm.201502217 [43] Wu F, Dong R, Bai Y, et al. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2018,10(25):21335-21342. [44] Zhao G, Yu D, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy,2020,67:104219. doi: 10.1016/j.nanoen.2019.104219 [45] Zhou J, Lian J, Hou L, et al. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres[J]. Nature communications,2015,6:8503. doi: 10.1038/ncomms9503 [46] Yuan Y, Chen Z, Yu H, et al. Heteroatom-doped carbon-based materials for lithium and sodium ion batteries[J]. Energy Storage Materials,2020,32:65-90. doi: 10.1016/j.ensm.2020.07.027 [47] Yin B, Liang S, Yu D, et al. Increasing accessible subsurface to improving rate capability and cycling stability of sodium-ion batteries[J]. Advanced Materials,2021,33(37):2100808. doi: 10.1002/adma.202100808 [48] Sun X, Wang C, Gong Y, et al. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage[J]. Small,2018,14(35):1802218. doi: 10.1002/smll.201802218 [49] Li Y, Yuan Y, Bai Y, et al. Insights into the Na+ storage mechanism of phosphorus‐functionalized hard carbon as ultrahigh capacity anodes[J]. Advanced Energy Materials,2018,8(18):1702781. doi: 10.1002/aenm.201702781 [50] Chen Z, Duan H, Xu Z, et al. Fast sodium storage with ultralong cycle life for nitrogen doped hollow carbon nanofibers anode at elevated temperature[J]. Advanced Materials Interfaces,2020,7(9):1901922. doi: 10.1002/admi.201901922 [51] Yuan B, Zeng L, Sun X, et al. Enhanced sodium storage performance in flexible free-standing multichannel carbon nanofibers with enlarged interlayer spacing[J]. Nano Research,2018,11(4):2256-2264. doi: 10.1007/s12274-017-1847-1 [52] Ding C, Huang L, Lan J, et al. Superresilient hard carbon nanofabrics for sodium-ion batteries[J]. Small,2020,16(11):e1906883. doi: 10.1002/smll.201906883 [53] Qi Y, Fan W, Nan G. Free-standing, binder-free polyacrylonitrile/asphalt derived porous carbon fiber-A high capacity anode material for sodium-ion batteries[J]. Materials Letters,2017,189:206-209. doi: 10.1016/j.matlet.2016.11.085 [54] Wang Y, Xiao N, Wang Z, et al. Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries[J]. Carbon,2018,135:187-194. doi: 10.1016/j.carbon.2018.04.031 [55] Shi S, Li Z, Shen L, et al. Electrospun free-standing FeP@NPC film for flexible sodium ion batteries with remarkable cycling stability[J]. Energy Storage Materials,2020,29:78-83. doi: 10.1016/j.ensm.2020.03.029 [56] Zhang W, Wang X, Wong K W, et al. Rational design of embedded CoTe2 nanoparticles in freestanding N-doped multichannel carbon fibers for sodium-ion batteries with ultralong cycle lifespan[J]. ACS Applied Materials & Interfaces,2021,13(29):34134-34144. [57] Ma X, Chen L, Ren X, et al. High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries[J]. Journal of Materials Chemistry A,2018,6(4):1574-1581. doi: 10.1039/C7TA07762A [58] He W, Chen K, Pathak R, et al. High-mass-loading Sn-based anode boosted by pseudocapacitance for long-life sodium-ion batteries[J]. Chemical Engineering Journal,2021,414:128638. doi: 10.1016/j.cej.2021.128638 [59] Jin Y, Yuan H, Lan J L, et al. Bio-inspired spider-web-like membranes with a hierarchical structure for high performance lithium/sodium ion battery electrodes: the case of 3D freestanding and binder-free bismuth/CNF anodes[J]. Nanoscale,2017,9(35):13298-13304. doi: 10.1039/C7NR04912A [60] Zhu Y, Han X, Xu Y, et al. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode[J]. ACS Nano,2013,7(7):6378-6386. doi: 10.1021/nn4025674 [61] Zhang Y, Xia X, Liu B, et al. Multiscale graphene-based materials for applications in sodium ion batteries[J]. Advanced Energy Materials,2019,9(8):1803342. doi: 10.1002/aenm.201803342 [62] Tao F, Liu Y, Ren X, et al. Carbon nanotube-based nanomaterials for high-performance sodium-ion batteries: Recent advances and perspectives[J]. Journal of Alloys and Compounds,2021,873:159742. doi: 10.1016/j.jallcom.2021.159742 [63] Wen L, Li F, Cheng H M. Carbon nanotubes and graphene for flexible electrochemical energy storage: From materials to devices[J]. Advanced Materials,2016,28(22):4306-4337. doi: 10.1002/adma.201504225 [64] Wang X W, Guo H P, Liang J, et al. An integrated free-standing flexible electrode with holey-structured 2D bimetallic phosphide nanosheets for sodium-ion batteries[J]. Advanced Functional Materials,2018,28(26):1801016. doi: 10.1002/adfm.201801016 [65] Liu Y, Fang Y, Zhao Z, et al. A ternary Fe1−xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries[J]. Advanced Energy Materials,2019,9(9):1803052. doi: 10.1002/aenm.201803052 [66] Lu Y, Zhang N, Jiang S, et al. High-capacity and ultrafast Na-ion storage of a self-supported 3D porous antimony persulfide–graphene foam architecture[J]. Nano Letters,2017,17(6):3668-3674. doi: 10.1021/acs.nanolett.7b00889 [67] Liu Y, Zhang A, Shen C, et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries[J]. ACS Nano,2017,11(6):5530-5537. doi: 10.1021/acsnano.7b00557 [68] Liu Y, Yang Y, Wang X, et al. Flexible paper-like free-standing electrodes by anchoring ultrafine SnS2 nanocrystals on graphene nanoribbons for high-performance sodium ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(18):15484-15491. [69] Sun Y, Wu Q, Zhang K, et al. A high areal capacity sodium-ion battery anode enabled by a free-standing red phosphorus@N-doped graphene/CNTs aerogel[J]. Chemical Communications,2022,58(51):7120-7123. doi: 10.1039/D2CC02265F [70] Li J, Qin W, Xie J, et al. Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries[J]. Chemical Engineering Journal,2018,332:260-266. doi: 10.1016/j.cej.2017.09.088 [71] Zhang J, Li C, Peng Z, et al. 3D free-standing nitrogen-doped reduced graphene oxide aerogel as anode material for sodium ion batteries with enhanced sodium storage[J]. Scientific Reports,2017,7(1):4886. doi: 10.1038/s41598-017-04958-1 [72] Zhang W, Pan Z Z, Lv W, et al. Wasp nest-imitated assembly of elastic rGO/p-Ti3C2Tx MXene-cellulose nanofibers for high-performance sodium-ion batteries[J]. Carbon,2019,153:625-633. doi: 10.1016/j.carbon.2019.07.040 [73] Ruan J, Yuan T, Pang Y, et al. Nitrogen and sulfur dual-doped carbon films as flexible free-standing anodes for Li-ion and Na-ion batteries[J]. Carbon,2018,126:9-16. doi: 10.1016/j.carbon.2017.09.099 [74] Zhang Q, Liu X, Yan L, et al. Designing and preparing a 3D “overpass” hierarchical porous carbon membranes free-standing anode for sodium ion battery[J]. Chemical Engineering Journal,2022,448:137628. doi: 10.1016/j.cej.2022.137628 [75] Zhang X, Wan Y, Yang K, et al. Cotton cloth-induced flexible hierarchical carbon film for sodium-ion batteries[J]. ChemElectroChem,2020,7(9):2136-2144. doi: 10.1002/celc.202000407 [76] Guo J Z, Gu Z Y, Zhao X X, et al. Flexible Na/K-ion full batteries from the renewable cotton cloth-derived stable, low-cost, and binder-free anode and cathode[J]. Advanced Energy Materials,2019,9(38):1902056. doi: 10.1002/aenm.201902056 [77] Long B, Ma J, Song T, et al. Tailoring superficial morphology, defect and functional group of commercial carbon cloth for a flexible, stable and high-capacity anode in sodium ion battery[J]. Electrochimica Acta,2021,374:137934. doi: 10.1016/j.electacta.2021.137934 [78] Li T, Liu Z, Gu Y, et al. Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency[J]. Journal of Alloys and Compounds,2020,817:152703. doi: 10.1016/j.jallcom.2019.152703 [79] Tang W J, Wang X L, Xie D, et al. Hollow metallic 1T MoS2 arrays grown on carbon cloth: A freestanding electrode for sodium ion batteries[J]. Journal of Materials Chemistry A,2018,6(37):18318-18324. doi: 10.1039/C8TA06905K [80] Xu W, Zhao K, Zhang L, et al. SnS2@Graphene nanosheet arrays grown on carbon cloth as freestanding binder-free flexible anodes for advanced sodium batteries[J]. Journal of Alloys and Compounds,2016,654:357-362. doi: 10.1016/j.jallcom.2015.09.050 [81] Long B, Zhang J, Luo L, et al. High pseudocapacitance boosts the performance of monolithic porous carbon cloth/closely packed TiO2 nanodots as an anode of an all-flexible sodium-ion battery[J]. Journal of Materials Chemistry A,2019,7(6):2626-2635. doi: 10.1039/C8TA09678C [82] Yuan G, Liu D, Feng X, et al. In situ fabrication of porous CoxP hierarchical nanostructures on carbon fiber cloth with exceptional performance for sodium storage[J]. Advanced Materials,2022,34(23):2108985. doi: 10.1002/adma.202108985 [83] Fei J, Cui Y, Li J, et al. A flexible Sb2O3/carbon cloth composite as a free-standing high performance anode for sodium ion batteries[J]. Chemical Communications,2017,53(98):13165-13167. doi: 10.1039/C7CC06945F [84] Pan P, Chen L, Wang F, et al. Cu2NiSnS4 nanosphere array on carbon cloth as free-standing and binder-free electrodes for energy storage[J]. Electrochimica Acta,2018,260:305-313. doi: 10.1016/j.electacta.2017.12.081 [85] Zhang J, Zhang K, Yang J, et al. Bifunctional conducting polymer coated CoP core–shell nanowires on carbon paper as a free-standing anode for sodium ion batteries[J]. Advanced Energy Materials,2018,8(20):1800283. doi: 10.1002/aenm.201800283 [86] Xie X, Kretschmer K, Zhang J, et al. Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries[J]. Nano Energy,2015,13:208-217. doi: 10.1016/j.nanoen.2015.02.022 [87] Xie X, Makaryan T, Zhao M, et al. MoS2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries[J]. Advanced Energy Materials,2016,6(5):1502161. doi: 10.1002/aenm.201502161 [88] Sun D, Zhu X, Luo B, et al. New binder-free metal phosphide-carbon felt composite anodes for sodium-ion battery[J]. Advanced Energy Materials,2018,8(26):1801197. doi: 10.1002/aenm.201801197 [89] Wang M, Yang Z, Li W, et al. Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network[J]. Small,2016,12(19):2559-2566. doi: 10.1002/smll.201600101 [90] Wang M, Yang Y, Yang Z, et al. Sodium-ion batteries: Improving the rate capability of 3D interconnected carbon nanofibers thin film by boron, nitrogen dual-doping[J]. Advanced Science,2017,4(4):1600468. doi: 10.1002/advs.201600468 [91] Yang H, Xu R, Yu Y. A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial Coulombic efficiency: Free-standing porous carbon nanofiber film derived from bacterial cellulose[J]. Energy Storage Materials,2019,22:105-112. doi: 10.1016/j.ensm.2019.01.003 [92] Ren Q, Wang J, Yan L, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior[J]. Chemical Engineering Journal,2021,425:131656. doi: 10.1016/j.cej.2021.131656 [93] Zheng S, Feng D, Xu L, et al. Confined iterative self-assembly of ultrathick freestanding electrodes with vertically aligned channels for high areal capacity sodium-ion batteries[J]. ACS Materials Letters,2022,4(2):432-439. doi: 10.1021/acsmaterialslett.1c00806 [94] Chen W, Zhang X, Mi L, et al. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/graphene for applicable sodium-ion batteries[J]. Advanced Materials,2019,31(8):1806664. doi: 10.1002/adma.201806664 [95] Zhang X, Liu X, Yang C, et al. A V2O5-nanosheets-coated hard carbon fiber fabric as high-performance anode for sodium ion battery[J]. Surface and Coatings Technology,2019,358:661-666. doi: 10.1016/j.surfcoat.2018.11.096 [96] Sun Y, Yang Y, Shi X L, et al. N-doped silk wadding-derived carbon/SnOx@reduced graphene oxide film as an ultra-stable anode for sodium-ion half/full battery[J]. Chemical Engineering Journal,2021:133675. [97] Li R, Huang J, Li J, et al. Nitrogen-doped hard carbon on nickel foam as free-standing anodes for high-performance sodium-ion batteries[J]. ChemElectroChem,2020,7(3):604-613. doi: 10.1002/celc.201901770 [98] Li H, Wang X, Zhao Z, et al. Ni2P nanoflake array/three dimensional graphene architecture as integrated free-standing anode for boosting the sodiation capability and stability[J]. ChemElectroChem,2019,6(2):404-412. doi: 10.1002/celc.201801387 -