留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reversible surface modification of PAN-based carbon fibers by a ferrocene-based surfactant

ZHANG Xiao-fang YAO Ting-ting LIU Yu-ting WU Gang-ping

张晓芳, 姚婷婷, 刘玉婷, 吴刚平. 二茂铁表面活性剂在聚丙烯腈基炭纤维表面的可逆修饰. 新型炭材料(中英文), 2023, 38(5): 989-996. doi: 10.1016/S1872-5805(23)60728-0
引用本文: 张晓芳, 姚婷婷, 刘玉婷, 吴刚平. 二茂铁表面活性剂在聚丙烯腈基炭纤维表面的可逆修饰. 新型炭材料(中英文), 2023, 38(5): 989-996. doi: 10.1016/S1872-5805(23)60728-0
ZHANG Xiao-fang, YAO Ting-ting, LIU Yu-ting, WU Gang-ping. Reversible surface modification of PAN-based carbon fibers by a ferrocene-based surfactant. New Carbon Mater., 2023, 38(5): 989-996. doi: 10.1016/S1872-5805(23)60728-0
Citation: ZHANG Xiao-fang, YAO Ting-ting, LIU Yu-ting, WU Gang-ping. Reversible surface modification of PAN-based carbon fibers by a ferrocene-based surfactant. New Carbon Mater., 2023, 38(5): 989-996. doi: 10.1016/S1872-5805(23)60728-0

二茂铁表面活性剂在聚丙烯腈基炭纤维表面的可逆修饰

doi: 10.1016/S1872-5805(23)60728-0
基金项目: 山西省科技重大专项项目(20181101020);山西煤化所自主创新项目-基础研究项目(SCJC-HN-2022-15)
详细信息
    通讯作者:

    吴刚平,博士,研究员. E-mail:wgp@sxicc.ac.cn

  • 中图分类号: TB33

Reversible surface modification of PAN-based carbon fibers by a ferrocene-based surfactant

Funds: Major Science and Technology Projects of Shanxi Province (20181101020), Independent Innovation Fund Project of Shanxi Institute of Coal Chemistry-Basic Research Project Supported by ICC CAS (SCJC-HN-2022-15)
More Information
  • 摘要: 采用电化学可逆表面活性剂(二茂铁)十二烷基二甲基溴化铵(FDDA)对炭纤维进行表面改性。结果表明,FDDA能够在炭纤维表面进行吸附及电化学脱附,实现可逆的表面改性。同时证实了FDDA主要通过非静电相互作用在炭纤维表面以多分子层的方式进行吸附。此外,通过单丝拉伸断裂法探究了FDDA改性炭纤维对炭纤维/环氧树脂界面性能的影响。与未改性的炭纤维相比,FDDA改性的炭纤维与环氧树脂之间的界面黏结性能得到明显改善。
  • FIG. 2660.  FIG. 2660.

    FIG. 2660..  FIG. 2660.

    Figure  1.  Structure of FDDA

    Figure  2.  SEM images of CFs: (a) before adsorption, (b) after adsorption (0.8 mmol/L, lower than CMC), (c) after adsorption (1.6 mmol/L, higher than CMC), (d) after adsorption and electrochemical desorption

    Figure  3.  FDDA adsorption isotherm for CFs and the fitting curve with the Langmuir (solid line) and Freundlich (dotted line) models

    Figure  4.  The adsorbed amount of FDDA on CFs under different temperatures

    Figure  5.  (a) Effect of pH value on the adsorption of FDDA on the CFs and (b) Narrow spectrum of N1s region

    Figure  6.  The tensile strength Weibull distribution curves for (a) bare CFs, (b) FDDA-adsorbed CFs, (c) FDDA-adsorbed and then electrochemically desorbed CFs

    Figure  7.  The optical photos and corresponding contact angles of epoxy resin droplets on (a) the as-received CFs and (b) the FDDA-adsorbed CFs

    Figure  8.  The birefringence patterns of the unidirectional single-CF model composites after single-filament tensile fragmentation tests: (a) the as-received CFs and (b) the FDDA-adsorbed CFs

    Table  1.   The relative contents of surface elements on the CFs

    Element
    content/%
    CFs
    Before
    adsorption
    After
    adsorption
    After adsorption
    and desorption
    C87.0886.7880.85
    O9.738.1214.90
    N3.203.593.37
    Fe-1.500.88
    下载: 导出CSV

    Table  2.   Thermodynamics parameters for the adsorption of FDDA on the CFs

    T
    /(K)
    Kc
    /(L/kg)
    $\Delta {G}_{m}^{\theta } $
    /(kJ/mol)
    $\Delta {H}_{m}^{\theta } $
    /(kJ/mol)
    $\Delta {S}_{m}^{\theta } $
    /(J/(mol·K))
    293.558.21−9.91−3.6521.19
    303.553.09−10.02
    308.552.45−10.15
    313.552.45−10.32
    318.551.18−10.42
    323.549.91−10.51
    下载: 导出CSV
  • [1] Yan H, Hu D Q, Dai Y F, et al. Self-assembly of carbon nanomaterials onto carbon fiber to improve the interfacial properties of epoxy composites[J]. Journal of Materials Science and Technology,2023,161:44-49. doi: 10.1016/j.jmst.2023.04.004
    [2] Dong Z J, Sun B, Zhu H, ey al. A review of aligned carbon nanotube arrays and carbon/carbon composites: fabrication, thermal conduction properties and applications in thermal management[J]. New Carbon Materials,2021,36(5):873-896.
    [3] Zeng N, Liu H Y, Gao J F, et al. Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves[J]. Composites Part B:Engineering,2019,171:320-328. doi: 10.1016/j.compositesb.2019.05.004
    [4] Li C, Dong Y, Yuan X M, et al. Two-step method to realize continuous multi-wall carbon nanotube grafted on the fibers to improve the interface of carbon fibers/epoxy resin composites based on the Diels-Alder reaction[J]. Carbon,2023,212:118131. doi: 10.1016/j.carbon.2023.118131
    [5] Li G, Yuan H, Mou J, et al. Electrochemical detection of nitrate with carbon nanofibers and copper co-modified carbon fiber electrodes[J]. Composites Communications,2022,29:101043. doi: 10.1016/j.coco.2021.101043
    [6] Yao X, Gao X, Jiang J, et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites[J]. Composites Part B:Engineering,2018,13:170-177.
    [7] Li S X, Yang C L, Yao L L, et al. Use a polyurethane sizing agent to improve the interfacial properties of carbon fiber-reinforced polyurethane composites[J]. Carbon,2023,209:118028. doi: 10.1016/j.carbon.2023.118028
    [8] Zhang, W, Deng X, Sui G, et al. Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites[J]. Carbon,2019,145:629-639. doi: 10.1016/j.carbon.2019.01.063
    [9] Osbeck S, Bradley R H, Liu C, et al. Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres[J]. Carbon,2011,49:4322-4330. doi: 10.1016/j.carbon.2011.06.005
    [10] Lee J, Lim J W, Kim M. Effect of thermoplastic resin transfer molding process and flame surface treatment on mechanical properties of carbon fiber reinforced polyamide 6 composite[J]. Polymer Composites,2020,41(4):1190-1202. doi: 10.1002/pc.25445
    [11] Andideh M Esfandeh M. Statistical optimization of treatment conditions for the electrochemical oxidation of PAN-based carbon fiber by response surface methodology: Application to carbon fiber/epoxy composite[J]. Composites Science and Technology,2016,134:132-143. doi: 10.1016/j.compscitech.2016.08.008
    [12] Scarselli G, Quan D, Prasad V, et al. Mode I fracture toughness of glass fibre reinforced thermoplastic composites after UV and atmospheric plasma treatments[J]. Composites Science and Technology,2023,236:109982. doi: 10.1016/j.compscitech.2023.109982
    [13] Li N, Cheng S, Wang B, et al. Chemical grafting of graphene onto carbon fiber to produce composites with improved interfacial properties via sizing process: A step closer to industrial production[J]. Composites Science and Technology,2023,231:109822. doi: 10.1016/j.compscitech.2022.109822
    [14] Jiang J, Yao X, Xu C, et al. Influence of electrochemical oxidation of carbon fiber on the mechanical properties of carbon fiber/graphene oxide/epoxy composites[J]. Composites Part A:Applied Science and Manufacturing,2017,95:248-256. doi: 10.1016/j.compositesa.2017.02.004
    [15] Altay L, Bozaci E, Atagur M, et al. The effect of atmospheric plasma treatment of recycled carbon fiber at different plasma powers on recycled carbon fiber and its polypropylene composites[J]. Journal of Applied Polymer Science,2018,136(9):47131.
    [16] Peng S H, Guo Q P, Hartley P G, et al. Azobenzene moiety variation directing self-assembly and photoresponsive behavior of azo-surfactants[J]. Journal of Materials Chemistry C,2014,2:8303-8312. doi: 10.1039/C4TC00321G
    [17] Tsuchiya K, Orihara Y, Kondo Y, et al. Control of viscoelasticity using redox reaction[J]. Journal of the American Chemical Society,2004,126:12282-12283. doi: 10.1021/ja0467162
    [18] Ren G, Wang L, Chen Q, et al. pH Switchable Emulsions Based on Dynamic Covalent Surfactants[J]. Langmuir,2017,33(12):3040-3046. doi: 10.1021/acs.langmuir.6b04546
    [19] Saji T, Hoshino K, Aoyagui S. Reversible formation and disruption of micelles by control of the redox state of the head group[J]. Journal of the American Chemical Society,1985,107:6865-6868. doi: 10.1021/ja00310a020
    [20] Zhang Y, Yang C, Guo S, et al. Tandem triggering of wormlike micelles using CO2 and Redox[J]. Composites Communications,2016,52:12717-20.
    [21] Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick[J]. Journal of Hazardous Materials,2006,135:264-273. doi: 10.1016/j.jhazmat.2005.11.062
    [22] Heinze J. Cyclic voltammetry-electrochemical spectroscopy[J]. Angewandte Chemie International Edition,1984,23:831-847. doi: 10.1002/anie.198408313
    [23] Paiva M C, Bernardo C A, Nardin M. Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres[J]. Carbon,2000,3:1323-1337.
    [24] Yao T T, Wu G P, Song C. Interfacial adhesion properties of carbon fiber/polycarbonate composites by using a single-filament fragmentation test[J]. Composites Science and Technology,2017,149:108-115. doi: 10.1016/j.compscitech.2017.06.017
    [25] Wu H F, Netrwavali A N. Weibull analysis of strength-length relationships in single Nicalon SiC fibres[J]. Journal of Materials Science,1992,27(12):3318-3324. doi: 10.1007/BF01116031
    [26] Lazzari L K, Zampieri V B, Neves R M, et al. A study on adsorption isotherm and kinetics of petroleum by cellulose cryogels[J]. Cellulose,2018,26:1231-1246.
    [27] Ho Y S, Porter J F, Mckay G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems[J]. Water, Air, and Soil Pollution,2002,141:1-33. doi: 10.1023/A:1021304828010
    [28] Takei T, Sakai H, Kondo Y, et al. Electrochemical control of solubilization using a ferrocene-modified nonionic surfactant[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2001,183-185:757-765. doi: 10.1016/S0927-7757(01)00502-7
    [29] Huang H, Fan Y F, Wang J W, et al. Adsorption kinetics and thermodynamics of water-insoluble crosslinked β-cyclodextrin polymer for phenol in aqueous solution[J]. Macromolecular Research,2013,21:726-731. doi: 10.1007/s13233-013-1086-6
    [30] Servinis L, Henderson L C, Andrighetto L M, et al. A novel approach to functionalise pristine unsized carbon fibre using in situ generated diazonium species to enhance interfacial shear strength[J]. Journal of Materials Chemistry A,2015,3:3360-3371. doi: 10.1039/C4TA04798B
    [31] Lachman N, Carey B J, Hashim D P, et al. Application of continuously-monitored single fiber fragmentation tests to carbon nanotube/carbon microfiber hybrid composites[J]. Composites Science and Technology,2012,72:1711-1717. doi: 10.1016/j.compscitech.2012.06.004
    [32] Shao Y, Xu F, Liu W, et al. Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber/bisphenol-F epoxy composite[J]. Composites Part B:Engineering,2017,125:195-202. doi: 10.1016/j.compositesb.2017.05.077
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  111
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 修回日期:  2020-07-06
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回