留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄无序结构还原氧化石墨烯/锂金属复合箔材的制备及电化学性质

毛尔洋 杜俊谋 段祥瑞 王伶月 王贤成 李国成 付林 孙永明

毛尔洋, 杜俊谋, 段祥瑞, 王伶月, 王贤成, 李国成, 付林, 孙永明. 超薄无序结构还原氧化石墨烯/锂金属复合箔材的制备及电化学性质. 新型炭材料(中英文), 2023, 38(4): 754-764. doi: 10.1016/S1872-5805(23)60729-2
引用本文: 毛尔洋, 杜俊谋, 段祥瑞, 王伶月, 王贤成, 李国成, 付林, 孙永明. 超薄无序结构还原氧化石墨烯/锂金属复合箔材的制备及电化学性质. 新型炭材料(中英文), 2023, 38(4): 754-764. doi: 10.1016/S1872-5805(23)60729-2
MAO Er-yang, DU Jun-mou, DUAN Xiang-rui, WANG Ling-yue, WANG Xian-cheng, LI Guo-cheng, FU Lin, SUN Yong-ming. Preparation and electrochemical performance of ultra-thin reduced graphene oxide/lithium metal composite foils. New Carbon Mater., 2023, 38(4): 754-764. doi: 10.1016/S1872-5805(23)60729-2
Citation: MAO Er-yang, DU Jun-mou, DUAN Xiang-rui, WANG Ling-yue, WANG Xian-cheng, LI Guo-cheng, FU Lin, SUN Yong-ming. Preparation and electrochemical performance of ultra-thin reduced graphene oxide/lithium metal composite foils. New Carbon Mater., 2023, 38(4): 754-764. doi: 10.1016/S1872-5805(23)60729-2

超薄无序结构还原氧化石墨烯/锂金属复合箔材的制备及电化学性质

doi: 10.1016/S1872-5805(23)60729-2
基金项目: 自然科学基金(No. 52272207)和中央高校基本科研业务费(HUST:2019JYCXJJ014)共同资助。
详细信息
    作者简介:

    毛尔洋,博士. E-mail:maoeryang@foxmail.com

    通讯作者:

    孙永明,教授. E-mail:yongmingsun@hust.edu.cn

  • 中图分类号: TM912

Preparation and electrochemical performance of ultra-thin reduced graphene oxide/lithium metal composite foils

Funds: Natural Science Foundation of China (52272207) and Basic Research Expenses of Central Universities (2019YCXJJ014).
More Information
  • 摘要: 超薄锂金属(≤50 μm)是下一代高比能锂金属电池负极选择。然而纯锂质软、易脆,机械加工性较差,导致超薄锂箔的制备工艺复杂、成本高昂;此外相比于较厚的锂金属负极,超薄锂金属负极常呈现更差的电化学循环性能。本文提出一种“自下而上”的策略制备10~50 μm厚度可控的超薄还原氧化石墨烯/锂金属(rGO/Li)复合箔材,其结构由大量无序随机的rGO片层非平行排列并均匀分散在锂金属内。首先将还原氧化石墨烯(rGO)粉片与熔融锂金属在200 °C下搅拌复合,获得微米级的还原氧化石墨烯/锂复合粉片,之后将复合粉片作为原材料进一步通过反复辊压制备出结构均匀、超薄的复合箔材,该方法具有一定的规模化潜力。不同于其他所报道的rGO层状薄膜结构,在复合箔材中rGO片层随机无序分散形成三维网络,有利于实现锂的均匀沉积/剥离。所制50 μm超薄无序结构rGO/Li复合箔材负极在对称电池中以1 mA cm−2、1 mAh cm−2条件在醚基电解液中可稳定循环1600 h以上,在与硫化聚丙烯腈(SPAN)正极组配全电池以0.2 C倍率循环220次后比容量高达~675 mAh g−1,优于使用同厚度纯锂负极的电池。
  • FIG. 2505.  FIG. 2505.

    FIG. 2505..  FIG. 2505.

    图  1  先复合-后辊压“自下而上”制备超薄无序结构rGO/Li复合箔材及其内部结构演变示意图

    Figure  1.  Schematic for the fabrication of ultra-thin rGO/Li composite foil via repeatedly mechanical calendaring using rGO/Li composite sheets as raw materials, where rGO sheets were randomly distributed in the as-fabricated composite foil

    图  2  (a)rGO粉片;(b)rGO/Li复合粉片;(c)超薄无序结构rGO/Li复合箔材;(d)超薄无序结构rGO/Li复合箔材极片的光学照片;(e)缠绕实验;(f)扭曲实验;(g)剪切实验;(h)复合箔材的XRD谱图;(i)50 μm复合箔材的平面SEM照片;(j)10 μm和(k)50 μm复合箔材的截面SEM图像;对应EDS(l)元素O和(m)元素C的分布图像

    Figure  2.  Optical images of (a) rGO sheets, (b) rGO/Li composite sheets, (c) ultra-thin rGO/Li composite foil, (d) ultra-thin rGO/Li composite foil electrode. Optical images of (e) winding test, (f) twisting test, and (g) shearing test for 50 μm-thick rGO/Li composite foil. (h) XRD pattern and (i) top-view SEM image of a 50 μm-thick rGO/Li composite foil. Cross-section SEM image of (j) 10 μm-thick and (k) 50 μm-thick rGO/Li composite foil. Corresponding EDS images of (l) O and (m) C elements

    图  3  50 μm超薄无序结构rGO/Li复合箔材在醚类电解液中(a)1 mA cm−2、1 mAh cm−2、(b)3 mA cm−2、1 mAh cm−2、(c)1 mA cm−2、3 mAh cm−2时和(d)在酯类电解液中1 mA cm−2、1 mAh cm−2时在对称电池中的电化学性能;内嵌图为标注的不同循环时的时间-电压曲线

    Figure  3.  Electrochemical cycling of 50 μm-thick rGO/Li composite electrode in symmetric cells at (a) 1 mA cm−2 with a fixed capacity of 1 mAh cm−2, (b) 3 mA cm−2 with a fixed capacity of 1 mAh cm−2, and (c) 1 mA cm−2 with a fixed capacity of 3 mAh cm−2 in ether-based electrolyte, and (d) 1 mA cm−2 with a fixed capacity of 1 mAh cm−2 in carbonate-based electrolyte. Inset figures show the potential curves for selected cycles

    图  4  50 μm超薄无序结构rGO/Li复合箔材在(a)未循环前和(b)循环50次时对称电池的电化学阻抗谱(酯类电解液);(c)超薄无序结构rGO/Li复合箔材和(d)纯锂在首次锂剥离后的SEM图像;(e)超薄无序结构rGO/Li复合箔材和(f)纯锂在首次锂沉积后的SEM图像

    Figure  4.  EIS of symmetric cells with 50 μm-thick rGO/Li composite foil electrodes (a) before cycling, (b) after 50 cycles in carbonate-based electrolyte. SEM images of (c) 50 μm-thick rGO/Li composite foils and (d) pure lithium foils after initial lithium stripping. SEM images of (e) 50 μm-thick rGO/Li composite foils and (f) pure lithium foils after initial lithium plating

    图  5  SPAN // 超薄rGO/Li复合箔材(50 μm)的全电池电化学性能:(a)循环-比容量和循环-库伦效率曲线;(b)1st、(c)5th、(d)100th、(e)150th循环的比容量-电压曲线

    Figure  5.  Electrochemical performance of SPAN // rGO/Li (50 μm) cell. (a) Specific capacity-cycle number plot and the corresponding CE on cycling. Corresponding voltage-specific capacity plots for the (b) 1st, (c) 5th, (d) 100th, and (e) 150th cycle

  • [1] Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews,2017,117(15):10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [2] Zhang J, Su Y, Zhang Y. Recent advances in research on anodes for safe and efficient lithium–metal batteries[J]. Nanoscale,2020,12(29):15528-15559. doi: 10.1039/D0NR03833D
    [3] Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology,2017,12(3):194-206. doi: 10.1038/nnano.2017.16
    [4] Zhang Y, Zuo T T, Popovic J, et al. Towards better Li metal anodes: challenges and strategies[J]. Materials Today,2020,33:56-74. doi: 10.1016/j.mattod.2019.09.018
    [5] Chen S, Dai F, Cai M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters,2020,5(10):3140-3151. doi: 10.1021/acsenergylett.0c01545
    [6] Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy,2019,4(3):180-186. doi: 10.1038/s41560-019-0338-x
    [7] Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy,2018,3(1):16-21.
    [8] 艾新平. 可充金属锂负极, 路在何方?[J]. 储能科学与技术, 2018, 7(01): 37-39

    AI Xin-ping, What is the future of lithium metal anodes? [J] Energy Storage Science and Technology, 2018, 7(01): 37-39.
    [9] Chen H, Yang Y, Boyle D T, et al. Free-standing ultra-thin lithium metal–graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy,2021,6(8):790-798. doi: 10.1038/s41560-021-00833-6
    [10] Gao J, Chen C, Dong Q, et al. Stamping flexible Li alloy anodes[J]. Advanced Materials,2021,33(11):2005305. doi: 10.1002/adma.202005305
    [11] Du J, Wang W, Wan M, et al. Doctor-blade casting fabrication of ultra-thin Li metal electrode for high-energy-density batteries[J]. Advanced Energy Materials,2021,11(45):2102259. doi: 10.1002/aenm.202102259
    [12] Zhang Q, Zhang X, Yan C, et al. Electrochemical method of preparing ultra-thin lithium metal anode involves preparing aqueous electrolyte solution, immersing copper electrode in aqueous solution, cleaning copper electrode, electrochemical depositing in liquid electrolyte: CN108346778-A[P].
    [13] Zhu Y, Pande V, Li L, et al. Design principles for self-forming interfaces enabling stable lithium-metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(44):27195-27203. doi: 10.1073/pnas.2001923117
    [14] 袁志钟 戴起勋. 金属材料学[M]. 第3版. 北京: 化学工业出版社, 2020

    YUAN Zhi-zhong, DAI Qi-xun. Metallic Materials[M]. 3rd Edition. Beijing: Chemical Industry Press, 2020
    [15] Cheng Y, Chen J, Chen Y, et al. Lithium host: advanced architecture components for lithium metal anode[J]. Energy Storage Materials,2021,38:276-298. doi: 10.1016/j.ensm.2021.03.008
    [16] 黄佳琦, 詹迎新, 石鹏, et al. 锂金属负极亲锂骨架的研究进展[J]. 高等学校化学学报,2021,42(5):1569-1580.

    HUANG Jia-Qi, ZHAN Ying-xin, SHI Peng, et al. Recent progress of lithiophilic host for lithium metal anode[J]. Chemical Journal of Chinese Universities,2021,42(5):1569-1580.
    [17] Ni S, Tan S, An Q, et al. Three-dimensional porous frameworks for lithium dendrite suppression[J]. Journal of Energy Chemistry,2020,44:73-89. doi: 10.1016/j.jechem.2019.09.031
    [18] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669. doi: 10.1126/science.1102896
    [19] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191. doi: 10.1038/nmat1849
    [20] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385-388. doi: 10.1126/science.1157996
    [21] Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology,2016,11(7):626-632. doi: 10.1038/nnano.2016.32
    [22] Zhang R, Chen X-R, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition,2017,56(27):7764-7768. doi: 10.1002/anie.201702099
    [23] Zhou Y, Zhang X, Ding Y, et al. Reversible deposition of lithium particles enabled by ultraconformal and stretchable graphene film for lithium metal batteries[J]. Advanced Materials,2020,32(48):2005763. doi: 10.1002/adma.202005763
    [24] Wang A, Tang S, Kong D, et al. Bending-tolerant anodes for lithium-metal Batteries[J]. Advanced Materials,2018,30(1):1703891. doi: 10.1002/adma.201703891
    [25] Hu M, Tong Z, Cui C, et al. Facile, atom-economic, chemical thinning strategy for ultra-thin lithium foils[J]. Nano Letters,2022,22(7):3047-3053. doi: 10.1021/acs.nanolett.2c00338
    [26] Chen X, Hou T Z, Li B, et al. Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode[J]. Energy Storage Materials,2017,8:194-201. doi: 10.1016/j.ensm.2017.01.003
    [27] 程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展,2018,30(1):51. doi: 10.7536/PC170704

    CHENG Xin-bing, ZHANG Qiang. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry,2018,30(1):51. doi: 10.7536/PC170704
  • 加载中
图(6)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  295
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-07-15
  • 网络出版日期:  2023-03-13
  • 刊出日期:  2023-08-01

目录

    /

    返回文章
    返回