留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Highly efficient Co―N―C electrocatalysts with a porous structure for the oxygen reduction reaction

HE Xin-fu CHANG Liao-bo HAN Peng-fei LI Ke-ke WU Hong-ju TANG Yong WANG Peng ZHANG Ya-ting ZHOU An-ning

贺新福, 常廖博, 韩鹏飞, 李可可, 吴红菊, 唐勇, 王鹏, 张亚婷, 周安宁. 具有中空和分级多孔结构的高效Co―N―C氧还原反应催化剂. 新型炭材料(中英文), 2023, 38(5): 976-988. doi: 10.1016/S1872-5805(23)60735-8
引用本文: 贺新福, 常廖博, 韩鹏飞, 李可可, 吴红菊, 唐勇, 王鹏, 张亚婷, 周安宁. 具有中空和分级多孔结构的高效Co―N―C氧还原反应催化剂. 新型炭材料(中英文), 2023, 38(5): 976-988. doi: 10.1016/S1872-5805(23)60735-8
HE Xin-fu, CHANG Liao-bo, HAN Peng-fei, LI Ke-ke, WU Hong-ju, TANG Yong, WANG Peng, ZHANG Ya-ting, ZHOU An-ning. Highly efficient Co―N―C electrocatalysts with a porous structure for the oxygen reduction reaction. New Carbon Mater., 2023, 38(5): 976-988. doi: 10.1016/S1872-5805(23)60735-8
Citation: HE Xin-fu, CHANG Liao-bo, HAN Peng-fei, LI Ke-ke, WU Hong-ju, TANG Yong, WANG Peng, ZHANG Ya-ting, ZHOU An-ning. Highly efficient Co―N―C electrocatalysts with a porous structure for the oxygen reduction reaction. New Carbon Mater., 2023, 38(5): 976-988. doi: 10.1016/S1872-5805(23)60735-8

具有中空和分级多孔结构的高效Co―N―C氧还原反应催化剂

doi: 10.1016/S1872-5805(23)60735-8
基金项目: 国家自然科学基金的资助(U1703251,U1810113)
详细信息
    通讯作者:

    张亚婷,教授. E-mail:isyating@163.com

  • 中图分类号: 127.1+1

Highly efficient Co―N―C electrocatalysts with a porous structure for the oxygen reduction reaction

More Information
  • 摘要: 开发一种低成本、高效率和稳定的燃料电池的氧还原反应(ORR)催化剂具有极大挑战性。作者通过先在纳米聚苯乙烯(PS)球体表面均匀生长ZIFs,然后分解核壳结构的ZIF@PS,开发了具有中空完整球形结构和大表面积的Co-N-C ORR催化剂,并进行了系统的表征。所制催化剂Co-NHCP-2具有分层的多孔结构,超大的比表面积(1817.24 m2 g−1),吡啶-N、吡咯-N、石墨-N含量高,且Co分布均匀。作为一种高效的电催化剂,Co-NHCP-2催化剂具有高起始电位(0.96 V)、半波电位(0.84 V)和极限电流密度(5.50 mA cm−2)。与市场上的Pt/C催化剂相比,该催化剂在碱性溶液中表现出约4e的ORR途径以及更强的甲醇耐受性和更高的稳定性。这些结果表明,该Co-N-C复合材料可以作为一种有前景的ORR电催化剂。
  • FIG. 2659.  FIG. 2659.

    FIG. 2659..  FIG. 2659.

    1.  Schematic diagram of the synthesis process of Co-NHCP

    Figure  1.  SEM images of (a) PS, (b) ZIF@PS-2 and (c) Co-NHCP-2. (d-i) EDS elemental analyses of Co-NHCP-2

    Figure  2.  (a-c) TEM images of Co-NHCP-2 at different magnifications; (d) SAED pattern of Co-NHCP-2; (e-f) HRTEM images of Co-NHCP-2; (g-j) TEM EDS elemental mappings of Co-NHCP-2

    Figure  3.  (a) XRD patterns, (b) Raman spectra, (c) N2 adsorption-desorption isotherm curve and (d) the corresponding pore distribution of Co-NHCP-1, Co-NHCP-2 and Co-NHCP-3

    Figure  4.  High resolution XPS spectra of Co-NHCP-2: (a) survey, (b) C 1s, (c) N 1s and (d) Co 2p

    Figure  5.  Contact angle of water on the surface of (a) Co-NHCP-1, (b) Co-NHCP-2 and (c) Co-NHCP-3

    Figure  6.  (a) CV curves of Co-NHCP-2 on glassy carbon electrodes in O2 or N2-saturated 0.1 mol L−1 KOH. (b) LSVs of Co-NHCP-1, Co-NHCP-2, Co-NHCP-3, and 20% commercially available Pt/C catalyst in O2-saturated 0.1 mol L−1 KOH at a sweep rate of 5 mV s−1 at 1600 r min−1. (c) Tafel slopes of Co-NHCP-1, Co-NHCP-2, Co-NHCP-3 and commercially available Pt/C catalyst. (d) Rotating-disk voltammograms of Co-NHCP-2 in O2-saturated 0.1 mol L−1 KOH with a sweep rate of 5 mV s−1 at different rotation rates. (e) K-L plots of Co-NHCP-2 at 0.2-0.5 V. (f) Electron transfer number (n) and H2O2 yield derived from the RRDE results

    Figure  7.  (a) Chronoamperometric responses of Co-NHCP-2 and commercially available Pt/C catalyst by injecting 3 mL of 2% methanol at 300 s; (b) chronoamperometric responses of Co-NHCP-2 and commercially available Pt/C catalyst obtained under 0.1 mol L−1 O2-saturated KOH electrolyte at 1600 r min−1

  • [1] Shi Y C, Feng J J, Lin X X, et al. One-step hydrothermal synthesis of three-dimensional nitrogen-doped reduced graphene oxide hydrogels anchored PtPd alloyed nanoparticles for ethylene glycol oxidation and hydrogen evolution reactions[J]. Electrochimica Acta,2019,293:504-513. doi: 10.1016/j.electacta.2018.10.068
    [2] Li Y R, Li M X, Li S N, et al. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals[J]. Rare Metals,2021,40(12):3406-3441. doi: 10.1007/s12598-021-01747-8
    [3] Han S, Hu X, Wang J, et al. Novel route to Fe-based cathode as an efficient bifunctional catalyst for rechargeable Zn-air battery[J]. Advanced Energy Materials,2018,8(22):1800955. doi: 10.1002/aenm.201800955
    [4] Yang L, Shui J, Du L, et al. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future[J]. Advanced Materials,2019,31(13):1804799. doi: 10.1002/adma.201804799
    [5] Song Y, Zhang X, Cui X, et al. The ORR kinetics of ZIF-derived FeNC electrocatalysts[J]. Journal of Catalysis,2019,372:174-181. doi: 10.1016/j.jcat.2019.02.023
    [6] Bao X Q, Deng X Y, et al. Carbon-based metal-free oxygen reduction reaction electrocatalysts: past, present and future[J]. New Carbon Materials,2022,37(2):338-357.
    [7] Akhairi M A F, Kamarudin S K. Catalysts in direct ethanol fuel cell (DEFC): An overview[J]. International journal of hydrogen energy,2016,41(7):4214-4228. doi: 10.1016/j.ijhydene.2015.12.145
    [8] Wan C, Duan X, Huang Y. Molecular design of single-atom catalysts for oxygen reduction reaction[J]. Advanced Energy Materials,2020,10(14):1903815. doi: 10.1002/aenm.201903815
    [9] Zhang Y, Wang P, Yang J, et al. Decorating ZIF-67-derived cobalt–nitrogen doped carbon nanocapsules on 3D carbon frameworks for efficient oxygen reduction and oxygen evolution[J]. Carbon,2021,177:344-356. doi: 10.1016/j.carbon.2021.02.052
    [10] Zhao J, Zhou J, Zhang Z, et al. Hierarchical assembly strategy to tailored nanostructures of doped-carbon/Co-based catalysts for high-performance trifunctional electrocatalysis[J]. Chemical Engineering Journal,2021,418:129365. doi: 10.1016/j.cej.2021.129365
    [11] Wang Z, Xu W, Chen X, et al. Defect‐rich nitrogen doped Co3O4/C porous nanocubes enable high‐efficiency bifunctional oxygen electrocatalysis[J]. Advanced Functional Materials,2019,29(33):1902875. doi: 10.1002/adfm.201902875
    [12] Meganathan M D, Mao S, Huang T, et al. Reduced graphene oxide intercalated Co2C or Co4N nanoparticles as an efficient and durable fuel cell catalyst for oxygen reduction[J]. Journal of Materials Chemistry A,2017,5(6):2972-2980. doi: 10.1039/C6TA09729D
    [13] Zhu C, Shi Q, Xu B Z, et al. Hierarchically porous M–N–C (M= Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance[J]. Advanced Energy Materials,2018,8(29):1801956. doi: 10.1002/aenm.201801956
    [14] Amiinu I S, Liu X, Pu Z, et al. From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER and Zn-air batteries[J]. Advanced Functional Materials,2018,28(5):1704638. doi: 10.1002/adfm.201704638
    [15] Xu H, Cheng D, Cao D, et al. A universal principle for a rational design of single-atom electrocatalysts[J]. Nature Catalysis,2018,1(5):339-348. doi: 10.1038/s41929-018-0063-z
    [16] Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis[J]. Nature Reviews Chemistry,2018,2(6):65-81. doi: 10.1038/s41570-018-0010-1
    [17] Wang B, Wang X, Zou J, et al. Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction[J]. Nano letters,2017,17(3):2003-2009. doi: 10.1021/acs.nanolett.7b00004
    [18] Zhang J, Song L H, Zhao C F, et al. Co, N co-doped porous carbons as high-performance oxygen reduction electrocatalysts[J]. New Carbon Materials,2021,36(1):209-218.
    [19] Fei H, Dong J, Feng Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nature Catalysis,2018,1(1):63-72. doi: 10.1038/s41929-017-0008-y
    [20] Zhang Y, Lu L, Zhang S, et al. Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction[J]. Journal of Materials Chemistry A,2018,6(14):5740-5745. doi: 10.1039/C7TA11258K
    [21] Liu D, Wu C, Chen S, et al. In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction[J]. Nano Research,2018,11:2217-2228. doi: 10.1007/s12274-017-1840-8
    [22] Li J C, Yang Z Q, Tang D M, et al. N-doped carbon nanotubes containing a high concentration of single iron atoms for efficient oxygen reduction[J]. NPG Asia Materials,2018,10(1):e461-e461. doi: 10.1038/am.2017.212
    [23] Li J, Song Y, Zhang G, et al. Pyrolysis of self-assembled iron porphyrin on carbon black as core/shell structured electrocatalysts for highly efficient oxygen reduction in both alkaline and acidic medium[J]. Advanced Functional Materials,2017,27(3):1604356. doi: 10.1002/adfm.201604356
    [24] Wang W, Chen W, Miao P, et al. NaCl crystallites as dual-functional and water-removable templates to synthesize a three-dimensional graphene-like macroporous Fe-NC catalyst[J]. ACS Catalysis,2017,7(9):6144-6149. doi: 10.1021/acscatal.7b01695
    [25] Wu Z Y, Xu X X, Hu B C, et al. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis[J]. Angewandte Chemie International Edition,2015,54(28):8179-8183. doi: 10.1002/anie.201502173
    [26] Wang Y C, Lai Y J, Song L, et al. S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density[J]. Angewandte Chemie,2015,127(34):10045-10048. doi: 10.1002/ange.201503159
    [27] Xu J, Zhu J, Yang X, et al. Synthesis of organized layered carbon by self-templating of dithiooxamide[J]. Advanced Materials,2016,28(31):6727-6733. doi: 10.1002/adma.201600707
    [28] Amiinu I S, Pu Z, Liu X, et al. Multifunctional Mo–N/C@ MoS2 electrocatalysts for HER, OER, ORR and Zn–air batteries[J]. Advanced Functional Materials,2017,27(44):1702300. doi: 10.1002/adfm.201702300
    [29] Liu Q, Liu X, Zheng L. Environmental-friendly solid synthesis of Fe-N-C electrocatalyst with Fe exclusively in atomically dispersed Fe-N4 moieties for high-power proton exchange membrane fuel cells[J]. Angewandte Chemie International Edition,2018,57(5):1204-1208. doi: 10.1002/anie.201709597
    [30] Zhu Z, Yin H, Wang Y, et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst[J]. Advanced Materials,2020,32(42):2004670. doi: 10.1002/adma.202004670
    [31] Li K, Zhang Y, Wang P, et al. Core-Shell ZIF-67@ ZIF-8-derived multi-dimensional cobalt-nitrogen doped hierarchical carbon nanomaterial for efficient oxygen reduction reaction[J]. Journal of Alloys and Compounds,2022,903:163701.
    [32] Zhang S L, Guan B Y, Lou X W. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal-organic frameworks for enhanced electrocatalytic oxygen reduction[J]. Small,2019,15(13):1805324. doi: 10.1002/smll.201805324
    [33] Guan B Y, Yu L, Lou X W. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media[J]. Advanced Science,2017,4(10):1700247. doi: 10.1002/advs.201700247
    [34] Song Y, Xie W, Li S, et al. Hierarchical hollow Co/NC@ NiCo2O4 microsphere as an efficient bi-functional electrocatalyst for rechargeable Zn-air battery[J]. Frontiers in Materials,2019,6:261. doi: 10.3389/fmats.2019.00261
    [35] Li X, Yan X, Hu X, et al. Hollow Cu-Co/N-doped carbon spheres derived from ZIFs as an efficient catalyst for peroxymonosulfate activation[J]. Chemical Engineering Journal,2020,397:125533. doi: 10.1016/j.cej.2020.125533
    [36] Tian H, Tian H, Wang S, et al. High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode[J]. Nature Communication,2020,11(1):5025. doi: 10.1038/s41467-020-18820-y
    [37] Nguyen Q H, Im K, Kim J. Synthesis of hollow Fe, Co, and N-doped carbon catalysts from conducting polymer-metal-organic-frameworks core-shell particles for their application in an oxygen reduction reaction[J]. International Journal of Hydrogen Energy,2022,47(57):24169-24178. doi: 10.1016/j.ijhydene.2022.04.075
    [38] Hassan M, Qiu W, Song X, et al. Supercapacitive and ORR performances of nitrogen-doped hollow carbon spheres pyrolyzed from polystyrene@ polypyrrole-polyaniline[J]. Journal of Alloys and Compounds,2020,818:152890. doi: 10.1016/j.jallcom.2019.152890
    [39] He X, Chang L, Wu H, et al. Design of ZIF-67-derived Fe, N and F co-doped porous carbon material and evaluation of its ORR and OER performance[J]. Journal of Alloys and Compounds,2023,967:171709. doi: 10.1016/j.jallcom.2023.171709
    [40] Lan X, Huang N, Wang J, et al. A general and facile strategy for precisely controlling the crystal size of monodispersed metal–organic frameworks via separating the nucleation and growth[J]. Chemical Communications,2018,54(6):584-587. doi: 10.1039/C7CC08244D
    [41] Liu Q, Song Y, Ma Y, et al. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity[J]. Journal of the American Chemical Society,2018,141(1):488-496.
    [42] Wang B, Zhao M, Li L, et al. Ultra-thin metal-organic framework nanoribbons[J]. National Science Review,2020,7(1):46-52. doi: 10.1093/nsr/nwz118
    [43] Yu D, Shao Q, Song Q, et al. A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures[J]. Nature communications,2020,11(1):927. doi: 10.1038/s41467-020-14671-9
    [44] Song A, Yang W, Yang W, et al. Facile synthesis of cobalt nanoparticles entirely encapsulated in slim nitrogen-doped carbon nanotubes as oxygen reduction catalyst[J]. ACS Sustainable Chemistry & Engineering,2017,5(5):3973-3981.
    [45] Deng Y, Dong Y, Wang G, et al. Well-defined ZIF-derived Fe–N codoped carbon nanoframes as efficient oxygen reduction catalysts[J]. ACS applied materials & interfaces,2017,9(11):9699-9709.
    [46] Zhang P, Sun F, Xiang Z, et al. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction[J]. Energy & Environmental Science,2014,7(1):442-450.
    [47] Liu Z Q, Cheng H, Li N, et al. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts[J]. Advanced Materials,2016,28(19):3777-3784. doi: 10.1002/adma.201506197
    [48] Zhou Q, Li T T, Qian J, et al. Self-supported hierarchical CuOx@Co3O4 heterostructures as efficient bifunctional electrocatalysts for water splitting[J]. Journal of Materials Chemistry A,2018,6(29):14431-14439. doi: 10.1039/C8TA03120G
    [49] Nguyen D C, Doan T L L, Prabhakaran S, et al. Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER and ORR[J]. Nano Energy,2021,82:105750. doi: 10.1016/j.nanoen.2021.105750
    [50] Fan W, Li Z, You C, et al. Binary Fe, Cu-doped bamboo-like carbon nanotubes as efficient catalyst for the oxygen reduction reaction[J]. Nano energy,2017,37:187-194. doi: 10.1016/j.nanoen.2017.05.001
    [51] Luo H, Jiang W J, Lin C, et al. Scalable solid-state synthesis of coralline-like nanostructured Co@ CoNC electrocatalyst for Zn-air batteries[J]. Chemical Communications,2018,54(59):8190-8193. doi: 10.1039/C8CC02500B
    [52] Zhang Y, Wang P, Yang J, et al. Fabrication of core-shell nanohybrid derived from iron-based metal-organic framework grappled on nitrogen-doped graphene for oxygen reduction reaction[J]. Chemical Engineering Journal,2020,401:126001. doi: 10.1016/j.cej.2020.126001
    [53] Zhang N, Zhou T, Chen M, et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst[J]. Energy & Environmental Science,2020,13(1):111-118.
    [54] He W, Jiang C, Wang J, et al. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons[J]. Angewandte Chemie,2014,126(36):9657-9661. doi: 10.1002/ange.201404333
    [55] Tang F, Lei H, Wang S, et al. A novel Fe–N–C catalyst for efficient oxygen reduction reaction based on polydopamine nanotubes[J]. Nanoscale,2017,9(44):17364-17370. doi: 10.1039/C7NR06844A
    [56] Wang Y, Wang K, Yu J, et al. 3D spiral-like polyhedron nanocarbon confining uniformly dispersed Co nanoparticles for bifunctional electrocatalyst in metal-air battery[J]. Journal of Power Sources,2021,482:228897. doi: 10.1016/j.jpowsour.2020.228897
    [57] Wang Z, Peng S, Hu Y, et al. Cobalt nanoparticles encapsulated in carbon nanotube-grafted nitrogen and sulfur co-doped multichannel carbon fibers as efficient bifunctional oxygen electrocatalysts[J]. Journal of Materials Chemistry A,2017,5(10):4949-4961. doi: 10.1039/C6TA10291C
    [58] Xie W, Song Y, Li S, et al. Single-atomic-Co electrocatalysts with self-supported architecture toward oxygen-involved reaction[J]. Advanced Functional Materials,2019,29(50):1906477. doi: 10.1002/adfm.201906477
    [59] Kimball E, Whitaker T, Kevrekidis Y G, et al. Drops, slugs, and flooding in polymer electrolyte membrane fuel cells[J]. AIChE journal,2008,54(5):1313-1332. doi: 10.1002/aic.11464
    [60] Benziger J, Kimball E, Mejia-Ariza R, et al. Oxygen mass transport limitations at the cathode of polymer electrolyte membrane fuel cells[J]. AIChE Journal,2011,57(9):2505-2517. doi: 10.1002/aic.12455
    [61] Miao H, Li S, Wang Z, et al. Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction[J]. International Journal of Hydrogen Energy,2017,42(47):28298-28308. doi: 10.1016/j.ijhydene.2017.09.138
    [62] Wang M J, Zhao T, Luo W, et al. Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts[J]. AIChE Journal,2018,64(7):2881-2889. doi: 10.1002/aic.16140
    [63] Meng Y, Voiry D, Goswami A, et al. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions[J]. Journal of the American Chemical Society,2014,136(39):13554-13557. doi: 10.1021/ja507463w
    [64] Lee S, Choun M, Ye Y, et al. Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: Effects of pore size and doping-site position[J]. Angewandte Chemie International Edition,2015,54(32):9230-9234. doi: 10.1002/anie.201501590
    [65] Zhu Z, Chen C, Cai M, et al. Porous Co-NC ORR catalysts of high performance synthesized with ZIF-67 templates[J]. Materials Research Bulletin,2019,114:161-169. doi: 10.1016/j.materresbull.2019.02.029
    [66] Wang Y C, Huang L, Zhang P, et al. Constructing a triple-phase interface in micropores to boost performance of Fe/N/C catalysts for direct methanol fuel cells[J]. ACS Energy Letters,2017,2(3):645-650. doi: 10.1021/acsenergylett.7b00071
    [67] Yue X, Ke W, Xie M, et al. Amorphous CoFe (OH)x hollow hierarchical structure: An efficient and durable electrocatalyst for oxygen evolution reaction[J]. Catalysis Science & Technology,2020,10(1):215-221.
    [68] Wang X R, Liu J Y, Liu Z W, et al. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER[J]. Advanced Materials,2018,30(23):1800005. doi: 10.1002/adma.201800005
    [69] Wang X X, Prabhakaran V, He Y, et al. Iron-free cathode catalysts for proton-exchange-membrane fuel cells: Cobalt catalysts and the peroxide mitigation approach[J]. Advanced materials,2019,31(31):1805126. doi: 10.1002/adma.201805126
    [70] Wang J, Liu B, Liu H, et al. Insight into the mechanisms of BPS degradation by electro-Fenton method modified by Co-based nanoparticles on the oxidized carbon cathode[J]. Chemical Engineering Journal,2022,446:137376. doi: 10.1016/j.cej.2022.137376
    [71] Qin J, Wu K, Chen L, et al. Achieving high selectivity for nitrate electrochemical reduction to ammonia over MOF-supported RuxOy clusters[J]. Journal of Materials Chemistry A,2022,10(8):3963-3969. doi: 10.1039/D1TA09441F
    [72] Hu X, Wang J, Jin T, et al. Efficient H2O2 generation and bisphenol A degradation in electro-Fenton of O-doped porous biochar cathode derived from spirit-based Distiller’s grains[J]. Process Safety and Environmental Protection,2022,166:99-107. doi: 10.1016/j.psep.2022.08.017
    [73] Xing R, Zhou T, Zhou Y, et al. Creation of triple hierarchical micro-meso-macroporous N-doped carbon shells with hollow cores toward the electrocatalytic oxygen reduction reaction[J]. Nano-Micro Letters,2018,10:1-14. doi: 10.1007/s40820-017-0154-4
    [74] Wang Z, Ke X, Zhou K, et al. Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction[J]. Journal of Materials Chemistry A,2021,9(34):18515-18525. doi: 10.1039/D1TA03036A
    [75] Li Z, Li B, Hu Y, et al. Highly-dispersed and high-metal-density electrocatalysts on carbon supports for the oxygen reduction reaction: from nanoparticles to atomic-level architectures[J]. Materials Advances,2022,3(2):779-809. doi: 10.1039/D1MA00858G
    [76] Li Z, Li B, Yu C, et al. Recent progress of hollow carbon nanocages: General design fundamentals and diversified electrochemical applications[J]. Advanced Science, 2023: 2206605.
  • 20230514supportting imformation.pdf
  • 加载中
图(9)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  137
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 录用日期:  2023-03-27
  • 修回日期:  2023-03-24
  • 网络出版日期:  2023-04-06
  • 刊出日期:  2023-10-01

目录

    /

    返回文章
    返回