留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres

LI Rui-zhen QIN Lei FU Dong-ju WANG Mei-ling SONG Xing-fu BAI Yong-hui LIU Wei-feng LIU Xu-guang

李瑞珍, 秦蕾, 符冬菊, 王美玲, 宋兴福, 白永辉, 刘伟峰, 刘旭光. 离子印迹磁性碳纳米球基电化学传感器用于铜(II)的选择性检测. 新型炭材料(中英文), 2023, 38(6): 1092-1103. doi: 10.1016/S1872-5805(23)60772-3
引用本文: 李瑞珍, 秦蕾, 符冬菊, 王美玲, 宋兴福, 白永辉, 刘伟峰, 刘旭光. 离子印迹磁性碳纳米球基电化学传感器用于铜(II)的选择性检测. 新型炭材料(中英文), 2023, 38(6): 1092-1103. doi: 10.1016/S1872-5805(23)60772-3
LI Rui-zhen, QIN Lei, FU Dong-ju, WANG Mei-ling, SONG Xing-fu, BAI Yong-hui, LIU Wei-feng, LIU Xu-guang. A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres. New Carbon Mater., 2023, 38(6): 1092-1103. doi: 10.1016/S1872-5805(23)60772-3
Citation: LI Rui-zhen, QIN Lei, FU Dong-ju, WANG Mei-ling, SONG Xing-fu, BAI Yong-hui, LIU Wei-feng, LIU Xu-guang. A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres. New Carbon Mater., 2023, 38(6): 1092-1103. doi: 10.1016/S1872-5805(23)60772-3

离子印迹磁性碳纳米球基电化学传感器用于铜(II)的选择性检测

doi: 10.1016/S1872-5805(23)60772-3
基金项目: 山西省重点研发计划(201903D421077),中央引导地方科技发展资金(YDZJSX2022A009),银川市科技计划重点项目(2021-ZD-08),国家自然科学基金(51972221, 51603142, 51902222),省部共建煤炭高效利用与绿色化工国家重点实验室开放课题(2021-K46),山西省自然科学基金(20210302124046),山西省高等学校科技创新项目(2019L0255, 2020L0097)
详细信息
    通讯作者:

    刘伟峰,副教授. E-mail:lwf061586@yeah.net

    刘旭光,教授. E-mail: liuxuguang@tyut.edu.cn

  • 中图分类号: TQ127.1+1

A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres

Funds: This work was financially supported by Key R&D Program of Shanxi Province (International Cooperation, 201903D421077), Central Leading Science and Technology Development Foundation of Shanxi Province (YDZJSX2022A009), Key Program of Yinchuan science and Technology Bureau (2021ZD08), National Natural Science Foundation of China (51972221, 51603142, 51902222), Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2021-K46), Natural Science Foundation of Shanxi Province (20210302124046), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0255, 2020L0097)
More Information
  • 摘要: 本文报道一种基于Cu(II)离子印迹聚合物为识别元件的电化学传感器。通过耦合表面离子印迹和电化学沉积的制备方法,制备了由磁性碳纳米球组成的离子印迹聚合物电极。所组装的传感器表现出对Cu(II)检测的特异识别性和高灵敏特性。通过场发射扫描电子显微镜和透射电子显微镜对印迹聚合物的微观形貌进行表征,采用傅里叶变换红外光谱对其官能团和化学结构进行表征。传感器电化学性能表明,与非印迹电极和裸电极相比,印迹电极对Cu(II)具有更强的选择性和更高的灵敏度。传感器对浓度为10−6至10−10 mol L−1的Cu(II)表现出良好的线性相应电流,其检测限提升至5.138×10−16 mol L−1 (S/N=3)。此外,该传感器具有良好的抗干扰性、重现性和稳定性,为金属离子的检测提供了新的策略。
  • FIG. 2781.  FIG. 2781.

    FIG. 2781..  FIG. 2781.

    Figure  1.  Schematic illustrating the preparation of the Cu(II)-IIPs composite for detecting Cu(II)

    Figure  2.  FESEM images of (a, b) Fe3O4@C and (c, d) Cu(II)-IIPs; TEM images of (e, f) Fe3O4@C and (g, h) Cu(II)-IIPs

    Figure  3.  FTIR spectra of Fe3O4@C and Cu(II)-IIPs

    Figure  4.  (a) Relationship between the peak current of Cu(II)-IIPs/GCE and pH in 10−3 mol L−1 CuSO4 acetate buffer after elution with phosphate buffers of different pH values. (b) Peak current of Cu(II) at different pH values

    Figure  5.  DPV curves of GCE in 10−3 mol L−1 CuSO4, Na2SO4 and Cu(NO3)2 acetic acid buffer

    Figure  6.  Comparison for the DPV responses of GCE, NIPs/GCE, and IIPs/GCE in acetate buffer

    Figure  7.  (a) Typical DPV curves of Cu(II)-IIPs in acetate buffer with different Cu(II) concentrations (1.0×10−6, 1.0×10−7, 1.0×10−8, 1.0×10−9 and 1.0×10−10 mol L−1). (b) Linear relationship between the peak current and Cu(II) concentration logarithm

    Figure  8.  (a) Current response of Cu(II)-IIPs/GCE in acetate buffer to 10−3 mol L−1 Cu(II) solution and mixture (containing 10−3 mol L−1 Cu(II), 10−3 mol L−1 Ni(II), and 10−3 mol L−1 Pb(II)) and (b) the corresponding histogram of peak current

    Figure  9.  (a) Regeneration of Cu(II)-IIPs sensor. (b) DPV current response compared for the fresh and 3-day stored electrodes in 10−3 mol L−1 Cu(II) acetic acid buffer

    Figure  10.  Schematic diagram of (a) the structure of pyrrole and (b) the complex formed by Cu(II) and pyrrole; (c) HOMO and (d) LUMO orbital formed by the interaction of Cu(II) and pyrrole

    Table  1.   Energy (eV) calculations for Cu(II), pyrrole, and their complex

    ComplexPyrroleCu(II)ΔE
    −50331.386−5713.985−44606.425−10.976
    下载: 导出CSV

    Table  2.   Comparison for the linear ranges and detection limits of the Cu(II) sensors

    MaterialDetection mothodLinear range (ng/L)Detection limit (ng/L)Ref.
    QDs@IIPsFluorimetric detection110-5800035[35]
    OMNiIIPElectrochemical detection8-78071.8[36]
    Cu(II)-IIPsOptic
    detection
    2540-3175001710[37]
    CPE/FMCElectrochemical detection31750-1079505207[38]
    Cu(II)-IIHMCICP-MS50-500008[39]
    MIPFluorimetric detection6350-6350000[40]
    CQDs@Cu-IIPFluorimetric detection250000-2000000
    3000000-10000000
    [41]
    Cu(II)-IIPs/GCEElectrochemical detection6.35-635003.26×10−5This work
    下载: 导出CSV
  • [1] Yu F P, Pan Z L, Li L, et al. Preparation and performance of electrocatalytic carbon membranes for treating micro-polluted water[J]. New Carbon Materials,2022,37(3):615-624. doi: 10.1016/S1872-5805(22)60610-3
    [2] Liu W, Zhang R, Kang Y, et al. Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells[J]. New Carbon Materials,2019,34(4):390-402. doi: 10.1016/S1872-5805(19)30024-1
    [3] Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans[J]. The American Journal of Clinical Natrition,1998,67(5):952S-959S. doi: 10.1093/ajcn/67.5.952S
    [4] Mahata S, Dey S, Mandal B B, et al. 3-(2-Hydroxyphenyl)imidazo[5, 1-a]isoquinoline as Cu(II) sensor, its Cu(II) complex for selective detection of CN ion and biological compatibility[J]. Journal of Photochemistry and Photobiology A:Chemistry,2022,427:113795. doi: 10.1016/j.jphotochem.2022.113795
    [5] Wu X X, Shi W, Yang Y F, et al. Multi-targeted fluorescent probes for detection of Zn(II) and Cu(II) ions based on ESIPT mechanism[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,287:122051. doi: 10.1016/j.saa.2022.122051
    [6] Wang Y, Wu W T, Wu M B, et al. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. New Carbon Materials,2015,30(6):550-559. doi: 10.1016/S1872-5805(15)60204-9
    [7] Lan G Y, Huang C C, and Chang H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions[J]. Chemical Communications,2010,46(8):1257-1259. doi: 10.1039/b920783j
    [8] Kowalewska Z, Ruszczyńska A, and Bulska E. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution[J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2005,60(3):351-359. doi: 10.1016/j.sab.2005.02.002
    [9] Zhang L, Li Z H, Du X H, et al. Simultaneous separation and preconcentration of Cr(III), Cu(II), Cd(II) and Pb(II) from environmental samples prior to inductively coupled plasma optical emission spectrometric determination[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2012,86:443-448. doi: 10.1016/j.saa.2011.10.065
    [10] Hu Q F, Yang G Y, Zhao Y Y, et al. Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection[J]. Analytical and Bioanalytical Chemistry,2003,375(6):831-835. doi: 10.1007/s00216-003-1828-y
    [11] Meng X T, Zhu D J, Jiang Y H, et al. Electrochemical sensing of phenacetin on electrochemically reduced graphene oxide modified glassy carbon electrode[J]. New Carbon Materials,2022,37(4):764-772. doi: 10.1016/S1872-5805(21)60087-2
    [12] Manousi N, Kabir A, Furton K G, et al. An automatic on-line sol-gel pyridylethylthiopropyl functionalized silica-based sorbent extraction system coupled to flame atomic absorption spectrometry for lead and copper determination in beer samples[J]. Food Chemistry,2022,394:133548. doi: 10.1016/j.foodchem.2022.133548
    [13] Lei P, Zhou Y, Zhao S, et al. Carbon-supported X-manganate (X = Ni, Zn and Cu) nanocomposites for sensitive electrochemical detection of trace heavy metal ions[J]. Journal of Hazardous Materials,2022,435:129036. doi: 10.1016/j.jhazmat.2022.129036
    [14] Jiang J, Chen X, Niu Y, et al. Advances in flexible sensors with MXene materials[J]. New Carbon Materials,2022,37(2):303-320. doi: 10.1016/S1872-5805(22)60589-4
    [15] Huo D Q, Zhang Y, Li N, et al. Three-dimensional graphene/amino-functionalized metal–organic framework for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II), and Hg(II)[J]. Analytical and Bioanalytical Chemistry,2022,414(4):1575-1586. doi: 10.1007/s00216-021-03779-6
    [16] Zuo Y X, Xu J K, Zhu X F, et al. Graphene-derived nanomaterials as recognition elements for electrochemical determination of heavy metal ions: a review[J]. Microchimica Acta,2019,186(3):171. doi: 10.1007/s00604-019-3248-5
    [17] Gong Q J, Han H X, Wang Y D, et al. An electrochemical sensor for dopamine detection based on the electrode of a poly-tryptophan-functionalized graphene composite[J]. New Carbon Materials,2020,35(1):34-41. doi: 10.1016/S1872-5805(20)60473-5
    [18] An Z L, Liu W F, Liang Q, et al. Ion-imprinted polymers modified sensor for electrochemical detection of Cu2+[J]. Nano,2018,13(12):1850140. doi: 10.1142/S1793292018501400
    [19] Liu W F, An Z L, Qin L, et al. Construction of a novel ion imprinted film to remove low concentration Cu2+ from aqueous solution[J]. Chemical Engineering Journal,2021,411:128477. doi: 10.1016/j.cej.2021.128477
    [20] Xi Y, Shi H, Liu R, et al. Insights into ion imprinted membrane with a delayed permeation mechanism for enhancing Cd2+ selective separation[J]. Journal of Hazardous Materials,2021,416:125772. doi: 10.1016/j.jhazmat.2021.125772
    [21] Gao S J, Liu W F, Fu D J, et al. Research progress on recovering the components of spent Li-ion batteries[J]. New Carbon Materials,2022,37(3):435-460. doi: 10.1016/S1872-5805(22)60605-x
    [22] Budnicka M, Sobiech M, Kolmas J, et al. Frontiers in ion imprinting of alkali- and alkaline-earth metal ions – Recent advancements and application to environmental, food and biomedical analysis[J]. TrAC Trends in Analytical Chemistry,2022,156:116711. doi: 10.1016/j.trac.2022.116711
    [23] Sala A, Brisset H, Margaillan A, et al. Electrochemical sensors modified with ion-imprinted polymers for metal ion detection[J]. TrAC Trends in Analytical Chemistry,2022,148:116536. doi: 10.1016/j.trac.2022.116536
    [24] Yu H Y, Shao P H, Fang L L, et al. Palladium ion-imprinted polymers with PHEMA polymer brushes: Role of grafting polymerization degree in anti-interference[J]. Chemical Engineering Journal,2019,359:176-185. doi: 10.1016/j.cej.2018.11.149
    [25] Aminikhah M, Babaei A, and Taheri A. A novel electrochemical sensor based on molecularly imprinted polymer nanocomposite platform for sensitive and ultra-selective determination of citalopram[J]. Journal of Electroanalytical Chemistry,2022,918:116493. doi: 10.1016/j.jelechem.2022.116493
    [26] Zhou X Y, Wang B Q, Wang R. Insights into ion-imprinted materials for the recovery of metal ions: Preparation, evaluation and application[J]. Separation and Purification Technology,2022,298:121469. doi: 10.1016/j.seppur.2022.121469
    [27] Wang J Y, Hu J F, Hu S W, et al. Recent progress in the use of graphene/polymer composites to remove oil contaminants from water[J]. New Carbon Materials,2021,36(2):235-252. doi: 10.1016/S1872-5805(21)60018-5
    [28] Liu W F, Qin L, An Z L, et al. Thermo-responsive ion imprinted polymer on the surface of magnetic carbon microspheres for identification and removal of low-concentrations of Cu2+[J]. Environmental Chemistry,2018,15(5):306-316. doi: 10.1071/EN18046
    [29] Spaolonzi M P, Duarte E D V, Oliveira M G, et al. Green-functionalized carbon nanotubes as adsorbents for the removal of emerging contaminants from aqueous media[J]. Journal of Cleaner Production,2022,373:133961. doi: 10.1016/j.jclepro.2022.133961
    [30] Francisco J E, Feiteira F N, Da Silva W A, et al. Synthesis and application of ion-imprinted polymer for the determination of mercury II in water samples[J]. Environmental Science and Pollution Research,2019,26(19):19588-19597. doi: 10.1007/s11356-019-05178-y
    [31] Chaipuang A, Phungpanya C, Thongpoon C, et al. Synthesis of copper(II) ion-imprinted polymers via suspension polymerization[J]. Polymers for Advanced Technologies,2018,29(12):3134-3141. doi: 10.1002/pat.4434
    [32] Adauto A, Wong A, Khan S, et al. A selective electrochemical sensor for the detection of Cd(II) based on a carbon paste electrode impregnated with a novel ion-imprinted hybrid polymer[J]. Electroanalysis,2021,33(6):1557-1566. doi: 10.1002/elan.202100007
    [33] Kang W W, Cui Y, Yang Y Z, et al. An acid induction strategy to construct an ultralight and durable amino-functionalized graphene oxide aerogel for enhanced quinoline pollutants extraction from coking wastewater[J]. Chemical Engineering Journal,2021,412:128686. doi: 10.1016/j.cej.2021.128686
    [34] Ding J, Wu X D, Shen X D, et al. Synthesis and textural evolution of mesoporous Si3N4 aerogel with high specific surface area and excellent thermal insulation property via the urea assisted sol-gel technique[J]. Chemical Engineering Journal,2020,382:122880. doi: 10.1016/j.cej.2019.122880
    [35] Qi J, Li B W, Wang X R, et al. Three-dimensional paper-based microfluidic chip device for multiplexed fluorescence detection of Cu2+ and Hg2+ ions based on ion imprinting technology[J]. Sensors and Actuators B:Chemical,2017,251:224-233. doi: 10.1016/j.snb.2017.05.052
    [36] Prasad B B and Fatma S. Electrochemical sensing of ultra trace copper(II) by alga-OMNiIIP modified pencil graphite electrode[J]. Sensors and Actuators B:Chemical,2016,229:655-663. doi: 10.1016/j.snb.2016.02.028
    [37] Gerdan Z, Saylan Y, Uğur M, et al. Ion-imprinted polymer-on-a-sensor for copper detection[J]. Biosensors,2022,12(2):91. doi: 10.3390/bios12020091
    [38] Santos J C, Matos C R S, Pereira G B S, et al. Stable CdTe nanocrystals grown in situ in thiol-modified MCM-41 mesoporous silica: Control synthesis and electrochemical detection of Cu2+[J]. Microporous and Mesoporous Materials,2016,221:48-57. doi: 10.1016/j.micromeso.2015.09.024
    [39] Fei J J, Wu X H, Sun Y L, et al. Preparation of a novel amino functionalized ion-imprinted hybrid monolithic column for the selective extraction of trace copper followed by ICP-MS detection[J]. Analytica Chimica Acta,2021,1162:338477. doi: 10.1016/j.aca.2021.338477
    [40] Xue X T, Zhang M, Gong H Y, et al. Recyclable nanoparticles based on a boronic acid–diol complex for the real-time monitoring of imprinting, molecular recognition and copper ion detection[J]. Journal of Materials Chemistry B,2022,10(35):6698-6706. doi: 10.1039/D1TB02226A
    [41] Wang Z M, Zhou C, Wu S W, et al. Ion-imprinted polymer modified with carbon quantum dots as a highly sensitive copper(II) ion probe[J]. Polymers,2021,13(9):1376. doi: 10.3390/polym13091376
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  70
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-04
  • 录用日期:  2023-07-04
  • 修回日期:  2023-06-28
  • 网络出版日期:  2023-07-12
  • 刊出日期:  2023-11-23

目录

    /

    返回文章
    返回