王继锐, 杨大海, 徐义俭, 侯香龙, EDISONHuixiang Ang, 王德钊, 张乐, 朱振东, 冯绪勇, 宋晓辉, 项宏发. 废旧石墨回收及其储能应用的研究进展[J]. 新型炭材料, 2023, 38(5): 787-803. DOI: 10.1016/S1872-5805(23)60777-2
引用本文: 王继锐, 杨大海, 徐义俭, 侯香龙, EDISONHuixiang Ang, 王德钊, 张乐, 朱振东, 冯绪勇, 宋晓辉, 项宏发. 废旧石墨回收及其储能应用的研究进展[J]. 新型炭材料, 2023, 38(5): 787-803. DOI: 10.1016/S1872-5805(23)60777-2
WANG Ji-rui, YANG Da-hai, XU Yi-jian, HOU Xiang-long, EDISON Huixiang Ang, WANG De-zhao, ZHANG Le, ZHU Zhen-dong, FENG Xu-yong, SONG Xiao-hui, XIANG Hong-fa. Recent developments and the future of the recycling of spent graphite for energy storage applications[J]. New Carbon Mater., 2023, 38(5): 787-803. DOI: 10.1016/S1872-5805(23)60777-2
Citation: WANG Ji-rui, YANG Da-hai, XU Yi-jian, HOU Xiang-long, EDISON Huixiang Ang, WANG De-zhao, ZHANG Le, ZHU Zhen-dong, FENG Xu-yong, SONG Xiao-hui, XIANG Hong-fa. Recent developments and the future of the recycling of spent graphite for energy storage applications[J]. New Carbon Mater., 2023, 38(5): 787-803. DOI: 10.1016/S1872-5805(23)60777-2

废旧石墨回收及其储能应用的研究进展

Recent developments and the future of the recycling of spent graphite for energy storage applications

  • 摘要: 本文对从废旧锂离子电池中获得的电池级石墨的回收和再生进行了广泛的分析。其主要目的是应对供需挑战,最大限度地减少环境污染。该综述主要包括获得、分离、纯化和再生废石墨的方法,以确保其可适用于高质量的储能为目的。为了提高石墨回收效率和去除残留污染物,研究者们探索了热处理、溶剂溶解和超声波处理等技术。本综述进一步评估了湿法和火法冶金的净化和再生方法,考虑了它们对环境的影响和能源消耗等问题。为了可持续和成本效益的提高,可以采用无酸纯化和低温石墨化。讨论了锂离子电池和超级电容器中再生石墨的具体要求,强调了包括酸浸、高温处理和表面涂层在内的回收工艺。这篇综述为开发高效和可持续的储能系统、解决环境问题和满足日益增长的石墨需求提供了宝贵的信息。

     

    Abstract: This review provides an extensive analysis of the recycling and regeneration of battery-grade graphite obtained from used lithium-ion batteries. The main objectives are to address supply-demand challenges and minimize environmental pollution. The study focuses on the methods involved in obtaining, separating, purifying, and regenerating spent graphite to ensure its suitability for high-quality energy storage. To improve the graphite recovery efficiency and solve the problem of residual contaminants, techniques like heat treatment, solvent dissolution, and ultrasound treatment are explored. Wet and pyrometallurgical purification and regeneration methods are evaluated, considering their environmental impact and energy consumption. Sustainable and cost-effective approaches, including acid-free purification and low-temperature graphitization, are highlighted. Specific requirements for regenerated graphite in lithium-ion batteries and supercapacitors are discussed, emphasizing customized recycling processes involving acid leaching, high-temperature treatment, and surface coating. Valuable information for the development of efficient and sustainable energy storage systems is provided, addressing environmental issues, and how to meet the increasing demand for graphite anodes.

     

/

返回文章
返回