留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ir nanoclusters on ZIF-8-derived nitrogen-doped carbon frameworks to give a highly efficient hydrogen evolution reaction

WANG Xi-ao GONG Yan-shang LIU Zhi-kun WU Pei-shan ZHANG Li-xue SUN Jian-kun

王希澳, 公衍尚, 刘之坤, 巫培山, 张立学, 孙建坤. Ir纳米团簇负载于ZIF-8衍生的氮掺杂炭框架用于高效析氢反应. 新型炭材料(中英文), 2024, 39(1): 164-172. doi: 10.1016/S1872-5805(24)60832-2
引用本文: 王希澳, 公衍尚, 刘之坤, 巫培山, 张立学, 孙建坤. Ir纳米团簇负载于ZIF-8衍生的氮掺杂炭框架用于高效析氢反应. 新型炭材料(中英文), 2024, 39(1): 164-172. doi: 10.1016/S1872-5805(24)60832-2
WANG Xi-ao, GONG Yan-shang, LIU Zhi-kun, WU Pei-shan, ZHANG Li-xue, SUN Jian-kun. Ir nanoclusters on ZIF-8-derived nitrogen-doped carbon frameworks to give a highly efficient hydrogen evolution reaction. New Carbon Mater., 2024, 39(1): 164-172. doi: 10.1016/S1872-5805(24)60832-2
Citation: WANG Xi-ao, GONG Yan-shang, LIU Zhi-kun, WU Pei-shan, ZHANG Li-xue, SUN Jian-kun. Ir nanoclusters on ZIF-8-derived nitrogen-doped carbon frameworks to give a highly efficient hydrogen evolution reaction. New Carbon Mater., 2024, 39(1): 164-172. doi: 10.1016/S1872-5805(24)60832-2

Ir纳米团簇负载于ZIF-8衍生的氮掺杂炭框架用于高效析氢反应

doi: 10.1016/S1872-5805(24)60832-2
基金项目: 中国博士后科学基金(2020M671990);青岛市应用基础研究项目
详细信息
    通讯作者:

    巫培山,助理研究员. E-mail: wupeishan@fenxi.com.cn

    孙建坤,教授. E-mail: sunjk@qdu.edu.cn

  • 中图分类号: TQ127.1+1

Ir nanoclusters on ZIF-8-derived nitrogen-doped carbon frameworks to give a highly efficient hydrogen evolution reaction

Funds: This research was funded by the China Postdoctoral Science Foundation (2020M671990) and the Qingdao Applied Fundamental Research Project
More Information
  • 摘要: 利用低活性载体精确调控活性金属的电子结构是开发高性能电催化剂的有效途径,金属与载体之间高度灵活的电子相互作用可优化催化性能。在此,将Ir纳米团簇(Ir@NC)均匀地负载在氮掺杂炭框架上,制备了一种高效的析氢反应(HER)电催化剂。合成过程是将在900 °C下退火制备的沸石咪唑盐框架-8(ZIF-8)作为碳源浸入IrCl3溶液中,然后在400 °C的H2/Ar气氛下进行煅烧还原处理。氮掺杂炭框架的三维多孔结构暴露了更多的活性金属位点,Ir簇和氮掺杂炭载体之间的协同效应有效地调节了Ir的电子结构,优化了HER过程。在酸性介质中,Ir@NC表现出显著的HER电催化活性:在10 mA cm−2的条件下,过电位仅为23 mV,具有超低的Tafel斜率(25.8 mV dec−1),且在10 mA cm−2的条件下可稳定运行24 h以上。制备的电催化剂具有高活性、合成路线简便、可规模化制备等优点,有望成为一种极有前途的候选催化剂用于酸性水裂解进行工业制氢。
  • FIG. 2918.  FIG. 2918.

    FIG. 2918..  FIG. 2918.

    Figure  1.  Schematic illustration of the formation of Ir@NC electrocatalyst

    Figure  2.  (a) XRD patterns of NC and Ir@NC sample. SEM images of (b) ZIF-8, (c) NC and (d) Ir@NC. (e-f) HRTEM images of Ir@NC. (g) Size distribution of Ir nanoclusters. (h) HAADF-STEM and (i) the corresponding EDS elemental mapping images of Ir@NC

    Figure  3.  (a) N2 adsorption-desorption isotherms and corresponding (b) pore diameter distribution curves of NC and Ir@NC

    Figure  4.  XPS spectra of NC and Ir@NC. (a) Survey scan spectra of NC and Ir@NC. High-resolution spectra of (b) C 1s and (c) N 1s for Ir@NC and NC. (d) High-resolution spectra of Ir 4f for Ir@NC and Ir@C

    Figure  5.  HER catalytic performance of different electrocatalysts in 0.5 mol L−1 H2SO4. (a) LSV polarization curves of HER. (b) Overpotentials of different catalyst to achieve 10 and 50 mA cm−2. (c) Corresponding Tafel slope. (d) Comparison of the overpotential at 10 mA cm−2 and Tafel slope of Ir@NC with the recently reported Ir-based HER catalysts in 0.5 mol L−1 H2SO4. (e) Nyquist plots. (f) Chronopotentiometric curves of Ir@NC, Ir@C and Pt/C at 10 mA cm−2 without IR correction

  • [1] Zhang L H, Shi Y, Wang Y, et al. Nanocarbon catalysts: Recent understanding regarding the active sites[J]. Advanced Science,2020,7:1902126. doi: 10.1002/advs.201902126
    [2] Wu Y Z, Huang Y, Jiang L W, et al. Modulating the electronic structure of CoS2 by Sn doping boosting urea oxidation for efficient alkaline hydrogen production[J]. Journal of Colloid and Interface Science,2023,642:574-583. doi: 10.1016/j.jcis.2023.03.165
    [3] Yin Z H, Huang Y, Jiang L W, et al. Revealing the In situ evolution of tetrahedral NiMoO4 micropillar array for energy-efficient alkaline hydrogen production assisted by urea electrolysis[J]. Small Structures,2023,4:2300028. doi: 10.1002/sstr.202300028
    [4] Sun J, Xu W, Lv C, et al. Co/MoN hetero-interface nanoflake array with enhanced water dissociation capability achieves the Pt-like hydrogen evolution catalytic performance[J]. Applied Catalysis B:Environmental,2021,286:119882. doi: 10.1016/j.apcatb.2021.119882
    [5] Yi P, Song Y, Li C, et al. Heterostructured Mn-doped NiSx/NiO/Ni3N nanoplate arrays as bifunctional electrocatalysts for energy-saving hydrogen production and urea degradation[J]. Applied Surface Science,2023,619:156789. doi: 10.1016/j.apsusc.2023.156789
    [6] Zhang J, Chen Z, Liu C, et al. Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting[J]. Science China Materials,2019,63(2):249-257.
    [7] Reier T, Pawolek Z, Cherevko S, et al. Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER)[J]. Journal of the American Chemical Society,2015,137(40):13031-13040. doi: 10.1021/jacs.5b07788
    [8] Wang C, Zhai P, Xia M, et al. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction[J]. Angewandte Chemie International Edition,2021,60(52):27126-27134. doi: 10.1002/anie.202112870
    [9] Kim M, Kang H, Hwang E, et al. Facile colloidal synthesis of transition metal (Co, Fe and Ni)-added Ir-W NPs for HER in acidic electrolyte[J]. Applied Surface Science,2023,612:155862. doi: 10.1016/j.apsusc.2022.155862
    [10] Liu M, Liu S, Mao Q, et al. Ultrafine ruthenium–iridium–tellurium nanotubes for boosting overall water splitting in acidic media[J]. Journal of Materials Chemistry A,2022,10(4):2021-2026. doi: 10.1039/D1TA07789A
    [11] Liu Z X, Wang X L, Hu A P, et al. 3D Se-doped NiCoP nanoarrays on carbon cloth for efficient alkaline hydrogen evolution[J]. Journal of Central South University,2021,28(8):2345-2359. doi: 10.1007/s11771-021-4774-y
    [12] Li C, Yi P, Sun J, et al. Robust self-supported SnO2-Mn2O3@CC electrode for efficient electrochemical degradation of cationic blue X-GRRL dye[J]. Molecules,2023,28:3957. doi: 10.3390/molecules28093957
    [13] Chatti M, Gardiner J L, Fournier M, et al. Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C[J]. Nature Catalysis,2019,2(5):457-465. doi: 10.1038/s41929-019-0277-8
    [14] Cheng A, Zhao J, Wang X A, et al. Hybrid 1D/3D-structured perovskite as a highly selective and stable sensor for NO2 detection at room temperature[J]. Molecules,2023,28:2615. doi: 10.3390/molecules28062615
    [15] Huang Y, Jiang L W, Liu H, et al. Electronic structure regulation and polysulfide bonding of Co-doped (Ni, Fe)1+xS enable highly efficient and stable electrocatalytic overall water splitting[J]. Chemical Engineering Journal,2022,441:136121. doi: 10.1016/j.cej.2022.136121
    [16] Yin S H, Yang S L, Li G, et al. Seizing gaseous Fe2+ to densify O2-accessible Fe–N4 sites for high-performance proton exchange membrane fuel cells[J]. Energy & Environmental Science,2022,15(7):3033-3040.
    [17] Meng C, He W D, Tan H, et al. A eutectic electrolyte for an ultralong-lived Zn//V2O5 cell: an in situ generated gradient solid-electrolyte interphase[J]. Energy & Environmental Science,2023,16(8):3587-3599.
    [18] You H, Wu D, Chen Z N, et al. Highly active and stable water splitting in acidic media using a bifunctional iridium/cucurbit[6]uril catalyst[J]. ACS Energy Letters,2019,4(6):1301-1307. doi: 10.1021/acsenergylett.9b00553
    [19] Song H, Wu M, Tang Z, et al. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production[J]. Angewandte Chemie International Edition,2021,60:7234-7244. doi: 10.1002/anie.202017102
    [20] Drouet S, Creus J, Colliere V, et al. A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions[J]. Chemical Communications,2017,53(85):11713-11716. doi: 10.1039/C7CC05615J
    [21] Zhang Y, Huang Y, Zhu S S, et al. Covalent S-O bonding enables enhanced photoelectrochemical performance of Cu2S/Fe2O3 heterojunction for water splitting[J]. Small,2021,17:2100320. doi: 10.1002/smll.202100320
    [22] Ding J, Yang H, Zhang S, et al. Advances in the electrocatalytic hydrogen evolution reaction by metal nanoclusters-based materials[J]. Small,2022,18:2204524. doi: 10.1002/smll.202204524
    [23] Dong C, Li Y, Cheng D, et al. Supported metal clusters: Fabrication and application in heterogeneous catalysis[J]. ACS Catalysis,2020,10(19):11011-11045. doi: 10.1021/acscatal.0c02818
    [24] Zhang X, Sa R, Yang S, et al. A non-carbon catalyst support upgrades the intrinsic activity of ruthenium for hydrogen evolution electrocatalysis via strong interfacial electronic effects[J]. Nano Energy,2020,75:104981. doi: 10.1016/j.nanoen.2020.104981
    [25] Xue S G, Tang L, Tang T, et al. Identifying the active sites in C-N codoped TiO2 electrode for electrocatalytic water oxidation to produce H2O2[J]. Journal of Central South University,2022,29(9):3016-3029. doi: 10.1007/s11771-022-5149-8
    [26] Wang Q, Xu C Q, Liu W, et al. Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting[J]. Nature Communications,2019,10:4875. doi: 10.1038/s41467-019-12885-0
    [27] Xiao X, Li Z, Xiong Y, et al. IrMo nanocluster-doped porous carbon electrocatalysts derived from cucurbit[6]uril boost efficient alkaline hydrogen evolution[J]. Journal of the American Chemical Society,2023,145(30):16548-16556. doi: 10.1021/jacs.3c03489
    [28] Shi J, Kao C W, Lan J, et al. Nanoporous PdIr alloy for high-efficiency and durable water splitting in acidic media[J]. Journal of Materials Chemistry A,2023,11(21):11526-11533. doi: 10.1039/D3TA01280H
    [29] Chen W, Xie Y, Gao X, et al. Simultaneous optimization of CoIr alloy nanoparticles and 2D graphitic-N doped carbon support in CoIr@CN by Ir doping for enhanced oxygen and hydrogen evolution reactions[J]. Journal of Materials Chemistry A,2022,10(29):15543-15553. doi: 10.1039/D2TA03496D
    [30] Wang M, Zheng X, Qin D, et al. Atomically dispersed CoN3C1-TeN1C3 diatomic sites anchored in N-doped carbon as efficient bifunctional catalyst for synergistic electrocatalytic hydrogen evolution and oxygen reduction[J]. Small,2022,18:2201974. doi: 10.1002/smll.202201974
    [31] Wei S, Li A, Liu J C, et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms[J]. Nature Nanotechnol,2018,13:856-861. doi: 10.1038/s41565-018-0197-9
    [32] Liang Q, Li Q, Xie L, et al. Superassembly of surface-enriched Ru nanoclusters from trapping-bonding strategy for efficient hydrogen evolution[J]. ACS Nano,2022,16:7993-8004. doi: 10.1021/acsnano.2c00901
    [33] Wu X, Wang Z, Chen K, et al. Unravelling the role of strong metal-support interactions in boosting the activity toward hydrogen evolution reaction on Ir nanoparticle/N-doped carbon nanosheet catalysts[J]. ACS Applied Materials & Interfaces,2021,13:22448-22456.
    [34] Li D, Zong Z, Tang Z, et al. Total water splitting catalyzed by Co@Ir core–shell nanoparticles encapsulated in nitrogen-doped porous carbon derived from metal–organic frameworks[J]. ACS Sustainable Chemistry & Engineering,2018,6(4):5105-5114.
    [35] Mao Y, Chen J, Wang H, et al. Catalyst screening: Refinement of the origin of the volcano curve and its implication in heterogeneous catalysis[J]. Chinese Journal of Catalysis,2015,36(9):1596-1605. doi: 10.1016/S1872-2067(15)60875-0
    [36] Chen H, Ai X, Liu W, et al. Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt‐like electrocatalytic activity[J]. Angewandte Chemie International Edition,2019,58:11409-11413. doi: 10.1002/anie.201906394
    [37] Li F, Han G F, Noh H J, et al. Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis[J]. Nature Communications,2019,10:4060. doi: 10.1038/s41467-019-12012-z
    [38] Zhao Y, Watanabe K, Hashimoto K. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer[J]. Journal of the American Chemical Society,2012,134(48):19528-19531. doi: 10.1021/ja3085934
    [39] Artyushkova K, Kiefer B, Halevi B, et al. Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures[J]. Chemical Communications,2013,49(25):2539-2541. doi: 10.1039/c3cc40324f
    [40] Joo J, Jin H, Oh A, et al. An IrRu alloy nanocactus on Cu2−xS@IrSy as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes[J]. Journal of Materials Chemistry A,2018,6(33):16130-16138. doi: 10.1039/C8TA04886J
    [41] Wu D, Kusada K, Yoshioka S, et al. Efficient overall water splitting in acid with anisotropic metal nanosheets[J]. Nature Communications,2021,12(1):1145. doi: 10.1038/s41467-021-20956-4
    [42] Pi Y, Shao Q, Wang P, et al. General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting[J]. Advanced Functional Materials,2017,27:1700886. doi: 10.1002/adfm.201700886
    [43] Peng Y, Liu Q, Lu B, et al. Organically capped iridium nanoparticles as high-performance bifunctional electrocatalysts for full water splitting in both acidic and alkaline media: Impacts of metal–ligand interfacial interactions[J]. ACS Catalysis,2021,11(3):1179-1188. doi: 10.1021/acscatal.0c03747
    [44] Dai Q, Meng Q, Du C, et al. Spontaneous deposition of Ir nanoparticles on 2D siloxene as a high-performance HER electrocatalyst with ultra-low Ir loading[J]. Chemical Communications,2020,56(35):4824-4827. doi: 10.1039/D0CC00245C
  • ncm2023-0254_Supporting+information-without+highlight_新型炭材料(中英文).pdf
  • 加载中
图(6)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  71
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-21
  • 录用日期:  2023-11-29
  • 修回日期:  2023-11-29
  • 网络出版日期:  2023-12-06
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回