留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Defect engineering of carbon-based electrocatalysts for the CO2 reduction reaction: A review

LU Yan-kun CHENG Bai-xue ZHAN Hao-yu ZHOU Peng

卢衍堃, 程白雪, 战浩宇, 周鹏. 碳基电催化剂缺陷工程用于CO2还原反应. 新型炭材料(中英文), 2024, 39(1): 17-41. doi: 10.1016/S1872-5805(24)60833-4
引用本文: 卢衍堃, 程白雪, 战浩宇, 周鹏. 碳基电催化剂缺陷工程用于CO2还原反应. 新型炭材料(中英文), 2024, 39(1): 17-41. doi: 10.1016/S1872-5805(24)60833-4
LU Yan-kun, CHENG Bai-xue, ZHAN Hao-yu, ZHOU Peng. Defect engineering of carbon-based electrocatalysts for the CO2 reduction reaction: A review. New Carbon Mater., 2024, 39(1): 17-41. doi: 10.1016/S1872-5805(24)60833-4
Citation: LU Yan-kun, CHENG Bai-xue, ZHAN Hao-yu, ZHOU Peng. Defect engineering of carbon-based electrocatalysts for the CO2 reduction reaction: A review. New Carbon Mater., 2024, 39(1): 17-41. doi: 10.1016/S1872-5805(24)60833-4

碳基电催化剂缺陷工程用于CO2还原反应

doi: 10.1016/S1872-5805(24)60833-4
基金项目: 山东省自然科学青年基金项目(ZR2023QB235);催化材料制备及应用湖北省重点实验室开放基金项目(202306404);山东省泰山学者工程项目
详细信息
    通讯作者:

    周 鹏,博士,副教授. E-mail:pengzhou@qdu.edu.cn

  • 中图分类号: TQ127.1+1

Defect engineering of carbon-based electrocatalysts for the CO2 reduction reaction: A review

Funds: This work was financially supported by the Natural Science Foundation of Shandong Province (ZR2023QB235), Open Fund of Hubei Key Laboratory of Processing and Application of Catalytic Materials (202306404) and the Taishan Scholar Program of Shandong Province
More Information
  • 摘要: 电催化二氧化碳(CO2)还原是通过电能将温室气体CO2转化为高附加值化学品。碳基材料因其成本低、活性高的特点,被广泛应用于包括电催化CO2还原在内的多种电化学反应中。近年来,通过缺陷工程在碳基材料中构建不对称中心优化材料的物理化学性质,提高电催化活性这一策略引起了研究人员的广泛关注。本文综述了缺陷碳基材料的类型、构建方法和缺陷表征方法,并进一步梳理了缺陷工程的优势、各种缺陷构建方法和表征方法的优缺点。最后,对缺陷碳基材料在电催化CO2还原中面临的挑战和机遇进行了展望。相信本文能为缺陷碳基材料在CO2还原中的发展提供针对性的建议。
  • FIG. 2910.  FIG. 2910.

    FIG. 2910..  FIG. 2910.

    .  Scheme 1. Schematic illustration for the types of the defective in carbon materials

    Figure  1.  (a) The synthesis process of the K-defect-carbon; (b, c) The adsorption free energy change and the values of UL(CO2RR)−UL(HER) on V0, V1, V10, and V12 sites[46]. Copyright 2022, Wiley-VCH. (d) The theoretical computational model molecule of the F-doped defect carbon; (e, f) The free energy change of different catalysts for ECRR and the related schematic of ECRR pathway[48]. Copyright 2018, Wiley-VCH. (g) The N-doped, P-doped, and N,P-co-doped carbon configurations. (h) Difference in limiting potentials for ECRR and HER over a simulated N,P-co-doped carbon configuration[49]. Copyright 2020, Wiley-VCH

    Figure  2.  (a) The synthesis process diagram; (b) electron energy loss spectrum; (c) scanning transmission electron microscopy and energy dispersive mapping spectra; (d, e) low and high-angle toroidal dark-field scanning transmission electron microscopy of the Fe-N-C-750 material[50]. Copyright 2018, Wiley-VCH. (f) The reaction mechanism diagram; (g, h) The low and high-angle toroidal dark-field scanning transmission electron microscopy (the inset exhibits the related energy dispersive mapping spectrum of Zn); (i, j) X-ray absorption near edge structure and extended X-ray absorption fine structure spectra of the Zn-microporous N-doped carbon catalyst[55]. Copyright 2020, American Chemical Society. (k) The linear sweep curve; (l) electrochemical impedance spectra; m) schematic of the catalytic enhancement mechanism of various catalysts including defective carbon[59]. Copyright 2020, American Chemical Society

    Figure  3.  (a-c) The linear sweep curves. (d) Faraday efficiency. (e, f) C K-edge X-ray absorption near edge structure spectra and related expanded view; (g) theoretical computational model molecule; (h) free energy change of the different N-doped carbon materials[61]. Copyright 2019, Wiley-VCH. (i) The Faraday efficiency; (j) current density of the NRMC-800, NRMC-900 and NRMC-1000 materials at different applied potentials; (k) The N element content; (l) ID/IG with FECO for NRMC-800, NRMC-900 and NRMC-1000 at the applied potential of −0.7 V; (m) The Faraday efficiency; (n) current density of the NRMC-900. NRMC-900-2 and NRMC-900-3 materials at different applied potentials; (o) The EPR spectra; (p) Double-integrated intensity of defects in EPR spectra for NMC and NRMC catalysts[62]. Copyright 2018, American Chemical Society

    Figure  4.  (a) The nitrogen dopants model system of reactive molecular dynamics (RMD) simulation, i.e., pyridinic-N, pyrrolic-N, and graphitic-N. (b) The structural evolution of the active site in ECRR process. (c) The free energy diagram for ECRR at N-doped sites, penta-hole, and 585-1 sites. (d) The partial charge distribution at defect sites[64]. Copyright 2020, Wiley-VCH. (e) The N-doped structure model of pyridinic-N, pyrrolic-N and graphitic-N.[71] Copyright 2017, Wiley-VCH. (f) The structural model of N-doped carbon and the correspondence between Tafel value and N content[74]. Copyright 2016, Wiley-VCH. (g) The structural model of N-doped carbon nanotube[75]. Copyright 2015, American Chemical Society. (h) The structural model of pyrrolic-N, graphitic-N, S-doped carbon nanosheet[88]. Copyright 2018, Wiley-VCH

    Figure  5.  (a) The schematic diagram of the process of converting wood into defective carbon material by pyrolysis method[91]. Copyright 2019, Wiley-VCH. (b) The schematic diagram of the preparation process of the N-doped carbon nanotube by pyrolysis[97]. Copyright 2019, Wiley-VCH. (c) The schematic diagram of the preparation process of the defective carbon materials by nitrogen removal pyrolysis method[98]. Copyright 2021, American Chemical Society. (d) The model structure of the P-modified carbon material prepared by chemical vapor deposition[103]. Copyright 2018, Royal Society of Chemistry

    Figure  6.  (a) The schematic diagram of structural evolution of the defective carbon materials prepared by ball milling method[106]. Copyright 2019, Wiley-VCH. (b) The schematic diagram of the preparation of the defective graphene by chemical etching[110]. Copyright 2019, American Chemical Society. (c) The schematic diagram of the preparation of the defective graphene by plasma etching method[115]. Copyright 2016, Royal Society of Chemistry. (d) The schematic diagram of the self-supporting defective carbon material prepared by plasma treatment[116]. Copyright 2017, Wiley-VCH

    Figure  7.  (a, b) STEM images of the defective carbon material. (c) Raman spectra and (d) C 1s XPS spectrum of the defective carbon material[120]. Copyright 2019, Wiley-VCH. (e) The comparison of elemental content ratio of different defective carbon materials. (f-l) C 1s XPS spectra of different defective carbon materials. (m) The comparison of AC-sp3/AC-sp2 ratio of different defective carbon materials. (n-p) HRTEM images of different defective carbon materials[121]. Copyright 2023, Springer Nature Publishing Group. (q, r) TEM and STEM images of the defective graphene. (s) Raman spectrum; and (t) C1s XPS spectrum of the defective graphene[122]. Copyright 2017, Wiley-VCH

    Figure  8.  (a, b) STM and related fast fourier transform images of the defective graphene material[125]. Copyright 2022, American Physical Society. (c) EXAFS spectrum and (d) EPR spectrum of the defective carbon material[99]. Copyright 2023, American Chemical Society. (e) C K-edge XANES spectrum of the defective carbon material[128]. Copyright 2018, American Chemical Society. (f) The EPR spectrum of ECM-800[129]. Copyright 2022, Wiley-VCH. (g) PAS spectrum of the defective PBA-60. (h, i) The schematic diagram of positron capture[130]. Copyright 2019, Springer Nature Publishing Group

    Table  1.   Summary of defect category, defect effect, synthesis strategy and performance of reported electrocatalysts

    ElectrocatalystsDefect categoryDefect effectSynthesis strategyPerformance
    K-defect-C[46] Vacancy defect Enhance CO2 adsorption and the formation of COOH intermediate Pyrolysis method FE up to 99% at −0.45 V vs. RHE
    D-C-X[61] Vacancy defect Optimization the adsorption of COOH intermediate Pyrolysis method (nitrogen removal) FE up to 94.5% at −0.6 V vs. RHE
    NRMC-X[62] Edge defect Optimization the adsorption of COOH intermediate; Inhibition of H intermediate adsorption Pyrolysis method FE up to 80% at −0.49 V vs. RHE
    NPC[64] Topological defect Enhance CO2 adsorption and the formation of COOH intermediate; Inhibition of H intermediate adsorption Pyrolysis method (nitrogen removal) FE up to 95.2% at −0.6 V vs. RHE
    Fe2C-Cs@DC[65] Topological defect Promote CO desorption Pyrolysis method FE up to 97.1% at −0.7 V vs. RHE
    DNG-SAFe[66] Topological defect Optimization the adsorption of COOH and CO; Inhibition of H adsorption; Promote the charge transfer Pyrolysis method FE up to 90% at −0.75 V and −0.85 V vs. RHE
    Fe+-N-C[5] Doping defect Enhance CO2 adsorption; Reduce CO adsorption Pyrolysis
    method
    FE higher than 90% at −0.45 V vs. RHE
    F-CPC[57] Doping defect Improve electrical conductivity and the adsorption of CO2 and K+; Reduce the CO2 conversion energy barrier Pyrolysis method FE up to 88.3% at −1.0 V vs. RHE
    CNFs[67] Doping defect Increase the binding energies between the CO2 intermediates and the CNF Pyrolysis method FE up to 98% at −0.573 V vs. RHE
    NC@Ni/C[68] Doping defect Enhance CO2 adsorption and the formation of COOH intermediate Pyrolysis method FE up to 97% at −1.05 V vs. RHE
    Fe-N-C[70] Doping defect Optimization the adsorption of COOH intermediate; Inhibition of H intermediate adsorption Pyrolysis method FE up to 99% at −0.24 V vs. RHE
    CN-CNTs[71] Doping defect Inhibition of H intermediate adsorption CVD FE up to 88% at −0.5 V vs. RHE
    Co@Pc/C[72] Doping defect Optimization the adsorption of COOH intermediate Pyrolysis method FE up to 84% at −0.9 V vs. RHE
    NPC[73] Doping defect Optimization the adsorption of COOH and CO Pyrolysis method FE up to 98.4% at −0.55 V vs. RHE
    NCNTs[74] Doping defect Stabilization of the key intermediate CO2·- Pyrolysis method FE up to 90% at −0.9 V vs. RHE
    1D/2D NR/CS-X[83] Doping defect Optimization the adsorption of COOH and CO Pyrolysis method FE up to 94.2% at −0.45 V vs. RHE
    N doped ultra nano-crystalline diamond[84] Doping defect Optimization the adsorption of COOH and CO CVD FE up to 82% at −1.1 V vs. RHE
    N,B-co-doped graphitic carbon loaded with Co nanoparticles[86] Doping defect Increase electrical conductivity, active area, charge density distribution Pyrolysis method FE up to 97.9% at −2.4 V vs. Ag/Ag+
    N,F co-doped carbon nanosheet[87] Doping defect Improve electrical conductivity and charge density distribution; Optimization the adsorption of COOH intermediate Pyrolysis method FE up to 90% at −0.49 V vs. RHE
    NSHCF[88] Doping defect Reduce the CO2 conversion energy barrier; Increase active area Pyrolysis method FE up to 94% at −0.7 V vs. RHE
    P-OLC[103] Doping defect Optimization the adsorption of COOH intermediate; Improve electrical conductivity CVD FE up to 81% at −0.9 V vs. RHE
    BDD[104] Doping defect Formation of sp3-bonded carbon; Improve electrical conductivity and durability CVD FE up to 74% at −1.7 V vs. Ag/Ag+
    下载: 导出CSV
  • [1] Wang Z H, Li Y C, Zhao X, et al. Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium[J]. Journal of the American Chemical Society,2023,145:6339-6348. doi: 10.1021/jacs.2c13384
    [2] Yang Y, Louisia S, Yu S M, et al. Operando studies reveal active Cu nanograins for CO2 electroreduction[J]. Nature,2023,614:262-269. doi: 10.1038/s41586-022-05540-0
    [3] Cobb S J, Badiani V M, Dharani A M, et al. Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis[J]. Nature Chemistry,2022,14:417-424. doi: 10.1038/s41557-021-00880-2
    [4] Zhang J F, Wang Y, Li Z Y, et al. Grain boundary-derived Cu+/Cu0 interfaces in CuO nanosheets for low overpotential carbon dioxide electroreduction to ethylene[J]. Advanced Science,2022,9:2200454. doi: 10.1002/advs.202200454
    [5] Gu J, Hsu C S, Bai L C, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science,2019,364:1091-1094. doi: 10.1126/science.aaw7515
    [6] Zheng X L, Ji Y F, Tang J, et al. Theory-guided Sn/Cu alloying forefficient CO2 electroreduction at lowoverpotentials[J]. Nature Catalysis,2019,2:55-61.
    [7] Li X, Zhao X H, Liu Y Y, et al. Redox-tunable lewis bases for electrochemical carbon dioxide capture[J]. Nature Energy,2022,7:1065-1075. doi: 10.1038/s41560-022-01137-z
    [8] Lin J B, Nguyen T T T, Vaidhyanathan R, et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture[J]. Science,2021,374:1464-1469. doi: 10.1126/science.abi7281
    [9] Feng J P, Zhou K J, Liu C S, et al. Superbase and hydrophobic ionic liquid confined within Ni foams as a free-standing catalyst for CO2 electroreduction[J]. ACS Applied Materials & Interfaces,2022,14:38717-38726.
    [10] He J H, Lyu P, Jiang B, et al. A novel amorphous alloy photocatalyst (NiB/In2O3) composite for sunlight-induced CO2 hydrogenation to HCOOH[J]. Applied Catalysis B: Environmental,2021,298:120603. doi: 10.1016/j.apcatb.2021.120603
    [11] Qiu L Q, Li H R, He L N, et al. Incorporating catalytic units into nanomaterials: rational design of multipurpose catalysts for CO2 valorization[J]. Accounts of Chemical Research,2023,56:2225-2240. doi: 10.1021/acs.accounts.3c00316
    [12] Curtiss L A, Raghavachari K, Redfern P C, et al. Assessment of gaussian-2 and density functional theories for the computation of enthalpies of formation[J]. The Journal of Chemical Physics,1997,106:1063-1079. doi: 10.1063/1.473182
    [13] Kosugi K, Akatsuka C, Iwami H, et al. Iron-complex-based supramolecular framework catalyst for visible-light-driven CO2 reduction[J]. Journal of the American Chemical Society,2023,145:10451-10457. doi: 10.1021/jacs.3c00783
    [14] Tackett B M, Gomez E, Chen J G, et al. Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes[J]. Nature Catalysis,2019,2:381-386. doi: 10.1038/s41929-019-0266-y
    [15] Zhao H B, Yu R F, Ma S C, et al. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation[J]. Nature Catalysis,2022,5:818-831. doi: 10.1038/s41929-022-00840-0
    [16] Kim J, Cestellos S, Shen Y X, et al. Enhancing biohybrid CO2 to multicarbon reduction via adapted whole-cell catalysts[J]. Nano Letters,2022,22:5503-5509. doi: 10.1021/acs.nanolett.2c01576
    [17] Zou Y Q, Wang S Y, et al. An investigation of active sites for electrochemical CO2 reduction reactions: From in situ characterization to rational design[J]. Advanced Science,2021,8:2003579. doi: 10.1002/advs.202003579
    [18] Zheng T T, Jiang K, Ta N, et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst[J]. Joule,2019,3:265-278. doi: 10.1016/j.joule.2018.10.015
    [19] Guo C Y, Zhou W, Lan X M, et al. Electrochemical upgrading of formic acid to formamide via coupling nitrite co-reduction[J]. Journal of the American Chemical Society,2022,144:16006-16011. doi: 10.1021/jacs.2c05660
    [20] Guo C Y, Guo Y H, Shi Y M, et al. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cuδ+ species[J]. Angewandte Chemie International Edition,2022,61:202205909. doi: 10.1002/anie.202205909
    [21] Qiao J L, Liu Y Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews,2014,43:631-675. doi: 10.1039/C3CS60323G
    [22] Birdja Y Y, Pérez E, Figueiredo M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy,2019,4:732-745. doi: 10.1038/s41560-019-0450-y
    [23] Zhang Z, Huang X, Chen Z, et al. Membrane electrode assembly for electrocatalytic CO2 reduction: Principle and application[J]. Angewandte Chemie International Edition,2023,62:202302789. doi: 10.1002/anie.202302789
    [24] Li M Y, Wang T H, Zhao W X, et al. A pair-electrosynthesis for formate at ultra-low voltage via coupling of CO2 reduction and formaldehyde oxidation[J]. Nano-Micro Letters,2022,14:211. doi: 10.1007/s40820-022-00953-y
    [25] Wang C H, Kim J, Tang J, et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures[J]. Chem,2020,6:19-40. doi: 10.1016/j.chempr.2019.09.005
    [26] Li Z S, Li B L, Yu C L, et al. Recent progress of hollow carbon nanocages: general design fundamentals and diversified electrochemical applications[J]. Advanced Science,2023,10:2206605. doi: 10.1002/advs.202206605
    [27] Wu Y Z, Zhao X W, Shang Y Y, et al. Application-driven carbon nanotube functional materials[J]. ACS Nano,2021,15:7946-7974. doi: 10.1021/acsnano.0c10662
    [28] Liu D B, Ni K, Ye J L, et al. Tailoring the structure of carbon nanomaterials toward high-end energy applications[J]. Advanced Materials,2018,30:1802104. doi: 10.1002/adma.201802104
    [29] Cui P B, Zhao L J, Long Y D, et al. Carbon-based electrocatalysts for acidic oxygen reduction reaction[J]. Angewandte Chemie International Edition,2023,62:202218269. doi: 10.1002/anie.202218269
    [30] Liu W J, Jiang H, Yu H Q, et al. Emerging applications of biochar-based materials for energy storage and conversion[J]. Energy & Environmental Science,2019,12:1751-1779.
    [31] Liang S Y, Huang L, Gao Y S, et al. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: The active sites and reaction mechanism[J]. Advanced Science,2021,8:2102886. doi: 10.1002/advs.202102886
    [32] Feng Y Y, Chen Y Q, Wang Z, et al. Synthesis of mesoporous carbon materials from renewable plant polyphenols for environmental and energy applications[J]. New Carbon Materials,2022,37:196-222. doi: 10.1016/S1872-5805(22)60577-8
    [33] Wang G, Yu M H, Feng X L, et al. Carbon materials for ion-intercalation involved rechargeable battery technologies[J]. Chemical Society Reviews,2021,50:2388-2443. doi: 10.1039/D0CS00187B
    [34] Li W B, Yu C, Tan X Y, et al. Recent advances in the electroreduction of carbon dioxide to formic acid over carbon-based materials[J]. New Carbon Materials,2022,37:277-287. doi: 10.1016/S1872-5805(22)60592-4
    [35] Hu C G, Paul R, Dai Q B, et al. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis[J]. Chemical Society Reviews,2021,50:11785-11843. doi: 10.1039/D1CS00219H
    [36] Jia Y, Yao X D, et al. Defects in carbon-based materials for electrocatalysis: Synthesis, recognition and advances[J]. Accounts of Chemical Research,2023,56:948-958. doi: 10.1021/acs.accounts.2c00809
    [37] Yan D F, Li Y X, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials,2017,29:1606459. doi: 10.1002/adma.201606459
    [38] Xue D P, Xia H C, Yan W F, et al. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction[J]. Nano-Micro Letters,2020,13:5.
    [39] Zhu J W, Mu S C, et al. Defect engineering in carbon-based electrocatalysts: Insight into intrinsic carbon defects[J]. Advanced Functional Materials,2020,30:2001097. doi: 10.1002/adfm.202001097
    [40] Yan X C, Zhuang L Z, Zhu Z H, et al. Defect engineering and characterization of active sites for efficient electrocatalysis[J]. Nanoscale,2021,13:3327-3345. doi: 10.1039/D0NR08976A
    [41] Wang Y F, Han P, Lv X M, et al. Defect and interface engineering for aqueous electrocatalytic CO2 reduction[J]. Joule,2018,2:2551-2582. doi: 10.1016/j.joule.2018.09.021
    [42] Chattot R, Bordet P, Martens I, et al. Building practical descriptors for defect engineering of electrocatalytic materials[J]. ACS Catalysis,2020,10:9046-9056. doi: 10.1021/acscatal.0c02144
    [43] Xie C, Yan D F, Li H, et al. Defect chemistry in heterogeneous catalysis: recognition, understanding and utilization[J]. ACS Catalysis,2020,10:11082-11098. doi: 10.1021/acscatal.0c03034
    [44] Wang Q C, Lei Y P, Wang D S, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction[J]. Energy & Environmental Science,2019,12:1730-1750.
    [45] Wang X, Wu J, Zhang Y W, et al. Vacancy defects in 2D transition metal dichalcogenide electrocatalysts: From aggregated to atomic configuration [J]. Advanced Materials, 2023, 2206576.
    [46] Ling L L, Jiao L, Liu X S, et al. Potassium-assisted fabrication of intrinsic defects in porous carbons for electrocatalytic CO2 reduction[J]. Advanced Materials,2022,34:2205933. doi: 10.1002/adma.202205933
    [47] Fu J J, Wang Y, Liu J, et al. Low overpotential for electrochemically reducing CO2 to CO on nitrogen-doped graphene quantum dots-wrapped single-crystalline gold nanoparticles[J]. ACS Energy Letters,2018,3:946-951. doi: 10.1021/acsenergylett.8b00261
    [48] Xie J F, Zhao X T, Wu M X, et al. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution[J]. Angewandte Chemie International Edition,2018,57:9640-9644. doi: 10.1002/anie.201802055
    [49] Chen C J, Sun X F, Yan X P, et al. Boosting CO2 electroreduction on N, P-co-doped carbon aerogels[J]. Angewandte Chemie International Edition,2020,59:11123-11129. doi: 10.1002/anie.202004226
    [50] Zhang C H, Yang S Z, Wu J J, et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene[J]. Advanced Energy Materials,2018,8:1703487. doi: 10.1002/aenm.201703487
    [51] Jiang K, Siahrostami S, Zheng T T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science,2018,11:893-903.
    [52] Pan Y, Lin R, Chen Y J, et al. Design of single-atom Co–N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability[J]. Journal of the American Chemical Society,2018,140:4218-4221. doi: 10.1021/jacs.8b00814
    [53] Guan A X, Chen Z, Quan Y L, et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites[J]. ACS Energy Letters,2020,5:1044-1053. doi: 10.1021/acsenergylett.0c00018
    [54] Zhang B X, Zhang J L, Shi J B, et al. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction[J]. Nature Communications,2019,10:2980. doi: 10.1038/s41467-019-10854-1
    [55] Han L, Song S, Liu M, et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4[J]. Journal of the American Chemical Society,2020,142:12563-12567. doi: 10.1021/jacs.9b12111
    [56] Sharma P P, Wu J J, Yadav R M, et al. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: On the understanding of defects, defect density, and selectivity[J]. Angewandte Chemie International Edition,2015,54:13701-13705. doi: 10.1002/anie.201506062
    [57] Ni W, Xue Y F, Zang X G, et al. Fluorine doped cagelike carbon electrocatalyst: An insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential[J]. ACS Nano,2020,14:2014-2023. doi: 10.1021/acsnano.9b08528
    [58] Fu X Z, Zhang P P, Sun T T, et al. Atomically dispersed Ni-N3 sites on highly defective micro-mesoporous carbon for superior CO2 electroreduction[J]. Small,2022,18:2107997. doi: 10.1002/smll.202107997
    [59] Yuan L P, Jiang W J, Liu X L, et al. Molecularly engineered strong metal oxide–support interaction enables highly efficient and stable CO2 electroreduction[J]. ACS Catalysis,2020,10:13227-13235. doi: 10.1021/acscatal.0c03831
    [60] Pan F P, Li B Y, Sarnello E, et al. Boosting CO2 reduction on Fe-N-C with sulfur incorporation: synergistic electronic and structural engineering[J]. Nano Energy,2020,68:104384. doi: 10.1016/j.nanoen.2019.104384
    [61] Wang W, Shang L, Chang G J, et al. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide[J]. Advanced Materials,2019,31:1808276. doi: 10.1002/adma.201808276
    [62] Daiyan R, Tan X, Chen R, et al. Electroreduction of CO2 to CO on a mesoporous carbon catalyst with progressively removed nitrogen moieties[J]. ACS Energy Letters,2018,3:2292-2298. doi: 10.1021/acsenergylett.8b01409
    [63] Wang S D, Jiang H L, Song L, et al. Recent progress in defective carbon-based oxygen electrode materials for rechargeable zink-air batteries[J]. Batteries & Supercaps,2019,2:509-523.
    [64] Dong Y, Zhang Q J, Tian Z Q, et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction[J]. Advanced Materials,2020,32:2001300. doi: 10.1002/adma.202001300
    [65] Su J W, Pan D H, Dong Y, et al. Ultrafine Fe2C iron carbide nanoclusters trapped in topological carbon defects for efficient electroreduction of carbon dioxide[J]. Advanced Energy Materials,2023,13:2204391. doi: 10.1002/aenm.202204391
    [66] Ni W P, Liu Z X, Zhang Y, et al. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe–N4 site[J]. Advanced Materials,2021,33:2003238. doi: 10.1002/adma.202003238
    [67] Kumar B, Asadi M, Pisasale D, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nature Communications,2013,4:2819. doi: 10.1038/ncomms3819
    [68] Lu Q, Chen C, Di Q, et al. Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range[J]. ACS Catalysis,2022,12:1364-1374. doi: 10.1021/acscatal.1c04825
    [69] Sun S N, Li N, Liu J, et al. Identification of the activity source of CO2 electroreduction by strategic catalytic site distribution in stable supramolecular structure system[J]. National Science Review,2021,8:195. doi: 10.1093/nsr/nwaa195
    [70] Wang C, Wang X Y, Ren H A, et al. Combining Fe nanoparticles and pyrrole-type Fe-N4 sites on less-oxygenated carbon supports for electrochemical CO2 reduction[J]. Nature Communications,2023,14:5108. doi: 10.1038/s41467-023-40667-2
    [71] Cui X Q, Pan Z Y, Zhang L J, et al. Selective etching of nitrogen-doped carbon by steam for enhanced electrochemical CO2 reduction[J]. Advanced Energy Materials,2017,7:1701456. doi: 10.1002/aenm.201701456
    [72] He C, Zhang Y, Zhang Y F, et al. Molecular evidence for metallic cobalt boosting CO2 electroreduction on pyridinic nitrogen[J]. Angewandte Chemie International Edition,2020,59:4914-4919. doi: 10.1002/anie.201916520
    [73] Ye L, Ying Y R, Sun D R, et al. Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction[J]. Angewandte Chemie International Edition,2020,59:3244-3251. doi: 10.1002/anie.201912751
    [74] Xu J Y, Kan Y H, Huang R, et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide[J]. ChemSusChem,2016,9:1085-1089. doi: 10.1002/cssc.201600202
    [75] Wu J J, Yadav R M, Liu M J, et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes[J]. ACS Nano,2015,9:5364-5371. doi: 10.1021/acsnano.5b01079
    [76] Xia W, Xie Y J, Jia S Q, et al. Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol[J]. Journal of the American Chemical Society,2023,145:17253-17264. doi: 10.1021/jacs.3c04612
    [77] Lu P L, Yang Y J, Yao J N, et al. Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction[J]. Applied Catalysis B:Environmental,2019,241:113-119. doi: 10.1016/j.apcatb.2018.09.025
    [78] Sheng X D, Ge W X, Jiang H L, et al. Engineering the Ni-N-C catalyst microenvironment enabling CO2 electroreduction with nearly 100% CO selectivity in acid[J]. Advanced Materials,2022,34:2201295. doi: 10.1002/adma.202201295
    [79] Zhao R Y, Wang Y D, Ji G P, et al. Partially nitrided Ni nanoclusters achieve energy-efficient electrocatalytic CO2 reduction to CO at ultralow overpotential[J]. Advanced Materials,2023,35:2205262. doi: 10.1002/adma.202205262
    [80] Zhao K, Nie X W, Wang H Z, et al. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon[J]. Nature Communications,2020,11:2455. doi: 10.1038/s41467-020-16381-8
    [81] He Q, Liu D B, Lee J H, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts[J]. Angewandte Chemie International Edition,2020,59:3033-3037. doi: 10.1002/anie.201912719
    [82] Liu B K, Zhan S H, Du J, et al. Revealing the mechanism of sp-N doping in graphdiyne for developing site-defined metal-free catalysts [J]. Advanced Materials, 2022, 2206450.
    [83] Zhu Y, Lv K L, Wang X P, et al. 1D/2D nitrogen-doped carbon nanorod arrays/ultrathin carbon nanosheets: Outstanding catalysts for the highly efficient electroreduction of CO2 to CO[J]. Journal of Materials Chemistry A,2019,7:14895-14903. doi: 10.1039/C9TA02353D
    [84] Wanninayake N, Ai Q X, Zhou R X, et al. Understanding the effect of host structure of nitrogen doped ultrananocrystalline diamond electrode on electrochemical carbon dioxide reduction[J]. Carbon,2020,157:408-419. doi: 10.1016/j.carbon.2019.10.022
    [85] Zhao J, Chen Z, Zhao J X, et al. Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4[J]. Journal of Materials Chemistry A,2019,7:4026-4035. doi: 10.1039/C8TA11825F
    [86] Song X N, Guo W W, Ma X D, et al. Boosting CO2 electroreduction over Co nanoparticles supported on N, B-co-doped graphitic carbon[J]. Green Chemistry,2022,24:1488-1493. doi: 10.1039/D1GC04146K
    [87] Pan F P, Li B Y, Xiang X M, et al. Efficient CO2 electroreduction by highly dense and active pyridinic nitrogen on holey carbon layers with fluorine engineering[J]. ACS Catalysis,2019,9:2124-2133. doi: 10.1021/acscatal.9b00016
    [88] Yang H P, Wu Y, Lin Q, et al. Composition tailoring via N and S co-doping and structure tuning by constructing hierarchical pores: metal-free catalysts for high-performance electrochemical reduction of CO2[J]. Angewandte Chemie International Edition,2018,57:15476-15480. doi: 10.1002/anie.201809255
    [89] Li W L, Seredych M, Rodríguez E, et al. Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and CH4[J]. ChemSusChem,2016,9:606-616. doi: 10.1002/cssc.201501575
    [90] Hao R, Yang Y, Wang H, et al. Direct chitin conversion to N-doped amorphous carbon nanofibers for high-performing full sodium-ion batteries[J]. Nano Energy,2018,45:220-228. doi: 10.1016/j.nanoen.2017.12.042
    [91] Peng X W, Zhang L, Chen Z X, et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes[J]. Advanced Materials,2019,31:1900341. doi: 10.1002/adma.201900341
    [92] Yang H, Bradley S J, Chan A, et al. Catalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal–organic framework composites[J]. Journal of the American Chemical Society,2016,138:11872-11881. doi: 10.1021/jacs.6b06736
    [93] Wang M J, Mao Z X, Liu L, et al. Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction[J]. Small,2018,14:1804183. doi: 10.1002/smll.201804183
    [94] Xu H X, Guo J R, Suslick K S, et al. Porous carbon spheres from energetic carbon precursors using ultrasonic spray pyrolysis[J]. Advanced Materials,2012,24:6028-6033. doi: 10.1002/adma.201201915
    [95] Wang C W, Wang Y, Graser J, et al. Solution-based carbohydrate synthesis of individual solid, hollow, and porous carbon nanospheres using spray pyrolysis[J]. ACS Nano,2013,7:11156-11165. doi: 10.1021/nn4048759
    [96] Liu X W, Liu X H, Sun B F, et al. Carbon materials with hierarchical porosity: Effect of template removal strategy and study on their electrochemical properties[J]. Carbon,2018,130:680-691. doi: 10.1016/j.carbon.2018.01.046
    [97] Wang J L, Yan X F, Zhang Z, et al. Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage[J]. Advanced Functional Materials,2019,29:1904819. doi: 10.1002/adfm.201904819
    [98] Gan G Q, Fan S Y, Li X Y, et al. Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1, 2-dichloroethane to ethylene[J]. ACS Catalysis,2021,11:14284-14292. doi: 10.1021/acscatal.1c03701
    [99] Zhang C, Shen W Q, Guo K, et al. A pentagonal defect-rich metal-free carbon electrocatalyst for boosting acidic O2 reduction to H2O2 production[J]. Journal of the American Chemical Society,2023,145:11589-11598. doi: 10.1021/jacs.3c00689
    [100] Jia Y, Zhang L Z, Zhuang L Z, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping[J]. Nature Catalysis,2019,2:688-695. doi: 10.1038/s41929-019-0297-4
    [101] Guo D H, Shibuya R, Akiba C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science,2016,351:361-365. doi: 10.1126/science.aad0832
    [102] Xia Y, Mokaya R, et al. Synthesis of ordered mesoporous carbon and nitrogen-doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method[J]. Advanced Materials,2004,16:1553-1558. doi: 10.1002/adma.200400391
    [103] Liu T F, Ali S, Lian Z, et al. Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: The decisive role of the bonding configuration of phosphorus[J]. Journal of Materials Chemistry A,2018,6:19998-20004. doi: 10.1039/C8TA06649C
    [104] Nakata K, Ozaki T, Terashima C, et al. High-yield electrochemical production of formaldehyde from CO2 and seawater[J]. Angewandte Chemie International Edition,2014,53:871-874. doi: 10.1002/anie.201308657
    [105] Soares O S G P, Rocha R P, Gonçalves A G, et al. Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes[J]. Applied Catalysis B:Environmental,2016,192:296-303. doi: 10.1016/j.apcatb.2016.03.069
    [106] Dong Y, Zhang S, Du X, et al. Boosting the electrical double-layer capacitance of graphene by self-doped defects through ball-milling[J]. Advanced Functional Materials,2019,29:1901127. doi: 10.1002/adfm.201901127
    [107] Jeon I Y, Choi H J, Jung S M, et al. Large-scale production of edge-selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction[J]. Journal of the American Chemical Society,2013,135:1386-1393. doi: 10.1021/ja3091643
    [108] Jeon I Y, Bae S Y, Seo J M, et al. Scalable production of edge-functionalized graphene nanoplatelets via mechanochemical ball-milling[J]. Advanced Functional Materials,2015,25:6961-6975. doi: 10.1002/adfm.201502214
    [109] Jeon I Y, Shin Y R, Sohn G J, et al. Edge-carboxylated graphene nanosheets via ball milling[J]. Proceedings of the National Academy of Sciences,2012,109:5588-5593. doi: 10.1073/pnas.1116897109
    [110] Han L, Sun Y Y, Li S, et al. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene[J]. ACS Catalysis,2019,9:1283-1288. doi: 10.1021/acscatal.8b03734
    [111] Fei H L, Dong J C, Feng Y X, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nature Catalysis,2018,1:63-72. doi: 10.1038/s41929-017-0008-y
    [112] Zhu Y W, Murali S, Stoller M D, et al. Carbon-based supercapacitors produced by activation of graphene[J]. Science,2011,332:1537-1541. doi: 10.1126/science.1200770
    [113] Wu S L, Chen G X, Kim N Y, et al. Creating pores on graphene platelets by low-temperature KOH activation for enhanced electrochemical performance[J]. Small,2016,12:2376-2384. doi: 10.1002/smll.201503855
    [114] Tan Z Q, Ni K, Chen G X, et al. Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage[J]. Advanced Materials,2017,29:1603414. doi: 10.1002/adma.201603414
    [115] Tao L, Wang Q, Dou S, et al. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction[J]. Chemical Communications,2016,52:2764-2767. doi: 10.1039/C5CC09173J
    [116] Liu Z J, Zhao Z H, Wang Y Y, et al. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis[J]. Advanced Materials,2017,29:1606207. doi: 10.1002/adma.201606207
    [117] Hojati P, Zou L D, Fabretto M, et al. Using oxygen plasma treatment to improve the performance of electrodes for capacitive water deionization[J]. Electrochimica Acta,2013,106:494-499. doi: 10.1016/j.electacta.2013.05.119
    [118] Roy S, Das T, Yue C Y, et al. Improved polymer encapsulation on multiwalled carbon nanotubes by selective plasma induced controlled polymer grafting[J]. ACS Applied Materials & Interfaces,2014,6:664-670.
    [119] Li J, Gao X, Li Z Z, et al. Superhydrophilic graphdiyne accelerates interfacial mass/electron transportation to boost electrocatalytic and photoelectrocatalytic water oxidation activity[J]. Advanced Functional Materials,2019,29:1808079. doi: 10.1002/adfm.201808079
    [120] Zhu J W, Huang Y P, Mei W C, et al. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials[J]. Angewandte Chemie International Edition,2019,58:3859-3864. doi: 10.1002/anie.201813805
    [121] Gao Y F, Liang S, Liu B M, et al. Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation[J]. Nature Communications,2023,14:2059. doi: 10.1038/s41467-023-37676-6
    [122] Jia Y, Zhang L Z, Du A J, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions[J]. Advanced Materials,2016,28:9532-9538. doi: 10.1002/adma.201602912
    [123] Mukherjee S, Cullen D A, Karakalos S, et al. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes[J]. Nano Energy,2018,48:217-226. doi: 10.1016/j.nanoen.2018.03.059
    [124] Wu Q L, Jia Y, Liu Q, et al. Ultra-dense carbon defects as highly active sites for oxygen reduction catalysis[J]. Chem,2022,8:2715-2733. doi: 10.1016/j.chempr.2022.06.013
    [125] Zhang Y, Gao F, Gao S W, et al. Characterization and manipulation of intervalley scattering induced by an individual monovacancy in graphene[J]. Physical Review Letters,2022,129:096402. doi: 10.1103/PhysRevLett.129.096402
    [126] Zhang Y, Li S Y, Huang H Q, et al. Scanning tunneling microscopy of the π magnetism of a single carbon vacancy in graphene[J]. Physical Review Letters,2016,117:166801. doi: 10.1103/PhysRevLett.117.166801
    [127] Zhang Y, Gao F, Gao S W, et al. Tunable magnetism of a single-carbon vacancy in graphene[J]. Science Bulletin,2020,65:194-200. doi: 10.1016/j.scib.2019.11.023
    [128] Wang Q C, Lei Y P, Zhu Y G, et al. Edge defect engineering of nitrogen-doped carbon for oxygen electrocatalysts in Zn–Air batteries[J]. ACS Applied Materials & Interfaces,2018,10:29448-29456.
    [129] Yuan F, Shi C H, Li Q L, et al. Unraveling the effect of intrinsic carbon defects on potassium storage performance[J]. Advanced Functional Materials,2022,32:2208966. doi: 10.1002/adfm.202208966
    [130] Yu Z Y, Duan Y, Liu J D, et al. Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis[J]. Nature Communications,2019,10:2799. doi: 10.1038/s41467-019-10698-9
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  157
  • HTML全文浏览量:  57
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-13
  • 录用日期:  2023-11-27
  • 修回日期:  2023-11-27
  • 网络出版日期:  2023-12-06
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回