留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Co3O4/graphdiyne heterointerface for efficient ammonia production from nitrates

CHEN Zhao-yang ZHAO Shu-ya LUAN Xiao-yu ZHENG Zhi-qiang YAN Jia-yu XUE Yu-rui

陈朝阳, 赵淑雅, 栾晓雨, 郑志强, 闫佳玉, 薛玉瑞. Co3O4/石墨炔异质界面用于高效硝酸根制氨. 新型炭材料(中英文), 2024, 39(1): 142-151. doi: 10.1016/S1872-5805(24)60834-6
引用本文: 陈朝阳, 赵淑雅, 栾晓雨, 郑志强, 闫佳玉, 薛玉瑞. Co3O4/石墨炔异质界面用于高效硝酸根制氨. 新型炭材料(中英文), 2024, 39(1): 142-151. doi: 10.1016/S1872-5805(24)60834-6
CHEN Zhao-yang, ZHAO Shu-ya, LUAN Xiao-yu, ZHENG Zhi-qiang, YAN Jia-yu, XUE Yu-rui. A Co3O4/graphdiyne heterointerface for efficient ammonia production from nitrates. New Carbon Mater., 2024, 39(1): 142-151. doi: 10.1016/S1872-5805(24)60834-6
Citation: CHEN Zhao-yang, ZHAO Shu-ya, LUAN Xiao-yu, ZHENG Zhi-qiang, YAN Jia-yu, XUE Yu-rui. A Co3O4/graphdiyne heterointerface for efficient ammonia production from nitrates. New Carbon Mater., 2024, 39(1): 142-151. doi: 10.1016/S1872-5805(24)60834-6

Co3O4/石墨炔异质界面用于高效硝酸根制氨

doi: 10.1016/S1872-5805(24)60834-6
基金项目: 国家重点研发计划项目(2022YFA1204500, 2022YFA1204501, 2022YFA1204503, 2018YFA0703501);山东省泰山学者青年专家项目(tsqn201909050);山东省自然科学基金(ZR2020ZD38, ZR2021JQ07)
详细信息
    通讯作者:

    薛玉瑞, 教授. E-mail:yrxue@sdu.edu.cn

  • 中图分类号: TQ519

A Co3O4/graphdiyne heterointerface for efficient ammonia production from nitrates

Funds: This work was supported by the National Key Research and Development Project of China (2022YFA1204500, 2022YFA1204501, 2022YFA1204503, 2018YFA0703501), the Taishan Scholars Youth Expert Program of Shandong Province (tsqn201909050), and the Natural Science Foundation of Shandong Province (ZR2020ZD38, ZR2021JQ07)
More Information
  • 摘要: 硝酸根还原反应(NtRR)是一种合成氨(NH3)的有效方法。催化剂的合成包括2步简单的工艺:首先在炭布(CC)上合成Co3O4纳米线,然后以六乙炔基苯(HEB)为前驱体在Co3O4表面生长石墨炔(GDY)(110 °C, 10 h),从而可控合成Co3O4/GDY纳米线异质结催化剂。高分辨率扫描电镜(SEM)、透射电镜(HRTEM)、X射线光电子能谱(XPS)和拉曼表征等证实了Co3O4/GDY异质界面的成功合成,界面处形成的独特的sp-C―Co键以及GDY与Co之间的不完全电荷转移为催化反应提供了持续的电子供应,保证了NtRR的高效进行。Co3O4/GDY在NtRR中展现了优异催化性能,其NH3产率(YNH3)和法拉第效率(FE)分别达到了0.78 mmol h−1 cm−2 和92.45%。这项工作为在温和条件下,从废水中高性能生产氨的异质结构提供了一种通用方法。
  • FIG. 2916.  FIG. 2916.

    FIG. 2916..  FIG. 2916.

    Figure  1.  The synthetic routes of the Co3O4/GDY

    Figure  2.  Morphological characterizations of samples. (a) Low- and (b, c) high-magnification SEM images of the Co3O4. (d) Low- and (e, f) high-magnification SEM images of the as-prepared Co3O4/GDY. (g) EDS mapping of C, O and Co in Co3O4/GDY nanowires. (h) Contact angle measurements of Co3O4/GDY. (i) Optical photos of Co3O4/GDY

    Figure  3.  (a-c) HRTEM images of the Co3O4. (d-f) HRTEM images of the Co3O4/GDY. (e) The high distribution of Co3O4 in Co3O4/GDY. (f) Boundary between Co3O4 and GDY. (g) Low- and (h, i) high-magnification HRTEM images of GDY on the surface of Co3O4/GDY

    Figure  4.  (a) Raman spectra of Co3O4 and Co3O4/GDY. (b) C 1s XPS spectra of Co3O4 and Co3O4/GDY. (c) Co 2p XPS spectra of Co3O4 and Co3O4/GDY. (d) O 1s XPS spectra of Co3O4 and Co3O4/GDY. O represents the Co-O bond; O is assigned as the ―OH on the surface; O is considered to originate from environmental contamination. (e) Schematic illustration of the electron transfer at the GDY-Co3O4 interfaces of Co3O4/GDY. (f) The current density differences (Δj= jajc) are plotted against scan rates. (g) Nyquist plots of Co3O4 and Co3O4/GDY. (h) Co 2p XPS spectra of Co3O4/GDY after NtRR. (i) Schematic diagram of charge changes in Co3O4/GDY during the NtRR process

    Figure  5.  NtRR performance tests. (a) Schematic representation of the NO3-to-NH3 conversion. (b) Linear sweep voltammetry curves of the samples in 0.5 mol L−1 K2SO4 +0.1 mol L−1 NO3−+ and pure 0.5 mol L−1 K2SO4 aqueous solutions. (c) Current density-time curves of Co3O4/GDY at different potentials in 0.5 mol L−1 K2SO4 + 0.1 mol L−1 NO3. The YNH3 and FE of (d) Co3O4 and (e) Co3O4/GDY in 0.5 mol L−1 K2SO4 + 0.1 mol L−1 NO3. (f) Stability tests of Co3O4/GDY at −1.05 V (vs. RHE). (g) YNH3 and FE of Co3O4/GDY at −1.05 V (vs. RHE) with and without NO3. (h) Proportion of products. (i) NtRR performance comparison to other catalysts. (j-l) Insitu ATR-FTIR spectra of Co3O4/GDY during NtRR

  • [1] Ye T N, Park S W, Lu Y, et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst[J]. Nature,2020,583(7816):391-395. doi: 10.1038/s41586-020-2464-9
    [2] Suryanto B H R, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science,2021,372(6547):1187-1191. doi: 10.1126/science.abg2371
    [3] Chen G F, Yuan Y, Jiang H, et al. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst[J]. Nature Energy,2020,5(8):605-613. doi: 10.1038/s41560-020-0654-1
    [4] Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions[J]. Nature Chemistry,2020,12(8):717-724. doi: 10.1038/s41557-020-0481-9
    [5] Zheng X, Xue Y, Zhang C, et al. Controlled growth of multidimensional interface for high-selectivity ammonia production[J]. CCS Chemistry,2023,5:1653-1662. doi: 10.31635/ccschem.022.202202189
    [6] Zhao S, Zheng Z, Qi L, et al. Controlled growth of donor-bridge-acceptor interface for high-performance ammonia production[J]. Small,2022,18(13):2107136. doi: 10.1002/smll.202107136
    [7] Luan X, Qi L, Zheng Z, et al. In situ growth of a GDY–MnOx heterointerface for selective and efficient ammonia production[J]. Chemical Communications,2023,59(49):7611-7614. doi: 10.1039/D3CC01428B
    [8] Zheng X, Chen S, Li J, et al. Two-dimensional carbon graphdiyne: advances in fundamental and application research[J]. ACS nano,2023,17(15):14309-14346. doi: 10.1021/acsnano.3c03849
    [9] Huang C, Li Y, Wang N, et al. Progress in research into 2D graphdiyne-based materials[J]. Chemical Reviews,2018,118(16):7744-7803. doi: 10.1021/acs.chemrev.8b00288
    [10] Fang Y, Liu Y, Qi L, et al. 2D graphdiyne: An emerging carbon material[J]. Chemical Society Reviews,2022,51(7):2681-2709. doi: 10.1039/D1CS00592H
    [11] Chen S, Xue Y, Li Y. 2D graphdiyne, what’s next?[J]. Next Materials,2023,1(3):100031. doi: 10.1016/j.nxmate.2023.100031
    [12] He F, Li Y. Advances on theory and experiments of the energy applications in graphdiyne[J]. CCS Chemistry,2023,5(1):72-94. doi: 10.31635/ccschem.022.202202328
    [13] Zhao S, Chen Z, Liu H, et al. Graphdiyne‐based multiscale catalysts for ammonia synthesis[J]. ChemSusChem, 2023: e202300861.
    [14] Pan Y, Zhao C, Hu A, et al. Band engineering in heterostructure catalysts to achieve high-performance lithium-oxygen batteries[J]. Journal of Colloid and Interface Science,2023,635:138-147. doi: 10.1016/j.jcis.2022.12.121
    [15] Dastafkan K, Shen X, Hocking R K, et al. Monometallic interphasic synergy via nano-hetero-interfacing for hydrogen evolution in alkaline electrolytes[J]. Nature Communications,2023,14(1):547. doi: 10.1038/s41467-023-36100-3
    [16] Zhao J, Liu J, Li Z, et al. Ruthenium-cobalt single atom alloy for CO photo-hydrogenation to liquid fuels at ambient pressures[J]. Nature Communications,2023,14(1):1909. doi: 10.1038/s41467-023-37631-5
    [17] Xu D, Lin X, Li Q Y, et al. Boosting mass exchange between Pd/NC and MoC/NC dual junctions via electron exchange for cascade CO2 fixation[J]. Journal of the American Chemical Society,2022,144(12):5418-5423. doi: 10.1021/jacs.1c12986
    [18] Li W, Chen S, Zhong M, et al. Synergistic coupling of NiFe layered double hydroxides with Co-C nanofibers for high-efficiency oxygen evolution reaction[J]. Chemical Engineering Journal,2021,415:128879. doi: 10.1016/j.cej.2021.128879
    [19] Xie C, Yan D, Li H, et al. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization[J]. ACS Catalysis,2020,10(19):11082-11098. doi: 10.1021/acscatal.0c03034
    [20] Li Y, Yang L, He H, et al. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production[J]. Nature Communications,2022,13(1):1355. doi: 10.1038/s41467-022-29076-z
    [21] Chen Y, Lin J, Pan Q, et al. Inter-metal interaction of dual-atom catalysts in heterogeneous catalysis[J]. Angewandte Chemie International Edition,2023,62(42):e202306469. doi: 10.1002/anie.202306469
    [22] Ye C, Zheng M, Li Z, et al. Electrical pulse induced one-step formation of atomically dispersed Pt on oxide clusters for ultra-low-yemperature zinc-air battery[J]. Angewandte Chemie International Edition,2022,61(51):e202213366. doi: 10.1002/anie.202213366
    [23] Ma Y, Qu H, Wang W, et al. Si/SiO2@ graphene superstructures for high-performance lithium-ion batteries[J]. Advanced Functional Materials,2023,33(8):2211648. doi: 10.1002/adfm.202211648
    [24] Yang Q, Jiang N, Shao Y, et al. Functional carbon materials addressing dendrite problems in metal batteries: Surface chemistry, multi-dimensional structure engineering, and defects[J]. Science China Chemistry,2022,65(12):2351-2368. doi: 10.1007/s11426-022-1397-2
    [25] Xie Y, Yu C, Ni L, et al. Carbon-hybridized hydroxides for energy conversion and storage: Interface chemistry and manufacturing[J]. Advanced Materials,2023,35(14):2209652. doi: 10.1002/adma.202209652
    [26] Chang J, Yu C, Song X, et al. AC-S-C linkage-triggered ultrahigh nitrogen‐doped carbon and the identification of active site in triiodide reduction[J]. Angewandte Chemie International Edition,2021,133(7):3631-3639.
    [27] Jia Y, Zhang L, Zhuang L, et al. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping[J]. Nature Catalysis,2019,2(8):688-695. doi: 10.1038/s41929-019-0297-4
    [28] Wang H F, Tang C, Zhao C X, et al. Emerging graphene derivatives and analogues for efficient energy electrocatalysis[J]. Advanced Functional Materials,2022,32(42):2204755. doi: 10.1002/adfm.202204755
    [29] Hu Y, Wu C, Pan Q, et al. Synthesis of γ-graphyne using dynamic covalent chemistry[J]. Nature Synthesis,2022,1(6):449-454. doi: 10.1038/s44160-022-00068-7
    [30] Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution[J]. Nature Communications,2018,9(1):1460. doi: 10.1038/s41467-018-03896-4
    [31] Liu Y, Gao Y, He F, et al. Controlled growth interface of charge transfer salts of nickel-7, 7, 8, 8-tetracyanoquinodimethane on surface of graphdiyne[J]. CCS Chemistry,2023,5(4):971-981. doi: 10.31635/ccschem.022.202202005
    [32] Zhao S, Xue Y, Wang Z, et al. Controllable growth of graphdiyne layered nanosheets for high-performance water oxidation[J]. Materials Chemistry Frontiers,2021,5(11):4153-4159. doi: 10.1039/D1QM00132A
    [33] Yu H, Xue Y, Hui L, et al. Graphdiyne-based metal atomic catalysts for synthesizing ammonia[J]. National Science Review,2021,8(8):nwaa213. doi: 10.1093/nsr/nwaa213
    [34] Fang Y, Xue Y, Hui L, et al. Graphdiyne@ Janus magnetite for photocatalytic nitrogen fixation[J]. Angewandte Chemie International Edition,2021,133(6):3207-3211. doi: 10.1002/anie.202012357
    [35] Wang Z, Zheng Z, Xue Y, et al. Acidic water oxidation on quantum dots of IrOx/graphdiyne[J]. Advanced Energy Materials,2021,11(32):2101138. doi: 10.1002/aenm.202101138
    [36] Liu Y, Xue Y, Yu H, et al. Graphdiyne ultrathin nanosheets for efficient water splitting[J]. Advanced Functional Materials,2021,31(16):2010112. doi: 10.1002/adfm.202010112
    [37] Gao Y, Xue Y, Liu T, et al. Bimetallic mixed clusters highly loaded on porous 2D graphdiyne for hydrogen energy conversion[J]. Advanced Science,2021,8(21):2102777. doi: 10.1002/advs.202102777
    [38] Zhang D, Xue Y, Zheng X, et al. Multi-heterointerfaces for selective and efficient urea production[J]. National Science Review,2023,10(2):nwac209. doi: 10.1093/nsr/nwac209
    [39] Gao Y, Xue Y, He F, et al. Controlled growth of a high selectivity interface for seawater electrolysis[J]. Proceedings of the National Academy of Sciences,2022,119(36):e2206946119. doi: 10.1073/pnas.2206946119
    [40] Gao Y, Xue Y, Qi L, et al. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water[J]. Nature Communications,2022,13(1):5227. doi: 10.1038/s41467-022-32937-2
    [41] Qi L, Zheng Z, Xing C, et al. 1D nanowire heterojunction electrocatalysts of MnCo2O4/GDY for efficient overall water splitting[J]. Advanced Functional Materials,2022,32(11):2107179. doi: 10.1002/adfm.202107179
    [42] Zhang C, Xue Y, Zheng X, et al. Loaded Cu-Er metal iso-atoms on graphdiyne for artificial photosynthesis[J]. Materials Today,2023,66:72-83. doi: 10.1016/j.mattod.2023.04.012
    [43] Zheng Z, Qi L, Gao Y, et al. Ir0/graphdiyne atomic interface for selective epoxidation[J]. National Science Review,2023,10(8):nwad156. doi: 10.1093/nsr/nwad156
    [44] Fu X, He F, Gao J, et al. Directly growing graphdiyne nanoarray cathode to integrate an intelligent solid Mg-moisture battery[J]. Journal of the American Chemical Society,2022,145(5):2759-2764. doi: 10.1021/jacs.2c11409
    [45] Hui L, Zhang X, Xue Y, et al. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst[J]. Journal of the American Chemical Society,2022,144(4):1921-1928. doi: 10.1021/jacs.1c12310
    [46] Luan X, Qi L, Zheng Z, et al. Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition,2023,62(8):e202215968. doi: 10.1002/anie.202215968
    [47] Fang Y, Xue Y, Li Y, et al. Graphdiyne interface engineering: highly active and selective ammonia synthesis[J]. Angewandte Chemie International Edition,2020,59(31):13021-13027. doi: 10.1002/anie.202004213
    [48] Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries[J]. Angewandte Chemie International Edition,2022,134(6):e202112304.
    [49] Yang Q, Guo Y, Yan B, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes[J]. Advanced Materials,2020,32(25):2001755. doi: 10.1002/adma.202001755
    [50] Pan C, Wang C, Zhao X, et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne[J]. Journal of the American Chemical Society,2022,144(11):4942-4951. doi: 10.1021/jacs.1c12772
    [51] Shi G, Xie Y, Du L, et al. Constructing Cu-C bonds in a graphdiyne-regulated Cu single-atom electrocatalyst for CO2 reduction to CH4[J]. Angewandte Chemie International Edition,2022,134(23):e202203569.
    [52] Wu L, Dong Y, Zhao J, et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes[J]. Advanced Materials,2019,31(14):1807981. doi: 10.1002/adma.201807981
    [53] Liu J C, Xiao H, Zhao X K, et al. Computational prediction of graphdiyne-supported three-atom single-cluster catalysts[J]. CCS Chemistry,2023,5(1):152-163. doi: 10.31635/ccschem.022.202201796
    [54] Yu W, Song G, Lv F, et al. Recent advances in graphdiyne materials for biomedical applications[J]. Nano Today,2022,46:101616. doi: 10.1016/j.nantod.2022.101616
    [55] Gao N, Zeng H, Wang X, et al. Graphdiyne: A new carbon allotrope for electrochemiluminescence[J]. Angewandte Chemie International Edition,2022,61(28):e202204485. doi: 10.1002/anie.202204485
    [56] Gao X, Liu H, Wang D, et al. Graphdiyne: Synthesis, properties, and applications[J]. Chemical Society Reviews,2019,48(3):908-936. doi: 10.1039/C8CS00773J
    [57] Gao X, Zhu Y, Yi D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy[J]. Science advances,2018,4(7):eaat6378. doi: 10.1126/sciadv.aat6378
    [58] Wang L, Zhang Y, Li L, et al. Graphdiyne oxide elicits a minor foreign-body response and generates quantum dots due to fast degradation[J]. Journal of Hazardous Materials,2023,445:130512. doi: 10.1016/j.jhazmat.2022.130512
    [59] Zheng X, Xue Y, Chen S, Li Y. Advances in hydrogen energy conversion of graphdiyne-based materials[J]. EcoEnergy,2023,1(1):45-59. doi: 10.1002/ece2.5
    [60] Luan X, Xue Y. Nickel(hydro)oxide/graphdiyne catalysts for efficient oxygen production reaction[J]. Chemical Research in Chinese Universities,2021,37:1268-1274. doi: 10.1007/s40242-021-1336-7
  • ncm2023-0220_NCM+Supporting+information+revised_新型炭材料(中英文).pdf
  • 加载中
图(6)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  40
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-21
  • 录用日期:  2023-12-19
  • 修回日期:  2023-12-19
  • 网络出版日期:  2023-12-22
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回