留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries

CHE Hang-xin GAO Yu-fei YANG Jia-hui HONG Song HAO Lei-duan XU Liang Sana Taimoor Alex W. Robertson SUN Zhen-yu

车航欣, 高宇飞, 杨家辉, 洪崧, 郝磊端, 徐亮, SanaTaimoor, AlexW. Robertson, 孙振宇. 铋纳米颗粒负载的氮掺杂石墨毡用于稳定高效的铁铬液流电池. 新型炭材料(中英文), 2024, 39(1): 131-141. doi: 10.1016/S1872-5805(24)60837-1
引用本文: 车航欣, 高宇飞, 杨家辉, 洪崧, 郝磊端, 徐亮, SanaTaimoor, AlexW. Robertson, 孙振宇. 铋纳米颗粒负载的氮掺杂石墨毡用于稳定高效的铁铬液流电池. 新型炭材料(中英文), 2024, 39(1): 131-141. doi: 10.1016/S1872-5805(24)60837-1
CHE Hang-xin, GAO Yu-fei, YANG Jia-hui, HONG Song, HAO Lei-duan, XU Liang, Sana Taimoor, Alex W. Robertson, SUN Zhen-yu. Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries. New Carbon Mater., 2024, 39(1): 131-141. doi: 10.1016/S1872-5805(24)60837-1
Citation: CHE Hang-xin, GAO Yu-fei, YANG Jia-hui, HONG Song, HAO Lei-duan, XU Liang, Sana Taimoor, Alex W. Robertson, SUN Zhen-yu. Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries. New Carbon Mater., 2024, 39(1): 131-141. doi: 10.1016/S1872-5805(24)60837-1

铋纳米颗粒负载的氮掺杂石墨毡用于稳定高效的铁铬液流电池

doi: 10.1016/S1872-5805(24)60837-1
基金项目: 本研究受国家重点研发计划 (2022YFC2105900);国家自然科学基金项目 (22372007、21972010);中央高校基本科研业务费专项资金 (JD2310、ZY2317、buctrc202226)
详细信息
    通讯作者:

    洪 崧,副研究员. E-mail: hongsong@mail.buct.edu.cn

    孙振宇,教授. E-mail: sunzy@mail.buct.edu.cn

  • 中图分类号: TQ127.1+1

Bismuth nanoparticles anchored on N-doped graphite felts to give stable and efficient iron-chromium redox flow batteries

Funds: This work was supported by the National Key Research and Development Program of China (2022YFC2105900), National Natural Science Foundation of China (22372007 and 21972010), and Fundamental Research Funds for the Central Universities (JD2310, ZY2317 and buctrc202226)
More Information
  • 摘要: 铁铬氧化还原液流电池 (ICRFB) 是一种具有成本效益的可规模化储能系统,其利用资源丰富、低成本的铬和铁作为电解液的活性物质。然而,ICRFB存在Cr3+/Cr2+电化学活性低、负极易产生严重的析氢反应 (HER) 等问题。本文报道了一种简单的合成策略,即通过自聚合和湿化学还原方法结合煅烧处理,在氮掺杂石墨毡 (GF) 表面沉积了非晶态铋 (Bi) 纳米颗粒 (NPs),其作为ICRFB的负极材料时可展示出高效的电化学性能。生成的Bi NPs与H+形成中间体,极大地抑制了HER副反应。此外,Bi的引入和GF表面的N掺杂通过协同作用显著提高了Fe2+/Fe3+和Cr3+/Cr2+的电化学活性,降低了电荷传递电阻,提高了反应传质速率。在不同的电流密度下,经25次循环,库仑效率仍高达97.7%。在60.0 mA cm−2电流密度下,能量效率达到85.8%,超过了许多其他报道的材料。循环100次后容量达到862.7 mAh/L,约为GF的5.3倍。
  • FIG. 2915.  FIG. 2915.

    FIG. 2915..  FIG. 2915.

    Figure  1.  A schematic illustration of the synthesis of Bi/N-GF

    Figure  2.  STEM characterisation of Bi/N-GF. (a) Low magnification bright field (BF)-STEM image. (b) Magnified view of the indicated area in (a), showing nanoparticle decoration of the graphite flake. (c) High magnification HAADF-STEM image of the particles, showing amorphous aggregation of atoms and some loose single atoms. (d) HAADF-STEM image and (e) fast Fourier transform of a nanoparticle, confirming lack of crystallinity. (f) HAADF-STEM image and (g−i) accompanying EDS mapping, confirming Bi aggregate nanoparticles dispersed on the N-doped graphite felt

    Figure  3.  (a) XRD patterns of GF and Bi/N-GF. (b) Wide-survey and (c) N 1s XPS spectra of GF and Bi/N-GF. (d) Bi 4f XPS spectrum of Bi/N-GF

    Figure  4.  CV curves of GF, N-GF, Bi-GF and Bi/N-GF derived under (a) 40.0 mV s−1 and voltage range of 0−0.8 V (vs. SCE) at the positive electrode and (b) 6.0 mV s−1 and voltage range from −0.8 to 0 V at the negative electrode. CV curves of GF, Bi/N-GF-0.5, Bi/N-GF-1, and Bi/N-GF-2 obtained under (c) 40.0 mV s−1 and voltage range of 0−0.8 V at the positive electrode and (d) 6.0 mV s−1, −0.8−0 V at the negative electrode. EIS diagrams of GF, N-GF, Bi-GF, and Bi/N-GF measured under (e) 0.35 V at the positive electrode and (f) −0.5 V at the negative electrode. EIS diagrams of GF, Bi/N-GF-0.5, Bi/N-GF-1, and Bi/N-GF-2 acquired under (c) 0.35 V at the positive electrode and (d) −0.5 V at the negative electrode

    Figure  5.  EEs at different current densities in ICRFB for (a) GF, N-GF, Bi-GF and Bi/N-GF, and (b) GF, Bi/N-GF-0.5, Bi/N-GF-1 and Bi/N-GF-2. EEs of (c) GF, N-GF, Bi-GF and Bi/N-GF and (d) GF, Bi/N-GF-0.5, Bi/N-GF-1 and Bi/N-GF-2 tested at 60.0 mA cm−2 and 100 cycles in ICRFB. Charge–discharge curves at the (e) 2nd and (f) 100th cycle in the voltage range of 0.8 to 1.2 V for GF, N-GF, Bi-GF and Bi/N-GF. Charge–discharge curves at the (g) 2nd and (h) 100th cycle in the voltage range of 0.8 to 1.2 V for GF, Bi/N-GF-0.5, Bi/N-GF-1 and Bi/N-GF-2

  • [1] GüR T M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage[J]. Energy Environmental Science,2018,11(10):2696-767. doi: 10.1039/C8EE01419A
    [2] Zheng Q, Li X F, Cheng Y H, et al. Development and perspective in vanadium flow battery modeling[J]. Applied Energy,2014,132:254-266. doi: 10.1016/j.apenergy.2014.06.077
    [3] Li X R, Xiong J, Tang A, et al. Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery[J]. Applied Energy,2018,211:1050-1059. doi: 10.1016/j.apenergy.2017.12.009
    [4] Zeng Y K, Zhao T S, An L, et al. A comparative study of all−vanadium and iron−chromium redox flow batteries for large−scale energy storage[J]. Journal of Power Sources,2015,300:438-443. doi: 10.1016/j.jpowsour.2015.09.100
    [5] Yeonjoo A, Janghyuk M, Seoung E P, et al. High-performance bifunctional electrocatalyst for iron-chromium redox flow batteries[J]. Chemical Engineering Journal,2021,421:127855. doi: 10.1016/j.cej.2020.127855
    [6] Wang W, Luo Q T, Li B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials,2012,23(8):970-986.
    [7] Chakrabarti M H, Brandon N P, Hajimolana S A, et al. Application of carbon materials in redox flow batteries[J]. Journal of Power Sources,2014,253:150-166. doi: 10.1016/j.jpowsour.2013.12.038
    [8] Fic K, Platek A, Piwek J, et al. Sustainable materials for electrochemical capacitors[J]. Materials Today,2018,21(4):437-454. doi: 10.1016/j.mattod.2018.03.005
    [9] Ryu J, Park M, Cho J. Catalytic effects of Bi/N-co-doped porous carbon incorporated with ketjenblack nanoparticles for all-vanadium redox flow batteries[J]. Journal of The Electrochemical Society,2016,163(1):A5144. doi: 10.1149/2.0191601jes
    [10] Wang S L, Xu Z Y, Wu X L, et al. Excellent stability and electrochemical performance of the electrolyte with indium ion for iron-chromium flow battery[J]. Electrochimica Acta,2021,368:137524. doi: 10.1016/j.electacta.2020.137524
    [11] Lopez-Atalaya M, Codina G, Perez J R, et al. Optimization studies on a Fe/Cr redox flow battery[J]. Journal of Power Sources,1992,39(2):147-154. doi: 10.1016/0378-7753(92)80133-V
    [12] Siva R T, Rama K H G. Synthesis, characterization and evaluation of Pb electroplated carbon felts for achieving maximum efficiency of Fe-Cr redox flow cell[J]. Journal of New Materials for Electrochemical Systems,2013,16:287-292. doi: 10.14447/jnmes.v16i4.155
    [13] Xie C Y, Yan H, Song Y F, et al. Catalyzing anode Cr2+/Cr3+ redox chemistry with bimetallic electrocatalyst for high-performance iron-chromium flow batteries[J]. Journal of Power Sources,2023,564:232860. doi: 10.1016/j.jpowsour.2023.232860
    [14] Yang Z F, Wei Y G, Zeng Y K, et al. Effects of in-situ bismuth catalyst electrodeposition on performance of vanadium redox flow batteries[J]. Journal of Power Sources,2021,506:230238. doi: 10.1016/j.jpowsour.2021.230238
    [15] Wu C D, Scherson D A, Calvo E J, et al. A Bismuth-based electrocatalyst for the chromous−chromic couple in acid electrolytes[J]. Journal of the Electrochemical Society,1986,133:2109-2112. doi: 10.1149/1.2108351
    [16] Chen N, Zhang H, Luo X D, et al. SiO2-decorated graphite felt electrode by silicic acid etching for iron-chromium redox flow battery[J]. Electrochimica Acta,2020,336:135646. doi: 10.1016/j.electacta.2020.135646
    [17] Xiang Y, Daoud W A. Binary NiCoO2-modified graphite felt as an advanced positive electrode for vanadium redox flow batteries[J]. Journal of Materials Chemistry A,2019,7(10):5589-5600. doi: 10.1039/C8TA09650C
    [18] Ren H L, Su Y, Zhao S, et al. Research on the performance of cobalt oxide decorated graphite felt as electrode of iron-chromium flow battery[J]. ChemElectroChem,2023,10(5):e202201146. doi: 10.1002/celc.202201146
    [19] Ji Y, Li J L, Li S F Y. Synergistic effect of the bifunctional polydopamine-Mn3O4 composite electrocatalyst for vanadium redox flow batteries[J]. Journal of Materials Chemistry A,2017,5(29):15154-15166. doi: 10.1039/C7TA03922K
    [20] Zhang K Y, Yan C W, Tang A. Interfacial co-polymerization derived nitrogen-doped carbon enables high-performance carbon felt for vanadium flow batteries[J]. Journal of Materials Chemistry A,2021,9(32):17300-17310. doi: 10.1039/D1TA03683A
    [21] Li B, Gu M, Nie Z M, et al. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery[J]. Nano Letters,2013,13(3):1330-1335. doi: 10.1021/nl400223v
    [22] Grubaˇc Z, Metikoˇs-Hukovi ́c M. Kinetics and mechanism of electrocrystallization of bismuth in oxide matrix[J]. Electrochim. Acta,1999,44(25):4559-4571. doi: 10.1016/S0013-4686(99)00174-7
    [23] Zhang H, Tan Y, Luo X D, et al. Polarization effects of a rayon and polyacrylonitrile based graphite felt for iron-chromium redox flow batteries[J]. ChemElectroChem,2019,6(12):3175-3188. doi: 10.1002/celc.201900518
    [24] Sun C Y, Zhang H, Luo X D, et al. A comparative study of Nafion and sulfonated poly(ether ether ketone) membrane performance for iron-chromium redox flow battery[J]. Advanced Materials Interfaces,2020,7(20):2000855. doi: 10.1002/admi.202000855
  • 0261.pdf
  • 加载中
图(6)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  60
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-27
  • 录用日期:  2023-12-22
  • 修回日期:  2023-12-22
  • 网络出版日期:  2023-12-27
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回