留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Boron and nitrogen co-doped sodium alginate-based porous carbon for durable and fast Zn-ion hybrid capacitor

LU Ya-ping WANG Hong-xing LIU Lan-tao PANG Wei-wei CHEN Xiao-hong

卢亚平, 王红星, 刘澜涛, 庞伟伟, 陈晓红. 硼氮共掺杂海藻酸钠基多孔炭的制备及其高效快速储锌的研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60847-4
引用本文: 卢亚平, 王红星, 刘澜涛, 庞伟伟, 陈晓红. 硼氮共掺杂海藻酸钠基多孔炭的制备及其高效快速储锌的研究. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60847-4
LU Ya-ping, WANG Hong-xing, LIU Lan-tao, PANG Wei-wei, CHEN Xiao-hong. Boron and nitrogen co-doped sodium alginate-based porous carbon for durable and fast Zn-ion hybrid capacitor. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60847-4
Citation: LU Ya-ping, WANG Hong-xing, LIU Lan-tao, PANG Wei-wei, CHEN Xiao-hong. Boron and nitrogen co-doped sodium alginate-based porous carbon for durable and fast Zn-ion hybrid capacitor. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60847-4

硼氮共掺杂海藻酸钠基多孔炭的制备及其高效快速储锌的研究

doi: 10.1016/S1872-5805(24)60847-4
基金项目: 国家自然科学基金(51972014)
详细信息
    通讯作者:

    陈晓红,教授. E-mail:chenxh@mail.buct.edu.cn

  • 中图分类号: TQ152

Boron and nitrogen co-doped sodium alginate-based porous carbon for durable and fast Zn-ion hybrid capacitor

Funds: This work was supported by the National Natural Science Foundation of China (52372039)
More Information
    Author Bio:

    卢亚平和王红星为共同第一作者

    Corresponding author: CHEN Xiao-hong: E-mail: chenxh@mail.buct.edu.cn
  • 摘要: 近年来,锌离子电容器(ZIHCs)因其环境友好性和优异的电化学性能而备受关注。然而,ZIHCs的研究体系尚不成熟,为改善ZIHCs的储能动力学和循环稳定性等问题,亟需研发出低成本和高性能的炭基电极材料。在本文中,我们以海藻酸钠为碳前驱体,五硼酸铵为氮源和硼源,采用一步水热活化策略合成了氮/硼含量极高的分级多孔炭(NBSPC)。这种策略可以有效重塑炭的多孔结构,产生大量的活性位点,贡献额外的赝电容,从而提高其电化学性能。以NBSPC为正极构建了锌离子电容器,其在40 A g−1的超高电流密度下,可以实现85.4 mAh g−1优异的倍率性能,并在10 A g−1的电流密度下可以稳定循环15000次,容量保持率高达94.5%。
  • 1.  An illustration of the preparation of NBSPC

    Figure  1.  (a-b) SEM images of NBSPC-4. (c-d) TEM images of NBSPC-4. (e-f) HRTEM images of NBSPC-4. (g) SAED patterns. (h-i) HAADF analysis and mapping

    Figure  2.  (a) Nitrogen adsorption-desorption curves. (b) Pore size distribution. (c) Raman spectroscopy. (d) XRD diffraction curves. (e) FTIR spectrum. (f) XPS survey spectra

    Figure  3.  Electrochemical performance of symmetric supercapacitor: (a) GCD curves. (b) CV curves. (c) Nyquist plots. (d) Specific capacitance at different current density. (e) GCD curves of NBSPC-4 at different current density. (f) CV curves of NBSPC-4 at different scan rates. (g) Cycling stability. (h) Energy density and power density

    Figure  4.  Electrochemical performance of Zn-ion hybrid capacitor: (a) Schematic illustration of ZIHCs. (b) GCD curves. (c) CV curves. (d) Energy/power density comparison. (e) Nyquist plots. (f) Rate performance. (g) Cycling stability. (h) Comparison of energy density, power density, and cycling stability of NBSPC-4 and other types of advanced carbon materials

    Figure  5.  (a) GCD curves at different current density of NBSPC-4. (b) CV curves at different scan rates of NBSPC-4. (c) b values. (d) Capacitive and diffusion-controlled contribution to Zn storage of NBSPC-4 at 10 mV s−1. (e) Normalized contribution ratio of capacitive and diffusion-controlled capacities at different scan rates

  • [1] Wang D, Zhang J, Li X, et al. Woven microsphere architected by carbon nanotubes as high-performance potassium ion batteries anodes[J]. Chemical Engineering Journal,2022,429:132272. doi: 10.1016/j.cej.2021.132272
    [2] Liu L, Lu Y, Qiu D, et al. Sodium alginate-derived porous carbon: Self-template carbonization mechanism and application in capacitive energy storage[J]. Journal of Colloid and Interface Science,2022,620:284-292. doi: 10.1016/j.jcis.2022.04.022
    [3] Lu Y, Liu L, Zhang R, et al. Sodium alginate-derived micropore dominated carbon 3D architectures through dual template engineering for high-performance Zn-ion hybrid capacitors[J]. Applied Surface Science,2022,604:154631. doi: 10.1016/j.apsusc.2022.154631
    [4] Liu L, Du B, Liu R, et al. N-Doped hierarchically porous carbon aerogels by controlling the Zn–chitosan complex ratio for high-performance supercapacitors[J]. Energy & Fuels,2022,36(11):5920-5927.
    [5] Liu L, Sun X, Dong Y, et al. N-doped hierarchical porous hollow carbon spheres with multi-cavities for high performance Na-ion storage[J]. Journal of Power Sources,2021,506:230170. doi: 10.1016/j.jpowsour.2021.230170
    [6] Ding Y, Qi G, Cui Q, et al. High-Performance multifunctional structural supercapacitors based on in situ and ex situ activated-carbon-coated carbon fiber electrodes[J]. Energy & Fuels,2022,36(4):2171-2178.
    [7] Liu; L, Li; Y, Wang S, et al. High Sulfur-doped hollow carbon sphere with multicavity for high-performance Potassium-ion hybrid capacitors[J]. Journal of Colloid and Interface Science,2022,628:975-983. doi: 10.1016/j.jcis.2022.08.007
    [8] Wang G, Li M, Zhang J, et al. Flexible, stable and durable polydopamine@lead zirconate titanate/polyimide composite membranes for piezoelectric pressure sensors and limb motion monitoring[J]. Composites Part C: Open Access,2022,8:100292. doi: 10.1016/j.jcomc.2022.100292
    [9] Liu L, Sun Z, Lu Y, et al. d-Calcium pantothenate-derived porous carbon: carbonization mechanism and application in aqueous Zn-ion hybrid capacitors[J]. Journal of Materials Chemistry A,2023,11:14311-14319. doi: 10.1039/D3TA02498A
    [10] Liu L, Lu Y, Wang S, et al. B, N Stabilization effect on multicavity carbon microspheres for boosting durable and fast potassium-ion storage[J]. Journal of Colloid and Interface Science,2022,620(15):24-34.
    [11] Zhang P, Li Y, Wang G, et al. Zn-Ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability[J]. Adv Mater,2019,31(3):e1806005. doi: 10.1002/adma.201806005
    [12] Liu P, Fan X, Ouyang B, et al. A Zn ion hybrid capacitor with enhanced energy density for anode-free[J]. Journal of Power Sources,2022,518:230740. doi: 10.1016/j.jpowsour.2021.230740
    [13] Li H, Wu J, Wang L, et al. A zinc ion hybrid capacitor based on sharpened pencil-like hierarchically porous carbon derived from metal–organic framework[J]. Chemical Engineering Journal,2022,428:131071. doi: 10.1016/j.cej.2021.131071
    [14] Shang P, Liu M, Mei Y, et al. Urea-Mediated monoliths made of nitrogen-enriched mesoporous carbon nanosheets for high-performance aqueous zinc ion hybrid capacitors [J]. Small, 2022: e2108057.
    [15] Zhang Y, Wang Z, Li D, et al. Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage[J]. Journal of Materials Chemistry A,2020,8(43):22874-22885. doi: 10.1039/D0TA08577D
    [16] Yang L, He X, Wei Y, et al. Synthesis of N/P co-doped monolithic hierarchical porous carbon for zinc-ion hybrid capacitors with boosted energy density in ZnSO4/ZnI2 redox electrolyte[J]. Journal of Power Sources,2022,542:231743. doi: 10.1016/j.jpowsour.2022.231743
    [17] Li J, Yu L, Wang W, et al. Sulfur incorporation modulated absorption kinetics and electron transfer behavior for nitrogen rich porous carbon nanotubes endows superior aqueous Zinc ion storage capability[J]. Journal of Materials Chemistry A,2022,10(17):9355-9362. doi: 10.1039/D1TA10677E
    [18] Wu Z, Ye F, Liu Q, et al. Simultaneous incorporation of V and Mn element into polyanionic NASICON for high energy-density and long-lifespan Zn-ion storage[J]. Advanced Energy Materials,2022,12:2200654. doi: 10.1002/aenm.202200654
    [19] Wang Y, Yang J, Liu S, et al. 3D graphene-like oxygen and sulfur-doped porous carbon nanosheets with multilevel ion channels for high-performance aqueous Zn-ion storage[J]. Carbon,2023,201:624-632. doi: 10.1016/j.carbon.2022.09.056
    [20] Tang H, Yao J, Zhu Y. Recent Developments and future prospects for Zinc-ion hybrid capacitors: a review[J]. Advanced Energy Materials,2021,11(14):2003994. doi: 10.1002/aenm.202003994
    [21] Leng C, Fedossedva Y V, Zhao Z, et al. Rational-design heteroatom-doped cathode and ion modulation layer modified Zn anode for ultrafast zinc-ion hybrid capacitors with simultaneous high power and energy densities[J]. Journal of Power Sources,2022,536:231484. doi: 10.1016/j.jpowsour.2022.231484
    [22] Huang Z, Chen A, Mo F, et al. Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors [J]. Advanced Energy Materials, 2020, 10(24).
    [23] Han L, Zhang X, Li J, et al. Enhanced energy storage of aqueous zinc-carbon hybrid supercapacitors via employing alkaline medium and B, N dual doped carbon cathode[J]. Journal of Colloid and Interface Science,2021,599:556-565. doi: 10.1016/j.jcis.2021.04.114
    [24] Liu M, Zhu F, Cao W, et al. Multifunctional sulfate-assistant synthesis of seaweed-like N, S-doped carbons as high-performance anodes for K-ion capacitors[J]. Journal of Materials Chemistry A,2022,10(17):9612-9620. doi: 10.1039/D2TA01431A
    [25] Zhou C, Wang D, Li A, et al. Three-dimensional porous carbon doped with N, O and P heteroatoms as high-performance anode materials for sodium ion batteries[J]. Chemical Engineering Journal,2020,380:122457. doi: 10.1016/j.cej.2019.122457
    [26] Zhuang R, Dong Y, Li D, et al. Polyaniline-mediated coupling of Mn3O4 nanoparticles on activated carbon for high-performance asymmetric supercapacitors[J]. ACS Applied Materials & Inter Faces,2021,851:156871. doi: 10.1016/j.jallcom.2020.156871
    [27] Fan C, Dong Y, Liu Y, et al. Mesopore-dominated hollow carbon nanoparticles prepared by simple air oxidation of carbon black for high mass loading supercapacitors[J]. Carbon,2020,160:328-334. doi: 10.1016/j.carbon.2020.01.034
    [28] Zhou C, Chen X, Liu H, et al. Heteroatom-doped multilocular carbon nanospheres with high surface utilization and excellent rate capability as electrode material for supercapacitors[J]. Electrochimica Acta,2017,236:53-60. doi: 10.1016/j.electacta.2017.03.107
    [29] Qiu D, Gao A, Xie Z, et al. Homologous hierarchical porous hollow carbon spheres anode and bowls cathode enabling high-energy sodium-ion hybrid capacitors[J]. ACS Applied Materials & Inter faces,2018,10(51):44483-44493. doi: 10.1021/acsami.8b16442
    [30] Qiu D, Li M, Kang C, et al. Cucurbit [6] uril-derived sub-4 nm pores-dominated hierarchical porous carbon for supercapacitors: operating voltage expansion and pore size matching[J]. Small,2020,16(29):2002718.
    [31] Chen G, Jiang Z, Li A, et al. Cu-based MOF-derived porous carbon with highly efficient photothermal conversion performance for solar steam evaporation[J]. Journal of Materials Chemistry A,2021,9(31):16805-16813. doi: 10.1039/D1TA03695E
    [32] Chen Y, Shi L, Guo S, et al. A general strategy towards carbon nanosheets from triblock polymers as high-rate anode materials for lithium and sodium ion batteries[J]. Journal of Materials Chemistry A,2017,5(37):19866-19874. doi: 10.1039/C7TA06453E
  • 加载中
图(6)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  7
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 录用日期:  2024-03-22
  • 修回日期:  2024-03-21
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回