留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨炔在水系离子电池中的研究进展

徐显敏 封文聪 任静柯 罗雯

徐显敏, 封文聪, 任静柯, 罗雯. 石墨炔在水系离子电池中的研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60852-8
引用本文: 徐显敏, 封文聪, 任静柯, 罗雯. 石墨炔在水系离子电池中的研究进展. 新型炭材料(中英文). doi: 10.1016/S1872-5805(24)60852-8
XU Xian-min, FENG Wen-cong, REN Jing-ke, LUO Wen. Research progress of graphdiyen in aqueous ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60852-8
Citation: XU Xian-min, FENG Wen-cong, REN Jing-ke, LUO Wen. Research progress of graphdiyen in aqueous ion batteries. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60852-8

石墨炔在水系离子电池中的研究进展

doi: 10.1016/S1872-5805(24)60852-8
基金项目: 国家重点研发计划项目(2022YFB2404300);国家大学生创新创业训练计划项目(202310497015)
详细信息
    作者简介:

    徐显敏. E-mail:322294@whut.edu.cn

    通讯作者:

    罗 雯,博士,副教授。E-mail:luowen_1991@whut.edu.cn

  • 中图分类号: TQ127.1+1

Research progress of graphdiyen in aqueous ion batteries

Funds: National Key Research and Development Program of China(2022YFB2404300) and National Innovation and Entrepreneurship Training Program for College Students(202310497015)
More Information
  • 摘要: 石墨炔(Graphdiyen,GDY)作为一种全新的炭材料,其具有特殊的炭杂化排列方式、独特的化学和电子结构以及无限分布的天然孔隙等优点,在电化学储能领域具有良好的应用前景。新兴的水系离子电池具有低成本和高安全性等优点,然而,高性能电极材料的开发、新型隔膜体系的设计以及稳定界面的策略等仍是水系离子电池面临的主要挑战。石墨炔具有独特的多孔结构和优异的电化学性能,在负极保护、正极包覆、隔膜设计以及稳定界面pH值等方面,可以改善离子传输与界面沉积行为、电解液不稳定等问题。特别是石墨炔自下而上的分子结构设计策略使其具有易修饰、掺杂的特点,改性的石墨炔类似物具有更加优异的性能,拓宽了其在水系离子电池中的应用。本文系统总结了石墨炔的结构与性质以及合成方法,并特别对石墨炔在水系离子电池中的研究进行了总结。此外,还对石墨炔在水系离子电池中的研究仍存在的问题与挑战进行了综合评价,对未来石墨炔在水系离子电池中的发展进行了展望。
  • 图  1  石墨炔家族结构的多样性:(a) 六种石墨炔异构体(GDY,α-GY,β-GY,γ-GY,δ-GY以及6,6,12-GY)的化学结构; (b) 炔烃换位反应合成γ-Graphyne[36]

    Figure  1.  Various structures of graphyne: (a) The chemical structures of six kinds of graphyne: GDY, α-GY, β-GY, γ-GY, δ-GY, and 6,6,12-GY. (b) The synthetic of γ-Graphyne by Alkyne metathesis[36]. Reprinted with permission

    图  2  石墨炔的表征分析. (a-f)模拟的石墨炔堆叠模型以及对应的TEM/SAED图像:(a, d)对应AA堆叠模型,(b, e)对应AB堆叠模型,(c, f)对应ABC堆叠模型[37]; (g)石墨炔的拉曼光谱[38]; (h)石墨炔的C元素窄区XPS图谱[1]; (i)石墨炔的孔径分布图[38]

    Figure  2.  Characterization analysis of GDY. (a-f) Considered stacking structures and corresponding TEM/SAED simulation patterns of GDY from the top view: AA stacking (a, d), AB stacking (b, e), and ABC stacking (c, f)[37]. (g) Raman spectrum of GDY[38]. (h) XPS spectra of GDY with narrow scan for element C[1]. (i) Pore size distribution of GDY[38]. Reprinted with permission

    图  3  石墨炔的性质. (a)石墨炔结构中储存和传输离子的示意图[42]; (b)入射光与石墨炔的相互作用示意图[49]; (c)硫掺杂石墨炔的室温铁磁性示意图[54]; (d)石墨炔和其他类似物的应力-应变曲线[56]

    Figure  3.  Properties of GDY. (a) Illustration for the structural features of GDY on ions transport and storages[42]. (b) Schematic diagram of the interaction of the incident light with GDY[49]. (c) Schematic illustration of room-temperature ferromagnetism in sulfur-doped GDY[54]. (d) Stress-strain results of GDY and other extended graphynes[56]. Reprinted with permission

    图  4  石墨炔的合成方法. (a)通过化学反应合成石墨炔薄膜的反应流程图[1]; (b)石墨炔纳米墙的合成示意图[58]; (c)单晶石墨炔纳米片的气/液界面合成和结构示意图[59]; (d)水/界面机械搅拌法制备石墨炔薄膜[60]; (e)爆炸法合成石墨炔[61]; (f)在石墨烯上生长单晶石墨炔薄膜的合成工艺及其OM、SEM和AFM图像[62]

    Figure  4.  Synthetic methods of GDY. (a) The synthetic route of GDY films by chemical reactions[1]. (b) Schematic illustration of the experimental setup for the synthetic of GDY nanowall[58]. (c) Schematic illustration of the gas/liquid interfacial synthesis and the structure of crystalline GDY nanosheet[59]. (d) The preparation of GDY thin film through mechanical stirring strategy at the water/oil interface[60]. (e) The preparation process of GDY by an explosion method[61]. (f) Synthetic process of single-crystalline GDY film on graphene and the OM, SEM and AFM images of the GDY film on graphene[62]. Reprinted with permission

    图  5  石墨炔的结构调控与改性策略. (a) Cl-GDY的合成流程图[64]; (b) GDY单元分子结构的氮掺杂示意图[63]; (c) 剪切GDY连接键制备HSGY示意图[67]; (d)HSGY的结构和孔径[68]; (e) BGDY的能带结构计算[66]; (f) γ-GY上过渡金属原子的相关氧化态(Q)、局部磁矩(m)和原子磁矩(Dm)的变化[71]

    Figure  5.  Structural regulations and modification strategies of GDY. (a) The synthetic route to Cl-GDY[64]. (b) Schematic representation N-doping process of GDY, the unit structure of GDY molecule is shown as the inset[63]. (c) Schematic Diagram of Tailoring Acetylenic Bonds of GDY to Prepare HsGY[67]. (d) The structure and pore size of HsGY[68]. (e) Calculated electronic band structure of BGDY[66]. (f) The related oxidation state (Q), local magnetic moment (m), and variation of the atomic magnetic moment (Dm) of TM adatoms on γ-GY[71]. Reprinted with permission

    图  6  石墨炔在水系锌离子电池负极保护中的应用. (a) Zn/GDY的可逆电镀/剥离过程示意图[98]; (b) Zn负极和Zn-GDYO负极的镀锌行为示意图[99]; (c) 双场模拟由离子隧道型人工界面层实现的Zn2+浓度场的再分布[100]

    Figure  6.  Applications of GDY in anode protection of aqueous zinc-ion batteries. (a) Schematic illustration of the reversible plating/stripping process of the Zn/GDY [98]. (b) Schematic illustration of the Zn plating behavior of free Zn anode and Zn-GDYO anode [99]. (c) Dual-field simulations uncover the redistribution of Zn2+ concentration field achieved by ion-tunnel-type artificial interface layer[100]. Reprinted with permission

    图  7  石墨炔在水系锌离子电池正极包覆中的应用. (a) GDY在Mn3O4的电化学反应过程中的作用[101]; (b) 以K0.25·MnO2@GDY作为正极的锌离子电池的优异性能示意图[102]; (c) MnO2@GDYO混合3D纳米花结构的形成过程示意图[103]

    Figure  7.  Applications of GDY in cathode cladding of aqueous zinc-ion batteries. (a) The role of GDY in the electrochemical evolution of Mn3O4[101]; (b) Schematic representation of a high performance zinc ion battery incorporating the K0.25·MnO2@GDY cathode[102]; (c) Schematic illustration of the formation of the MnO2@GDYO hybrid 3D nanoflowers[103]. Reprinted with permission

    图  8  石墨炔在水系锌离子电池隔膜设计中的应用. (a) 具有GDYO隔膜的水系锌离子电池结构示意图[104]; (b) 无GDYO隔膜的水系锌离子电池结构示意图[104]; (c) GDYO隔膜的SEM图[104]; (d) 分别在有GDYO隔膜和无GDYO隔膜情况下的锌对称电池曲线[104];(e) 10 C电流密度下具有GDYO隔膜的Zn–MnO2电池的循环性能曲线[104]

    Figure  8.  Applications of GDY in membrane design of aqueous zinc-ion batteries. (a) Schematic representation of aqueous Zn-ion batteries with GDYO membrane[104]. (b) Schematic representation of aqueous Zn-ion batteries without GDYO membrane[104]. (c) SEM images of GDYO membrane[104]. (d) Zn stripping/plating from Zn/Zn symmetrical cells with or without GDYO membrane respectively[104]. (e) Long-term cycle performance of a Zn–MnO2 battery featuring a GDYO membrane measured at a rate of 10 C[104]. Reprinted with permission

    图  9  石墨炔在水系锌离子电池稳定界面pH值中的应用. (a) 自制的原位pH表征平台模型[105]; (b) 锌负极区域的实时pH变化[105]; (c) 理论计算显示的水合锌离子中配位水分子与NGDY和纤维素的相互作用[105]; (d) NGDY稳定界面pH值和抑制锌枝晶的机理示意图[105]

    Figure  9.  Applications of GDY in stabilizing interface pH of aqueous zinc-ion batteries. (a) The home-made operando pH detection configuration[105]. (b) Real-time interface pH change at the Zn anode region[105]. (c) Theoretical computation showing the interaction of the coordinated water in hydrated zin ions with NGDY and cellulose[105]. (d) Schematic diagram demonstrating the NGDY-assisted stabilization of interface pH and suppressions of Zn dendrites[105]. Reprinted with permission

    图  10  石墨炔在水系镁离子电池中的应用. (a) Cu-MoS2@HsGDY纳米胶囊的制备过程示意图[109]; (b) 不同反应阶段中Cu-MoS2@HsGDY结构的STEM图像(a-c)和TEM图像(d-f)[109]; (c) GSMB的工作原理和界面过程示意图[110]

    Figure  10.  Applications of GDY in aqueous magnesium-ion batteries. (a) Schematic illustration of the fabrication of hierarchical porous Cu-MoS2@HsGDY nanocapsule formed in one continuous process[109]. (b) (a−c) STEM images and (d−f) TEM images of the intermediates of Cu-MoS2@HsGDYcollected at different reaction stages in the continuous process[109]. (c) Schematic illustration of the working mechanism and interfacial process of the GSMB[110]. Reprinted with permission

    图  11  石墨炔在水系铝离子电池中的应用. (a) ${\rm{AlCl}}_4^{-} $以最大程度嵌入GDY结构示意图[114]; (b) ${\rm{AlCl}}_4^{-} $以最大程度嵌入HsGY结构示意图[114]; (c) ${\rm{AlCl}}_4^{-} $通过GDY三角孔扩散的活化屏障计算[115]; (d) ${\rm{AlCl}}_4^{-} $通过GDY炔键基团扩散的活化屏障计算[115]

    Figure  11.  Applications of GDY in aqueous aluminum-ion batteries. The intercalation of ${\rm{AlCl}}_4^{-} $ in the fully loaded bilayer of (a) GDY and (b) HsGY[114]. Carbon, aluminum, and chlorine atoms are represented by brown, gray and green balls, respectively. Energy barrier for diffusion of ${\rm{AlCl}}_4^{-} $ between the two layers of GDY (c) from the cavity site and (d) from sp site[115]. Reprinted with permission

  • [1] Li G X, Li Y L, Liu H B, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications,2010,46(19):3256-3258. doi: 10.1039/b922733d
    [2] Baughman R H, Eckhardt H, Kertesz M. Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms[J]. The Journal of Chemical Physics,1987,87(11):6687-6699. doi: 10.1063/1.453405
    [3] Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes—the route toward applications[J]. Science,2002,297(5582):787-792. doi: 10.1126/science.1060928
    [4] Coluci V R, Galvão D S, Baughman R H. Theoretical investigation of electromechanical effects for graphyne carbon nanotubes[J]. The Journal of Chemical Physics,2004,121(7):3228-3237. doi: 10.1063/1.1772756
    [5] Fang Y, Liu Y X, Qi L, et al. 2D graphdiyne: An emerging carbon material[J]. Chemical Society Reviews,2022,51(7):2681-2709. doi: 10.1039/D1CS00592H
    [6] Huang C S, Li Y J, Wang N, et al. Progress in research into 2D graphdiyne-based materials[J]. Chemical Reviews,2018,118(16):7744-7803. doi: 10.1021/acs.chemrev.8b00288
    [7] Jia Z Y, Li Y J, Zuo Z C, et al. Synthesis and properties of 2D carbon-graphdiyne[J]. Accounts of Chemical Research,2017,50(10):2470-2478. doi: 10.1021/acs.accounts.7b00205
    [8] Li H, Lim J H, Lv Y P, et al. Graphynes and graphdiynes for energy storage and catalytic utilization: Theoretical insights into recent advances[J]. Chemical Reviews,2023,123(8):4795-4854. doi: 10.1021/acs.chemrev.2c00729
    [9] Li J, Gao X, Zhu L, et al. Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications[J]. Energy & Environmental Science,2020,13(5):1326-1346.
    [10] Qiu H, Xue M M, Shen C, et al. Graphynes for water desalination and gas separation[J]. Advanced Materials,2019,31(42):16.
    [11] Wang N, He J J, Wang K, et al. Graphdiyne-based materials: Preparation and application for electrochemical energy storage[J]. Advanced Materials,2019,31(42):22.
    [12] Zheng X C, Chen S, Li J Z, et al. Two-dimensional carbon graphdiyne: Advances in fundamental and application research[J]. Acs Nano,2023,17(15):14309-14346. doi: 10.1021/acsnano.3c03849
    [13] 张婷, 王宇晶, 于灵敏, 等. 石墨炔: 一种新型二维炭材料的合成、改性与应用[J]. 新型炭材料,2022,37(6):1089-1113. doi: 10.1016/S1872-5805(22)60653-X

    Zhang T, Wang YJ, Yu LM, et al. Graphdiyne: Synthesis, modification and application of a two-dimensional carbonaceous material[J]. New Carbon Materials,2022,37(6):1089-1113. doi: 10.1016/S1872-5805(22)60653-X
    [14] Liu G, Liu S B, Xu B, et al. Multiple dirac points and hydrogenation-induced magnetism of germanene layer on Al (111) surface[J]. Journal of Physical Chemistry Letters,2015,6(24):4936-4942. doi: 10.1021/acs.jpclett.5b02413
    [15] Wang J Y, Deng S B, Liu Z F, et al. The rare two-dimensional materials with dirac cones[J]. National Science Review,2015,2(1):22-39. doi: 10.1093/nsr/nwu080
    [16] Cui H J, Sheng X L, Yan Q B, et al. Strain-induced dirac cone-like electronic structures and semiconductor-semimetal transition in graphdiyne[J]. Physical Chemistry Chemical Physics,2013,15(21):8179-8185. doi: 10.1039/c3cp44457k
    [17] Cao J M, Huang Z Q, Macam G, et al. Prediction of massless dirac fermions in a carbon nitride covalent network[J]. Applied Physics Letters,2021,118(13):7.
    [18] Liang Y L and Yao Y. Designing modern aqueous batteries[J]. Nature Reviews Materials,2023,8(2):109-122.
    [19] Liu J L, Xu C H, Chen Z, et al. Progress in aqueous rechargeable batteries[J]. Green Energy & Environment,2018,3(1):20-41.
    [20] Ju Z N, Zhao Q, Chao D L, et al. Energetic aqueous batteries[J]. Advanced Energy Materials,2022,12(27):26.
    [21] Li M, Wang X P, Meng J S, et al. Comprehensive understandings of hydrogen bond chemistry in aqueous batteries[J]. Advanced Materials,2024,36(3):27.
    [22] Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods,2019,3(1):20.
    [23] Chao D L, Zhou W H, Xie F X, et al. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Science Advances,2020,6(21):19.
    [24] Pan Z H, Liu X M, Yang J, et al. Aqueous rechargeable multivalent metal-ion batteries: Advances and challenges[J]. Advanced Energy Materials,2021,11(24):24.
    [25] Shang Y and Kundu D. A path forward for the translational development of aqueous zinc-ion batteries[J]. Joule,2023,7(2):244-250. doi: 10.1016/j.joule.2023.01.011
    [26] Deng M, Wang L Q, Vaghefinazari B, et al. High-energy and durable aqueous magnesium batteries: Recent advances and perspectives[J]. Energy Storage Materials,2021,43:238-247. doi: 10.1016/j.ensm.2021.09.008
    [27] Guo Z Q, Zhao S Q, Li T X, et al. Recent advances in rechargeable magnesium-based batteries for high-efficiency energy storage[J]. Advanced Energy Materials,2020,10(21):17.
    [28] Jia B E, Thang A Q, Yan C S, et al. Rechargeable aqueous aluminum-ion battery: Progress and outlook[J]. Small,2022,18(43):19.
    [29] Li C, Hou C-C, Chen L, et al. Rechargeable Al-ion batteries[J]. EnergyChem,2021,3(2):100049. doi: 10.1016/j.enchem.2020.100049
    [30] Song M, Tan H, Chao D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials,2018,28(41):27.
    [31] 武丽莎, 张明慧, 徐文, 等. 炭材料在柔性锌离子电池中的研究进展[J]. 新型炭材料,2022,37(5):827-851. doi: 10.1016/S1872-5805(22)60628-0

    Wu LS, Zhang MH, Xu W, et al. Recent advances in carbon materials for flexible zinc ion batteries[J]. New Carbon Materials,2022,37(5):827-851. doi: 10.1016/S1872-5805(22)60628-0
    [32] 贡昀, 薛裕华. 纳米炭材料应用于稳定锌离子电池中锌负极[J]. 新型炭材料,2023,38(3):438-454. doi: 10.1016/S1872-5805(23)60740-1

    Gong Y and Xue YH. Carbon nanomaterials for stabilizing zinc anodes in zinc-ion batteries[J]. New Carbon Materials,2023,38(3):438-454. doi: 10.1016/S1872-5805(23)60740-1
    [33] Li Y, Zhao X, Gao Y F, et al. Design strategies for rechargeable aqueous metal-ion batteries [J]. Science China-Chemistry, 2023, : 26.
    [34] Gao L, Yang Z, Li X D, et al. Post-modified strategies of graphdiyne for electrochemical applications[J]. Chemistry-an Asian Journal,2021,16(16):2185-2194. doi: 10.1002/asia.202100579
    [35] Ivanovskii A L. Graphynes and graphdyines[J]. Progress in Solid State Chemistry,2013,41(1):1-19.
    [36] Hu Y, Wu C, Pan Q, et al. Synthesis of γ-graphyne using dynamic covalent chemistry[J]. Nature Synthesis,2022,1(6):449-454. doi: 10.1038/s44160-022-00068-7
    [37] Gao X, Liu H B, Wang D, et al. Graphdiyne: Synthesis, properties, and applications[J]. Chemical Society Reviews,2019,48(3):908-936. doi: 10.1039/C8CS00773J
    [38] Yi Y Y, Li J Q, Zhao W, et al. Temperature-mediated engineering of graphdiyne framework enabling high-performance potassium storage[J]. Advanced Functional Materials,2020,30(31):8.
    [39] Long M Q, Tang L, Wang D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions[J]. ACS Nano,2011,5(4):2593-2600. doi: 10.1021/nn102472s
    [40] Luo G F, Zheng Q Y, Me W N, et al. Structural, electronic, and optical properties of bulk graphdiyne[J]. Journal of Physical Chemistry C,2013,117(25):13072-13079. doi: 10.1021/jp402218k
    [41] Lin L H, Pan H Z, Chen Y H, et al. Identifying the stacking style, intrinsic bandgap and magnetism of pristine graphdyine[J]. Carbon,2019,143:8-13. doi: 10.1016/j.carbon.2018.10.001
    [42] Feng W C, Pan C Q, Wang H, et al. Molecular carbon skeleton with self-regulating ion-transport channels for long-life potassium ion batteries[J]. Energy Storage Materials,2023,63:12.
    [43] Zhang S L, Liu H B, Huang C S, et al. Bulk graphdiyne powder applied for highly efficient lithium storage[J]. Chemical Communications,2015,51(10):1834-1837. doi: 10.1039/C4CC08706B
    [44] Zhang S L, He J J, Zheng J, et al. Porous graphdiyne applied for sodium ion storage[J]. Journal of Materials Chemistry A,2017,5(5):2045-2051. doi: 10.1039/C6TA09822C
    [45] Huang C S, Zhang S L, Liu H B, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy,2015,11:481-489. doi: 10.1016/j.nanoen.2014.11.036
    [46] van Miert G, Juričić V, Morais Smith C. Tight-binding theory of spin-orbit coupling in graphynes[J]. Physical Review B,2014,90(19):195414. doi: 10.1103/PhysRevB.90.195414
    [47] Li Y J, Xu L, Liu H B, et al. Graphdiyne and graphyne: From theoretical predictions to practical construction[J]. Chemical Society Reviews,2014,43(8):2572-2586. doi: 10.1039/c3cs60388a
    [48] 郑勇平, 冯倩, 汤怒江, 等. 石墨炔制备与发光性能[J]. 新型炭材料,2018,33(6):516-521. doi: 10.1016/S1872-5805(18)60354-3

    Zheng YP, Feng Q, Tang NJ, et al. Synthesis and photoluminescence of graphdiyne[J]. New Carbon Materials,2018,33(6):516-521. doi: 10.1016/S1872-5805(18)60354-3
    [49] Wu L M, Dong Y Z, Zhao J L, et al. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes[J]. Advanced Materials,2019,31(14):10.
    [50] Guo J, Shi R C, Wang R, et al. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics[J]. Laser & Photonics Reviews,2020,14(4):10.
    [51] He J, Ma S Y, Zhou P, et al. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+U calculations[J]. The Journal of Physical Chemistry C,2012,116(50):26313-26321. doi: 10.1021/jp307408u
    [52] Kang B T, Liu H G, Lee J Y. Oxygen adsorption on single layer graphyne: A DFT study[J]. Physical Chemistry Chemical Physics,2014,16(3):974-980. doi: 10.1039/C3CP53237B
    [53] Zhang M J, Wang X X, Sun H J, et al. Enhanced paramagnetism of mesoscopic graphdiyne by doping with nitrogen[J]. Scientific Reports,2017,7:10. doi: 10.1038/s41598-017-00036-8
    [54] Zhang M J, Sun H J, Wang X X, et al. Room-temperature ferromagnetism in sulfur-doped graphdiyne semiconductors[J]. Journal of Physical Chemistry C,2019,123(8):5010-5016. doi: 10.1021/acs.jpcc.8b10507
    [55] Zhang Y Y, Pei Q X, Wang C M. Mechanical properties of graphynes under tension: A molecular dynamics study[J]. Applied Physics Letters,2012,101(8):4.
    [56] Cranford S W, Brommer D B, Buehler M J. Extended graphynes: Simple scaling laws for stiffness, strength and fracture[J]. Nanoscale,2012,4(24):7797-7809. doi: 10.1039/c2nr31644g
    [57] Xiao K L, Jin W Y, Liu H B, et al. Low-density multilayer graphdiyne film with excellent energy dissipation capability under micro-ballistic impact[J]. Advanced Functional Materials,2023,33(15):9.
    [58] Zhou J Y, Gao X, Liu R, et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction[J]. Journal of the American Chemical Society,2015,137(24):7596-7599. doi: 10.1021/jacs.5b04057
    [59] Matsuoka R, Sakamoto R, Hoshiko K, et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface[J]. Journal of the American Chemical Society,2017,139(8):3145-3152. doi: 10.1021/jacs.6b12776
    [60] Wang D B, Zhang L, Chen S Q, et al. Preparation of a large amount of ultrathin graphdiyne[J]. Chemistry-a European Journal,2022,28(34):5.
    [61] Zuo Z C, Shang H, Chen Y H, et al. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode[J]. Chemical Communications,2017,53(57):8074-8077. doi: 10.1039/C7CC03200E
    [62] Gao X, Zhu Y H, Yi D, et al. Ultrathin graphdiyne film on graphene through solution-phase van der waals epitaxy[J]. Science Advances,2018,4(7):7.
    [63] Zhang S L, Du H P, He J J, et al. Nitrogen-doped graphdiyne applied for lithium-ion storage[J]. ACS Applied Materials & Interfaces,2016,8(13):8467-8473.
    [64] Wang N, He J J, Tu Z Y, et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage[J]. Angewandte Chemie-International Edition,2017,56(36):10740-10745. doi: 10.1002/anie.201704779
    [65] He J J, Wang N, Yang Z, et al. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance[J]. Energy & Environmental Science,2018,11(10):2893-2903.
    [66] Wang N, Li X D, Tu Z Y, et al. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage[J]. Angewandte Chemie-International Edition,2018,57(15):3968-3973. doi: 10.1002/anie.201800453
    [67] Ren X, Li X D, Yang Z, et al. Tailoring acetylenic bonds in graphdiyne for advanced lithium storage[J]. ACS Sustainable Chemistry & Engineering,2020,8(7):2614-2621.
    [68] He J J, Wang N, Cui Z L, et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries[J]. Nature Communications,2017,8:11. doi: 10.1038/s41467-017-00022-8
    [69] Zheng X L, Gao X, Vilá R A, et al. Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials[J]. Nature Nanotechnology,2023,18(2):153-+. doi: 10.1038/s41565-022-01272-4
    [70] Mashhadzadeh A H, Vahedi A M, Ardjmand M, et al. Investigation of heavy metal atoms adsorption onto graphene and graphdiyne surface: A density functional theory study[J]. Superlattices and Microstructures,2016,100:1094-1102. doi: 10.1016/j.spmi.2016.10.079
    [71] Kim S, Ruiz Puigdollers A, Gamallo P, et al. Functionalization of γ-graphyne by transition metal adatoms[J]. Carbon,2017,120:63-70. doi: 10.1016/j.carbon.2017.05.028
    [72] Alaei S, Jalili S, Erkoc S. Study of the influence of transition metal atoms on electronic and magnetic properties of graphyne nanotubes using density functional theory[J]. Fullerenes, Nanotubes and Carbon Nanostructures,2015,23(6):494-499. doi: 10.1080/1536383X.2013.863767
    [73] Li C, Li J, Wu F, et al. High capacity hydrogen storage in ca decorated graphyne: A first-principles study[J]. The Journal of Physical Chemistry C,2011,115(46):23221-23225. doi: 10.1021/jp208423y
    [74] Hwang H J, Kwon Y, Lee H. Thermodynamically stable calcium-decorated graphyne as a hydrogen storage medium[J]. The Journal of Physical Chemistry C,2012,116(38):20220-20224. doi: 10.1021/jp306222v
    [75] Guo Y, Lan X, Cao J, et al. A comparative study of the reversible hydrogen storage behavior in several metal decorated graphyne[J]. International Journal of Hydrogen Energy,2013,38(10):3987-3993. doi: 10.1016/j.ijhydene.2013.01.064
    [76] Xu B, Lei X L, Liu G, et al. Li-decorated graphyne as high-capacity hydrogen storage media: First-principles plane wave calculations[J]. International Journal of Hydrogen Energy,2014,39(30):17104-17111. doi: 10.1016/j.ijhydene.2014.07.182
    [77] Gao Y, Xue Y R, Liu T F, et al. Bimetallic mixed clusters highly loaded on porous 2D graphdiyne for hydrogen energy conversion[J]. Advanced Science,2021,8(21):11.
    [78] Du W C, Ang E H X, Yang Y, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries[J]. Energy & Environmental Science,2020,13(10):3330-3360.
    [79] Yan H B, Li S M, Zhong J Y, et al. An electrochemical perspective of aqueous zinc metal anode[J]. Nano-Micro Letters,2024,16(1):39. doi: 10.1007/s40820-023-01253-9
    [80] Guo X X and He G J. Opportunities and challenges of zinc anodes in rechargeable aqueous batteries[J]. Journal of Materials Chemistry A,2023,11(23):11987-12001. doi: 10.1039/D3TA01904G
    [81] Hu L, Xiao P, Xue L, et al. The rising zinc anodes for high-energy aqueous batteries[J]. EnergyChem,2021,3(2):100052. doi: 10.1016/j.enchem.2021.100052
    [82] Liu X, Wang K, Liu Y, et al. Constructing an ion-oriented channel on a zinc electrode through surface engineering [J]. Carbon Energy, 2023, : 13.
    [83] Zuo Z C, He F, Wang F, et al. Spontaneously splitting copper nanowires into quantum dots on graphdiyne for suppressing lithium dendrites[J]. Advanced Materials,2020,32(49):10.
    [84] Wang L N, Luo G F. Atomistic mechanism and long-term stability of using chlorinated graphdiyne film to reduce lithium dendrites in rechargeable lithium metal batteries[J]. Nano Letters,2021,21(17):7284-7290. doi: 10.1021/acs.nanolett.1c02429
    [85] Li G, Sun L, Zhang S, et al. Developing cathode materials for aqueous zinc ion batteries: Challenges and practical prospects[J]. Advanced Functional Materials,2024,34(5):2301291. doi: 10.1002/adfm.202301291
    [86] Zhong W, Zhang J, Li Z, et al. Issues and strategies of cathode materials for mild aqueous static zinc-ion batteries[J]. Green Chemical Engineering,2023,4(3):264-284. doi: 10.1016/j.gce.2023.01.001
    [87] Zhang N, Wang J C, Guo Y F, et al. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries[J]. Coordination Chemistry Reviews,2023,479:55.
    [88] Li J W, Luo N J, Kang L Q, et al. Hydrogen-bond reinforced superstructural manganese oxide as the cathode for ultra-stable aqueous zinc ion batteries[J]. Advanced Energy Materials,2022,12(44):12.
    [89] Xu Y H, Zhang G N, Liu J Q, et al. Recent advances on challenges and strategies of manganese dioxide cathodes for aqueous zinc-ion batteries[J]. Energy & Environmental Materials,2023,6(6):24.
    [90] Chen J, Chen M, Ma H, et al. Advances and perspectives on separators of aqueous zinc ion batteries[J]. Energy Reviews,2022,1(1):100005. doi: 10.1016/j.enrev.2022.100005
    [91] Du H, Yi Z H, Li H L, et al. Separator design strategies to advance rechargeable aqueous zinc ion batteries [J]. Chemistry-a European Journal, 2024, : 20.
    [92] Li X Y, Wang L, Fu Y H, et al. Optimization strategies toward advanced aqueous zinc-ion batteries: From facing key issues to viable solutions[J]. Nano Energy,2023,116:39.
    [93] Zong Y, He H, Wang Y, et al. Functionalized separator strategies toward advanced aqueous zinc-ion batteries[J]. Advanced Energy Materials,2023,13(20):2300403. doi: 10.1002/aenm.202300403
    [94] Lee B, Seo H R, Lee H R, et al. Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries[J]. Chemsuschem,2016,9(20):2948-2956. doi: 10.1002/cssc.201600702
    [95] Li Q, Chen A, Wang D, et al. “Soft shorts” hidden in zinc metal anode research[J]. Joule,2022,6(2):273-279. doi: 10.1016/j.joule.2021.12.009
    [96] Zhang W, Dai Y, Chen R, et al. Highly reversible zinc metal anode in a dilute aqueous electrolyte enabled by a pH buffer additive[J]. Angewandte Chemie International Edition,2023,62(5):e202212695. doi: 10.1002/anie.202212695
    [97] Ding L, Wang L, Gao J, et al. Facile Zn2+ desolvation enabled by local coordination engineering for long-cycling aqueous zinc-ion batteries[J]. Advanced Functional Materials,2023,33(32):2301648. doi: 10.1002/adfm.202301648
    [98] Luan X Y, Qi L, Zheng Z Q, et al. Step by step induced growth of zinc-metal interface on graphdiyne for aqueous zinc-ion batteries[J]. Angewandte Chemie-International Edition,2023,62(8):7.
    [99] Wang F, Xiong Z, Jin W, et al. Graphdiyne oxide for aqueous zinc ion full battery with ultra-long cycling stability[J]. Nano Today,2022,44:101463. doi: 10.1016/j.nantod.2022.101463
    [100] Yang Q, Guo Y, Yan B X, et al. Hydrogen-substituted graphdiyne ion tunnels directing concentration redistribution for commercial-grade dendrite-free zinc anodes[J]. Advanced Materials,2020,32(25):9.
    [101] Sun Q H, He J J, Li X D, et al. In-situ synthesis of graphdiyne on Mn3O4 nanoparticles for efficient Zn ions diffusion and storage[J]. Chemical Engineering Journal,2022,432:7.
    [102] Li J F, Chen Y H, Wang F H, et al. Graphdiyne hybrid nanowall arrays for high-capacity aqueous rechargeable zinc ion battery[J]. Chemical Research in Chinese Universities,2021,37(6):1301-1308. doi: 10.1007/s40242-021-1333-x
    [103] Wang F H, Jin W Y, Xiong Z C, et al. In situ grown MnO2/graphdiyne oxide hybrid 3D nanoflowers for high-performance aqueous zinc-ion batteries[J]. Materials Chemistry Frontiers,2021,5(14):5400-5409. doi: 10.1039/D1QM00548K
    [104] Li J, Chen Y, Guo J, et al. Graphdiyne oxide-based high-performance rechargeable aqueous Zn-MnO2 battery[J]. Advanced Functional Materials,2020,30(42):2004115. doi: 10.1002/adfm.202004115
    [105] Yang Q, Li L, Hussain T, et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries[J]. Angewandte Chemie-International Edition,2022,61(6):9.
    [106] Li Z Y, Häcker J, Fichtner M, et al. Cathode materials and chemistries for magnesium batteries: Challenges and opportunities[J]. Advanced Energy Materials,2023,13(27):29.
    [107] Liu Y Y, He G J, Jiang H, et al. Cathode design for aqueous rechargeable multivalent ion batteries: Challenges and opportunities[J]. Advanced Functional Materials,2021,31(13):35.
    [108] Yang R, Yao W J, Tang B, et al. Development and challenges of electrode materials for rechargeable Mg batteries[J]. Energy Storage Materials,2021,42:687-704. doi: 10.1016/j.ensm.2021.08.019
    [109] Zhuo S F, Huang G, Sougrat R, et al. Hierarchical nanocapsules of Cu-doped MoS2@H-substituted graphdiyne for magnesium storage[J]. ACS Nano,2022,16(3):3955-3964. doi: 10.1021/acsnano.1c09405
    [110] Fu X L, He F, Gao J C, et al. Directly growing graphdiyne nanoarray cathode to integrate an intelligent solid Mg-moisture battery[J]. Journal of the American Chemical Society,2023,145(5):2759-2764. doi: 10.1021/jacs.2c11409
    [111] Hu E, Jia BE, Zhu Q, et al. Engineering high voltage aqueous aluminum-ion batteries[J]. Small,2024,n/a(n/a):2309252.
    [112] Xu X L, Hui K S, Hui K N, et al. Engineering strategies for low-cost and high-power density aluminum-ion batteries[J]. Chemical Engineering Journal,2021,418:19.
    [113] Pan W D, Zhao Y, Mao J J, et al. High-energy SWCNT cathode for aqueous Al-ion battery boosted by multi-ion intercalation chemistry[J]. Advanced Energy Materials,2021,11(39):12.
    [114] Debnath S, Phan C, Searles D J, et al. Graphdiyne and hydrogen-substituted graphdiyne as potential cathode materials for high-capacity aluminum-ion batteries[J]. ACS Applied Energy Materials,2020,3(8):7404-7415. doi: 10.1021/acsaem.0c00805
    [115] Mishra S B, V G A, Ramaprabhu S, et al. Graphdiyne—a two-dimensional cathode for aluminum dual-ion batteries with high specific capacity and diffusivity[J]. ACS Applied Energy Materials,2021,4(8):7786-7799. doi: 10.1021/acsaem.1c01164
    [116] Xu C, Luo X. First-principles investigation of graphenylene as a long-life cathode material in aluminum ion batteries[J]. ACS Applied Energy Materials,2022,5(4):4970-4975. doi: 10.1021/acsaem.2c00339
  • 加载中
图(11)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  15
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-22
  • 录用日期:  2024-04-08
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-04-12

目录

    /

    返回文章
    返回