留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photodetectors based on graphene/molybdenum dichalcogenide van der Waals heterostructure: A review

ZHANG Xin-hua LIU Wei-di GONG You-pin LIU Qing-feng CHEN Zhi-gang

ZHANG Xin-hua, LIU Wei-di, GONG You-pin, LIU Qing-feng, CHEN Zhi-gang. Photodetectors based on graphene/molybdenum dichalcogenide van der Waals heterostructure: A review. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60853-X
Citation: ZHANG Xin-hua, LIU Wei-di, GONG You-pin, LIU Qing-feng, CHEN Zhi-gang. Photodetectors based on graphene/molybdenum dichalcogenide van der Waals heterostructure: A review. New Carbon Mater.. doi: 10.1016/S1872-5805(24)60853-X

doi: 10.1016/S1872-5805(24)60853-X

Photodetectors based on graphene/molybdenum dichalcogenide van der Waals heterostructure: A review

Funds: This work was financially supported by the National Natural Science Foundation of China (51972170), the State Key Laboratory of Materials-Oriented Chemical Engineering (SKL-MCE-23A04), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Jiangsu Specially-Appointed Professor Program. CHEN Zhi-gang thanks the financial support from the Australian Research Council, and QUT Capacity Building Professor Program. GONG You-pin acknowledges support from the Chongqing Research Program of Basic Research and Frontier Technology (cstc2021jcyj-msxmX0641) and the Doctoral “through train” scientific research project of Chongqing (CSTB2022BSXM-JCX0085)
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Classification and applications of photodetectors[2,4,8-10,13,20,21,27,28]. Copyright, 2018, American Chemical Society[8]. Copyright, 2018, Springer Nature[9].Copyright, 2020, The American Cheramic Society[13]. Copyright, 2020, CellPress[2]. Copyright,2024, Elsevier[22]. Copyright, 2024, Elsevier[11]. Copyright, 2008, Elsevier[4]. Copyright, 2008, American Institute of Physics[20]

    Figure  2.  Detectivity (D*) of graphene-based 2D photodetectors after van der Waals heterostructures (vdWHs) are formed with different photosensitive materials, including Graphene/ReS2[45], graphene/SnS2[46], Graphene/PtSe2[47], Graphene/PtSe2/β-Ga2O3[48], Graphene/PbSe[49], Graphene/GaSe [51], Graphene/InSe[52], Graphene/PbSe/TiO2[50], Graphene/SnSe2/Graphene[53], Graphene/p-GaSe/n-InSe[54], Graphene/WSe2[55], Graphene/Bi2Te3[56], Graphene/HgTe/ Graphene[57], Graphene/MoS2[58-60], Graphene/h-BN/MoS2[65], Graphene/MoS2/Graphene[64], MoS2/Graphene/MoS2[61,62], MoS2/h-BN/Graphene[66], Graphene/glassy-MoS2[63], Graphene/InSe/MoS2[67], MoS2/Graphene/WSe2[68], Graphene/MoTe2[69], Graphene/MoTe2/Graphene[70], MoTe2 /Graphene/SnS2[71]

    Figure  3.  Schematic band diagram of (a) photoconductive effect, (b) photovoltaic effect and (c) photothermoelectric effect at the graphene/Molybdenum dihalide (MoX2, X= S, Se and Te) interface. Upper and lower diagram represent the interface in the dark state and under the light, respectively

    Figure  4.  Schematic structures of (a) a lateral and (b) vertical graphene/molybdenum dihalide (MoX2, X= S, Se and Te) van der Waals heterostructure photodetectors

    Figure  5.  (a) Graphene hexagonal honeycomb crystal structure. (b) 3D representation of the structure of molybdenum dihalide (MoX2, X= S, Se and Te). (c) Crystal structures of MoX2: including 2H and 1 T polytype. (d) Crystal structure of graphene/MoX2 van der Waals heterostructure (vdWH). Copyright, 2015, Elsevier[106]. (e) Electron band structures of graphene, (f) MoS2 and (g) graphene/MoS2 vdWH at the equilibrium interfacial distance. The Fermi level (EF) is set to zero and marked by green dotted lines. Black and color lines respectively for generalized gradient approximation of Per dew, Burke, and Engenho and HSE06 methods. Copyright, 2016, Royal Society of Chemistry[105]

    Figure  6.  Preparation methods of graphene/molybdenum dihalide (MoX2, X= S, Se and Te) van der Waals heterostructures

    Figure  7.  (a) Transmission electron microscope (TEM) image of the transferred graphene/MoS2 van der Waals heterostructure (vdWH. Copyright, 2017, American Chemical Society)[125]. (b) Schematic of the fabrication process of the transfer-free graphene/MoS2 vdWH. (c) Atomic force microscope (AFM) image of the transfer-free graphene/MoS2 vdWH. Copyright, 2017, American Chemical Society[125]. (d) Schematic diagram of the transfer-free graphene/MoS2 interface band. Copyright, 2017, American Chemical Society[125]. (e) Comparison of time-dependent photocurrent of the transfer-free graphene/MoS2 and transferred graphene/MoS2. Copyright, 2017, American Chemical Society[125]. (f) Comparison of responsivity (R) of the transfer-free graphene/MoS2 and trans-free MoS2/graphene/SiC. Copyright, 2017, American Chemical Society[125]

    Figure  8.  (a) Schematic band diagram of graphene/MoS2. (b) Schematic of the graphene/MoS2/h-BN van der Waals heterostructure (vdWH) device. Copyright, 2018, Elsevier[65]. (c) Comparison of the photoluminescence (PL) intensities of pristine MoS2, graphene/MoS2 and graphene/MoS2/h-BN. Copyright, 2018, Elsevier[65]. (d) Comparison of current- bias voltage (I-VDS) curves of the graphene/MoS2 and graphene/MoS2/h-BN vdWH photodetectors in dark and light illuminated. (e) Responsivity (R) of photodetector versus VDS. Copyright, 2018, Elsevier[65]. (f) Noise equivalent power (NEP) and detectivity (D*) of the graphene/MoS2 photodetector versus VDS

    Figure  9.  (a) Energy diagram of the graphene/molybdenum dihalide (MoX2, X= S, Se and Te) hybrid photodetector with asymmetry metal contact under light irradiation. $ \Delta \varphi $Pd and $ \Delta \varphi $Ti represent the difference between the Dirac point energy and the Fermi level (EF) in palladium- and titanium-doped graphene, respectively. Copyright, 2020, American Chemical Society[86]. (b) Difference of current (I) between Dirac point energy and EF in graphene under symmetric metal contact. (c) Difference of I between Dirac point energy and EF in graphene under asymmetry metal contact. (d) Curve of photocurrent and responsivity (R) with gate voltage under asymmetric metal contact. (e) Photocurrent response of graphene/MoS2 phototransistor with asymmetric metal contact. Copyright, 2020, American Chemical Society[86]. (f) Corresponding enlarged figures of (e). Copyright, 2020, American Chemical Society[86]

    Figure  10.  (a) Schematic image of the MoS2 photodetector with graphene gate electrode. Copyright, 2020, American Chemical Society[59]. (b) Band diagram of vertical direction of the device (gate bias (Vgs) << threshold voltage (Vth)). (c) Fowler-Nordheim tunneling (FNT) plots at different incident powers. (d) Band diagram of vertical direction of the device (Vgs >> Vth). (e) Responsivity (R) depending on effective incident power at different Vgs. Copyright, 2020, American Chemical Society[59]. (f) Detectivity (D*) depending on effective incident power at different Vgs. Copyright, 2020, American Chemical Society[59]

    Table  1.   Performance of graphene/photosensitive material-based photodetectors

    Device structureλ/nmR/(mA·W−1)τr/msτf/msD*/JonesRef.
    Graphene/ReS25501.0×10830.030.01.9×1013[45]
    Graphene/SnS2470
    1064
    7.7×105
    2.0×103
    8.9×1013
    1.8×1010
    [46]
    Graphene/PtSe210002.2×10250.537.31.0×107[47]
    Graphene/PtSe2/β-Ga2O324576.21.2×10−30.51.0×1013[48]
    Graphene/PbSe13006.6×10650.0175.01.2×1012[49]
    Graphene/GaSe5323.5×10810.010.01.1×1010[51]
    Graphene/InSe6331.0×108<0.1<0.11.0×1013[52]
    Graphene/PbSe/TiO23505.1×1023.0×1013[50]
    Graphene/SnSe2/
    Graphene
    5321.3×10630.227.21.2×1012[53]
    Graphene/p-GaSe/
    n-InSe
    4102.1×1020.6×10−25.7×10−32.2×1012[54]
    Graphene/WSe25323.5×1055×10−53.0×10−21.0×1013[55]
    Graphene/Bi2Te39401.0×1091.0×1011[56]
    Graphene/HgTe/ Graphene15507.09.0×10−30.7×10−31.0×109[57]
    Graphene/MoS22203.3×1061.0×1012[58]
    Graphene/MoS24322.2×1083.5×1013[59]
    Graphene/MoS25202.1×1061.5×1010[60]
    Graphene/h-BN/MoS25323.6×1025.9×1014[65]
    Graphene/MoS2/
    Graphene
    532
    2000
    4.1×105
    3.8×105
    589.63.2×1010
    2.9×1010
    [64]
    MoS2/Graphene/ MoS21000
    532
    1.0×109
    1.0×1012
    [61]
    MoS2/Graphene/
    MoS2
    1550
    1310
    1.1×102
    11.8
    2.8×10−34.7×10−21.8×1012
    2.0×1012
    [62]
    MoS2/h-BN /Graphene405
    1265
    1.8×105
    1.5×102
    230.02.5×10−22.6×1013[66]
    Graphene/glassy-MoS253212.31.8×1010[63]
    Graphene/InSe/MoS25321.1×1021.1×1010[67]
    MoS2/Graphene/
    WSe2
    5324.3×1065.4×10−23.0×10−22.2×1012[68]
    Graphene/MoTe21064
    808
    9.7×105
    2.2×104
    78.03.7×1021.6×1011
    3.8×1015
    [69]
    Graphene/MoTe2/
    Graphene
    4738.7×10423.01.0×1012[70]
    MoTe2 /Graphene/SnS25002.6×10617.672.31.0×1013[71]
    下载: 导出CSV

    Table  2.   Synthesis and performance of typical graphene/molybdenum dihalide (MoX2, X = S, Se and Te) van der Waals heterostructure (vdWH) photodetectors

    Device structureSynthesis of graphene/MoX2λ/nmR/(mA·W−1)D*/Jonesτr /msτf /msEQERef.
    h-BN/MoTe2/Graphene /SnS2/h-BNDry transfer5002.6×1061.0×101317.672.3106 to 105[71]
    MoS2/h-BN /GrapheneDry transfer4051.8×1052.6×1013230250.0[66]
    Graphene/InSe/MoS2Dry transfer5321101.1×101025.7%[67]
    MoS2/Graphene/MoS2Dry transfer1000
    532
    1.0×109
    1.0×1012
    55%[61]
    Graphene/MoTe2/GrapheneDry transfer4738.7×1041.0×101223.0[70]
    Graphene/MoTe2Wet transfer10649.7×1051.6×101178375.0[53]
    MoS2/Graphene/MoS2Wet transfer808
    1550
    1310
    2.2×104
    10.6
    11.8
    3.8×1015
    1.8×1012
    2.0×1012
    2.8×10−34.7×10−2[62]
    MoS2/Graphene/WSe2Wet transfer5324.3×1062.2×10125.3×10−23.0×10−21×106%[68]
    Graphene/MoTe2Wet transfer1265
    1300
    1330
    1.5×102
    50
    20
    1920%[122]
    Graphene/MoTe2/GrapheneWet transfer1064
    473
    110
    205
    2.4×10−24.6×10−212.9%
    53.8%
    [123]
    Graphene/MoS2/WS2Wet transfer400
    1550
    6.6×1010
    1.7×104
    21.97.013.7%[124]
    Graphene/MoS2/GrapheneWet transfer532
    2000
    4.1×105
    3.8×105
    3.2×1010
    2.9×1010
    589.69.7×104%
    2.3×104%
    [64]
    Graphene/MoS2Wet transfer2203.4×1061.0×10121.8×104[58]
    Graphene/MoS2Wet transfer5202.1×1061.5×1010[60]
    Graphene/h-BN/MoS2Wet transfer5323.6×1025.9×101480%[65]
    Graphene/glassy-MoS2Wet transfer53212.31.8×1010[63]
    Graphene/MoS2Inkjet printing5408.4×1052030[125]
    Graphene/MoS2Successive deposition5322.4×103[111]
    Graphene/MoS2Successive deposition4322.2×1083.5×1013[59]
    下载: 导出CSV
  • [1] Koppens F H L, Mueller T, Avouris P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology,2014,9(10):780-793. doi: 10.1038/nnano.2014.215
    [2] Zheng W, Jia L M, Huang F. Vacuum-ultraviolet photon detections[J]. iScience,2020,23(6):22.
    [3] Ji F, Kalliopuska J, Eranen S, et al. Via-in-pixel design of truly 2D extendable photodiode detector for medical CT imaging [J]. Sensors and Actuators A-physical, 2008, 14559-65.
    [4] Lubsandorzhiev B K. The quest for the ideal photodetector for the next generation deep-underwater neutrino telescopes[J]. Nuclear Instruments and Methods in Physics Research-section A,2008,595(1):58-61. doi: 10.1016/j.nima.2008.07.055
    [5] Hu J J, Li L, Lin H T, et al. Flexible integrated photonics: where materials, mechanics and optics meet Invited[J]. Optical Materials Express,2013,3(9):1313-1331. doi: 10.1364/OME.3.001313
    [6] Qu Z C, Xu C A, Li X B, et al. Facile preparation of BP-MoS2/GO composite films with excellent flame retardancy and ultrasensitive response for smart fire alarm [J]. Chemical Engineering Journal, 2021, 426130717.
    [7] Li X, Wang J, Xie D, et al. Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection [J]. Materials Letters, 2017, 18942-45.
    [8] Luo W, Weng Q, Long M, et al. Room-temperature single-photon detector based on single nanowire[J]. Nano Letters,2018,18(9):5439-5445. doi: 10.1021/acs.nanolett.8b01795
    [9] Shautsova V, Sidiropoulos T, Xiao X, et al. Plasmon induced thermoelectric effect in graphene[J]. Nature Communications,2018,9(1):5190. doi: 10.1038/s41467-018-07508-z
    [10] Belforte G, Raparelli T, Viktorov V, et al. Theoretical and experimental investigations of an opto-pneumatic detector[J]. Journal of Dynamic Systems,2000,122(1):168-173.
    [11] Biesuz M, Karacasulu L, Vakifahmetoglu C, et al. On the temperature measurement during ultrafast high-temperature sintering (UHS): Shall we trust metal-shielded thermocouples?[J]. Journal Of The European Ceramic Society,2024,44(5):3479-3485. doi: 10.1016/j.jeurceramsoc.2023.11.061
    [12] Barzola-Quiquia J, Esquinazi P, Villafuerte M, et al. Origin of the giant negative photoresistance of ZnO single crystals[J]. Journal of Applied Physics,2010,108(7):073530. doi: 10.1063/1.3486214
    [13] Li Z, Liu F, Tang Y, et al. Compensated pyroelectric infrared detector based on Mn-doped PIMNT single crystal with enhanced signal stability[J]. Journal of The American Ceramic Society,2020,104(2):995-1001.
    [14] Mafi E, Calvano N, Patel J, et al. Electro-optical properties of sputtered calcium lead titanate thin films for pyroelectric detection[J]. Micromachines,2020,11(12):1073. doi: 10.3390/mi11121073
    [15] Hangauer A, Chen J, Strzoda R, et al. Performance of a fire detector based on a compact laser spectroscopic carbon monoxide sensor[J]. Optics Express,2014,22(11):13680-13690. doi: 10.1364/OE.22.013680
    [16] Zhang Z H, Zhang J W, Cao C F, et al. Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response [J]. Chemical Engineering Journal, 2020, 386123894.
    [17] Liang M, Sun B J, Sun X G, et al. Development of a new fiber-optic multi-target multispectral pyrometer for achievable true temperature measurement of the solid rocket motor plume [J]. Measurement, 2017, 95239-245.
    [18] Akula A, Ghosh R, Kumar S, et al. WignerMSER: pseudo-wigner distribution enriched MSER feature detector for object recognition in thermal infrared images[J]. Ieee Sensors Journal,2019,19(11):4221-4228. doi: 10.1109/JSEN.2019.2900268
    [19] Kruse P W. A comparison of the limits to the performance of thermal and photon detector imaging arrays[J]. Infrared Physics & Technology,1995,36(5):869-882.
    [20] Diamant G, Halahmi E, Kronik L, et al. Integrated circuits based on nanoscale vacuum phototubes[J]. Applied Physics Letters,2008,92(26):262903. doi: 10.1063/1.2944267
    [21] Daanoune M, Clerc R, Flament B, et al. Physics of trap assisted photomultiplication in vertical organic photoresistors[J]. Journal of Applied Physics,2020,127(5):055502. doi: 10.1063/1.5126338
    [22] Jia Y F, Liu P P, Bao L X, et al. Transduction of UV-light energy into alternating-current electricity via a neglected internal photoelectric effect of metal foil-based nanogenerator [J]. Nano Energy, 2024, 120.
    [23] Lin C H, Liu C W. Metal-insulator-semiconductor photodetectors[J]. Sensors,2010,10(10):8797-8826. doi: 10.3390/s101008797
    [24] Qiu Q, Huang Z. Photodetectors of 2D materials from utraviolet to terahertz waves[J]. Advanced Materials,2021,33(15):e2008126. doi: 10.1002/adma.202008126
    [25] Ouyang W, Teng F, He J H, et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering[J]. Advanced Functional Materials,2019,29(9):1807672. doi: 10.1002/adfm.201807672
    [26] Liu WD, Yu Y, Dargusch M, et al. Carbon allotrope hybrids advance thermoelectric development and applications[J]. Renewable and Sustainable Energy Reviews, 2021, 141110800.
    [27] Liu Y, Guo J, Zhu E, et al. Approaching the schottky-mott limit in van der Waals metal-semiconductor junctions[J]. Nature,2018,557(7707):696-700. doi: 10.1038/s41586-018-0129-8
    [28] Shakeel M, Rehman K, Ahmad S, et al. A weldless approach for thermocouple fabrication through direct ink writing technique[J]. IEEE Sensors Journal,2021,21(2):1279-1286. doi: 10.1109/JSEN.2020.3018747
    [29] Zhou M, Zhao Y K, Zhang Q Y, et al. Enhance the responsivity of self-driven ultraviolet photodetector by (Al, Ga)N nanowire/graphene/PVDF heterojunction with high stability[J]. Optics Letters,2024,49(2):338-341. doi: 10.1364/OL.509752
    [30] Li S P, Lei T, Yan Z X, et al. High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect [J]. Chinese Physics B, 2024, 33(1).
    [31] Li H Z, Shi Z Y, Que L C, et al. Modeling of graphene photodetector based on photogating effect for circuits simulation [J]. Physica Scripta, 2024, 99(1).
    [32] Long M Q, Tang L, Wang D, et al. Theoretical predictions of size-dependent carrier mobility and polarity in graphene[J]. Journal of The American Chemical Society,2009,131(49):17728-17729. doi: 10.1021/ja907528a
    [33] Guo YF, Zhang HT, Liu YW, et al. Molecular-scale grinding of uniform small-size graphene flakes for use as lubricating oil additives[J]. New Carbon Materials,2023,38(5):954-963. doi: 10.1016/S1872-5805(23)60748-6
    [34] Wu ZL, Wang CW, Zhang XX, et al. Graphene-based CO2 reduction electrocatalysts: A review[J]. New Carbon Materials,2024,39(1):100-130. doi: 10.1016/S1872-5805(24)60839-5
    [35] Kumar S, Goswami M, Singh N, et al. Flexible and lightweight graphene grown by rapid thermal processing chemical vapor deposition for thermal management in consumer electronics[J]. New Carbon Materials,2023,38(3):534-540. doi: 10.1016/S1872-5805(23)60737-1
    [36] Luo MY, Xu RG, Shi Y, et al. Graphene with KI-modified pore structure and its electrochemical capacitors application[J]. New Carbon Materials,2023,38(2):317-325. doi: 10.1016/S1872-5805(23)60714-0
    [37] Zhang S-s, Tu C-j, Li X, et al. Sulfonated graphene improves the wear resistance of pantograph carbon slider materials under normal and wet conditions[J]. New Carbon Materials,2023,38(2):378-383. doi: 10.1016/S1872-5805(23)60704-8
    [38] Yao G, Ling F R, Yue J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express,2016,24(2):1518-1527. doi: 10.1364/OE.24.001518
    [39] Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science,2008,320(5881):1308-1308. doi: 10.1126/science.1156965
    [40] Li X M, Zhu M, Du M D, et al. High detectivity graphene-silicon heterojunction photodetector[J]. Small,2016,12(5):595-601. doi: 10.1002/smll.201502336
    [41] Ahmadi E, Asgari A. Modeling of the infrared photodetector based on multi layer armchair graphene nanoribbons[J]. Journal of Applied Physics,2013,113(9):093106. doi: 10.1063/1.4794494
    [42] Nalwa H S. A review of molybdenum disulfide (MoS2) based photodetectors: from ultra-broadband, self-powered to flexible devices[J]. RSC Advances,2020,10(51):30529-30602. doi: 10.1039/D0RA03183F
    [43] Singh E, Singh P, Kim K S, et al. Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics[J]. ACS Applied Materials & Interfaces,2019,11(12):11061-11105.
    [44] Singh E, Kim K S, Yeom G Y, et al. Atomically thin-layered molybdenum disulfide (MoS2) for bulk-heterojunction solar cells[J]. ACS Applied Materials & Interfaces,2017,9(4):3223-3245.
    [45] Kang B, Kim Y, Yoo W J, et al. Ultrahigh photoresponsive device based on ReS2/graphene heterostructure[J]. Small,2018,14(45):e1802593. doi: 10.1002/smll.201802593
    [46] Zhao Y, Tsai T Y, Wu G, et al. Graphene/SnS2 van der Waals photodetector with high photoresponsivity and high photodetectivity for broadband 365-2240 nm detection[J]. ACS Applied Materials Interfaces,2021,13(39):47198-47207. doi: 10.1021/acsami.1c11534
    [47] Long M, Liu F, Ding F, et al. Scalable fabrication of long-wave infrared PtSe2-G heterostructure array photodetectors[J]. Applied Physics Letters,2020,117(23):231104. doi: 10.1063/5.0027785
    [48] Wu D, Zhao Z, Lu W, et al. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed[J]. Nano Research,2021,14(6):1973-1979. doi: 10.1007/s12274-021-3346-7
    [49] Ren Y, Dai T, He B, et al. Fabrication of high-gain photodetector with graphene–PbSe heterostructure[J]. IEEE Electron Device Letters,2019,40(1):48-50. doi: 10.1109/LED.2018.2883447
    [50] Manga K K, Wang J, Lin M, et al. High-performance broadband photodetector using solution-processible PbSe-TiO2-graphene hybrids[J]. Advanced Materials,2012,24(13):1697-702. doi: 10.1002/adma.201104399
    [51] Lu R, Liu J, Luo H, et al. Graphene/GaSe-nanosheet hybrid: towards high gain and fast photoresponse [J]. Scientific Reports, 2016, 619161.
    [52] Mudd G W, Svatek S A, Hague L, et al. High broad-band photoresponsivity of mechanically formed InSe-graphene van der Waals heterostructures[J]. Advanced Materials,2015,27(25):3760-6. doi: 10.1002/adma.201500889
    [53] Gao W, Zheng Z, Li Y, et al. High performance tin diselenide photodetectors dependent on thickness: A vertical graphene sandwiched device and interfacial mechanism[J]. Nanoscale,2019,11(28):13309-13317. doi: 10.1039/C9NR01966A
    [54] Yan F, Zhao L, Patane A, et al. Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures[J]. Nanotechnology,2017,28(27):27LT01. doi: 10.1088/1361-6528/aa749e
    [55] Gao A, Liu E, Long M, et al. Gate-tunable rectification inversion and photovoltaic detection in graphene/WSe2 heterostructures[J]. Applied Physics Letters,2016,108(22):223501. doi: 10.1063/1.4953152
    [56] Islam S, Mishra J K, Kumar A, et al. Ultra-sensitive graphene-bismuth telluride nano-wire hybrids for infrared detection[J]. Nanoscale,2019,11(4):1579-1586. doi: 10.1039/C8NR08433E
    [57] Noumbe U N, Greboval C, Livache C, et al. Reconfigurable 2D/0D p-n graphene/HgTe nanocrystal heterostructure for infrared detection[J]. ACS Nano,2020,14(4):4567-4576. doi: 10.1021/acsnano.0c00103
    [58] Iqbal M Z, Khan S, Siddique S. Ultraviolet-light-driven photoresponse of chemical vapor deposition grown molybdenum disulfide/graphene heterostructured FET [J]. Applied Surface Science, 2018, 459853-859.
    [59] Lee I, Kang W T, Kim J E, et al. Photoinduced tuning of schottky barrier height in graphene/MoS2 heterojunction for ultrahigh performance short channel phototransistor[J]. ACS Nano,2020,14(6):7574-7580. doi: 10.1021/acsnano.0c03425
    [60] Rathi S, Lee I, Lim D, et al. Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices[J]. Nano Letters,2015,15(8):5017-24. doi: 10.1021/acs.nanolett.5b01030
    [61] Yu W J, Liu Y, Zhou H, et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials[J]. Nature Nanotechnology,2013,8(12):952-8. doi: 10.1038/nnano.2013.219
    [62] Xiao P, Mao J, Ding K, et al. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection[J]. Advanced Materials,2018,30(31):e1801729. doi: 10.1002/adma.201801729
    [63] Xu H, Han X, Dai X, et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors[J]. Advanced Materials,2018,30(13):e1706561. doi: 10.1002/adma.201706561
    [64] Gao S, Wang Z Q, Wang H D, et al. Graphene/MoS2/Graphene vertical heterostructure-based broadband photodetector with high performance[J]. Advanced Materials Interfaces,2021,8(3):2001730. doi: 10.1002/admi.202001730
    [65] Li H, Li X, Park JH, et al. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors [J]. Nano Energy, 2019, 57214-221.
    [66] Vu Q A, Lee J H, Nguyen V L, et al. Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity[J]. Nano Letters,2017,17(1):453-459. doi: 10.1021/acs.nanolett.6b04449
    [67] Chen Z, Zhang Z, Biscaras J, et al. A high performance self-driven photodetector based on a graphene/InSe/MoS2 vertical heterostructure[J]. Journal of Materials Chemistry C,2018,6(45):12407-12412. doi: 10.1039/C8TC04378G
    [68] Long M, Liu E, Wang P, et al. Broadband photovoltaic detectors based on an atomically thin heterostructure[J]. Nano Letters,2016,16(4):2254-2259. doi: 10.1021/acs.nanolett.5b04538
    [69] Wallace P R. The band theory of graphite[J]. Physical Review X,1947,71(9):622-634.
    [70] Wang F, Yin L, Wang Z, et al. Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices[J]. Applied Physics Letters,2016,109(19):193111. doi: 10.1063/1.4967232
    [71] Li A, Chen Q, Wang P, et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/Graphene/SnS2 p-g-n junctions[J]. Advanced Materials,2019,31(6):e1805656. doi: 10.1002/adma.201805656
    [72] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor[J]. Physical Review Letters,2010,105(13):136805. doi: 10.1103/PhysRevLett.105.136805
    [73] Lin H, Sturmberg B C P, Lin K T, et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light[J]. Nature Photonics,2019,13(4):270. doi: 10.1038/s41566-019-0389-3
    [74] Vabbina P, Choudhary N, Chowdhury A A, et al. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene schottky junction[J]. ACS Applied Materials Interfaces,2015,7(28):15206-15213. doi: 10.1021/acsami.5b00887
    [75] Liu B Y, You C Y, Zhao C, et al. High responsivity and near-infrared photodetector based on graphene/MoSe2 heterostructure[J]. Chinese Optics Letters,2019,17(2):020002. doi: 10.3788/COL201917.020002
    [76] De Fazio D, Goykhman I, Yoon D, et al. High responsivity, large-area graphene/MoS2 flexible photodetectors[J]. ACS Nano,2016,10(9):8252-8262. doi: 10.1021/acsnano.6b05109
    [77] Roy K, Padmanabhan M, Goswami S, et al. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nature Nanotechnology,2013,8(11):826-830. doi: 10.1038/nnano.2013.206
    [78] Xu H, Wu J X, Feng Q L, et al. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor[J]. Small,2014,10(11):2300-2306. doi: 10.1002/smll.201303670
    [79] Zhang W, Chuu C P, Huang J K, et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures [J]. Scientific Reports, 2014, 43826.
    [80] Massicotte M, Schmidt P, Vialla F, et al. Photo-thermionic effect in vertical graphene heterostructures [J]. Nature Communications, 2016, 712174.
    [81] Wang Q, Yesilyurt C, Liu F, et al. Anomalous photothermoelectric transport due to anisotropic energy dispersion in WTe2[J]. Nano Letters,2019,19(4):2647-2652. doi: 10.1021/acs.nanolett.9b00513
    [82] Zhang Y, Li H, Wang L, et al. Photothermoelectric and photovoltaic effects both present in MoS2 [J]. Scientific Reports, 2015, 57938.
    [83] Cai X, Sushkov A B, Suess R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene[J]. Nature Nanotechnology,2014,9(10):814-819. doi: 10.1038/nnano.2014.182
    [84] Li X B, Wu J X, Mao N N, et al. A self-powered graphene-MoS2 hybrid phototransistor with fast response rate and high on-off ratio [J]. Carbon, 2015, 92126-92132.
    [85] Oh G, Jeon J H, Kim Y C, et al. Gate-tunable photodetector and ambipolar transistor implemented using a graphene/MoSe2 barristor [J]. NPG Asia Materials, 2021, 13 (1): 13: 10.
    [86] Li X, Wu J, Mao N, et al. A self-powered graphene–MoS2 hybrid phototransistor with fast response rate and high on–off ratio [J]. Carbon, 2015, 92126-92132.
    [87] Liu B, Zhao C, Chen X, et al. Self-powered and fast photodetector based on graphene/MoSe2/Au heterojunction [J]. Superlattices and Microstructures, 2019, 13087-13092.
    [88] Giovannetti G, Khomyakov P A, Brocks G, et al. Doping graphene with metal contacts[J]. Physical Review Letters,2008,101(2):026803. doi: 10.1103/PhysRevLett.101.026803
    [89] Li X, Zhao T, Chen Q, et al. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers[J]. Physical Chemistry Chemical Physics,2013,15(41):17752-17757. doi: 10.1039/c3cp52908h
    [90] Baik S S, Im S, Choi H J. Work function tuning in two-Dimensional MoS2 field-effect-transistors with graphene and titanium source-drain contacts [J]. Scientific Reports, 2017, 745546.
    [91] Hibino H, Kageshima H, Kotsugi M, et al. Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy[J]. Physical Review B,2009,79(12):125437. doi: 10.1103/PhysRevB.79.125437
    [92] Jeong H K, Kim K-j, Kim S M, et al. Modification of the electronic structures of graphene by viologen[J]. Chemical Physics Letters,2010,498(1-3):168-171. doi: 10.1016/j.cplett.2010.08.065
    [93] Shi Y M, Kim K K, Reina A, et al. Work function engineering of graphene electrode via chemical doping[J]. ACS Nano,2010,4(5):2689-2694. doi: 10.1021/nn1005478
    [94] Long M S, Wang P, Fang H H, et al. Progress, Challenges, and Opportunities for 2D material based photodetectors[J]. Advanced Functional Materials,2019,29(19):1803807. doi: 10.1002/adfm.201803807
    [95] Dong H, Chen K, Yang H, et al. Innovative all-silicon based a-SiNx: O/c-Si heterostructure solar-blind photodetector with both high responsivity and fast response speed[J]. APL Photonics,2022,7(2):026102. doi: 10.1063/5.0071602
    [96] Ni Z Y, Ma L L, Du S C, et al. Plasmonic silicon quantum dots enabled high-sensitivity ultrabroadband photodetection of graphene-based hybrid phototransistors[J]. ACS Nano,2017,11(10):9854-9862. doi: 10.1021/acsnano.7b03569
    [97] Guan X, Yu X, Periyanagounder D, et al. Recent progress in short to long wave infrared photodetection using 2D materials and heterostructures[J]. Advanced Optical Materials,2020,9(4):2001708.
    [98] Ma Y, Qu H, Wang W, et al. Si/SiO2@Graphene superstructures for high performance lithium-ion batteries[J]. Advanced Functional Materials,2022,33(8):2211648.
    [99] Frisenda R, Molina-Mendoza A J, Mueller T, et al. Atomically thin p-n junctions based on two-dimensional materials[J]. Chemical Society Reviews,2018,47(9):3339-3358. doi: 10.1039/C7CS00880E
    [100] Yang Z, Zhou Y, Ramanathan S. Studies on room-temperature electric-field effect in ionic-liquid gated VO2 three-terminal devices [J]. Journal of Applied Physics, 2012, 111 (1).
    [101] Liu F, Ming P, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review,2007,76(6):064120.1-064120.7.
    [102] Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides[J]. Chemical Society Reviews,2015,44(9):2702-2712. doi: 10.1039/C5CS00151J
    [103] Wang W Z, Zeng X B, Warner J H, et al. Photoresponse-bias modulation of a high-performance MoS2 photodetector with a unique vertically stacked 2H-MoS2/1T@2H-MoS2 structure[J]. ACS Applied Materials Interfaces,2020,12(29):33325-33335. doi: 10.1021/acsami.0c04048
    [104] Kwak J Y. Absorption coefficient estimation of thin MoS2 film using attenuation of silicon substrate Raman signal [J]. Results Phys, 2019, 13102202.
    [105] Hu W, Wang T, Zhang R, et al. Effects of interlayer coupling and electric fields on the electronic structures of graphene and MoS2 heterobilayers[J]. Journal of Materials Chemistry C,2016,4(9):1776-1781. doi: 10.1039/C6TC00207B
    [106] Zan W Y, Geng W, Liu H X, et al. Influence of interface structures on the properties of molybdenum disulfide/graphene composites: A density functional theory study [J]. Journal of Alloys and Compounds, 2015, 649961-967.
    [107] Robledo A R, Salazar M F, Martínez B A M, et al. Interlayer charge transfer in supported and suspended MoS2/Graphene/MoS2 vertical heterostructures[J]. Plos One,2023,18(7):e0283834. doi: 10.1371/journal.pone.0283834
    [108] Gupta S, Johnston A, Khondaker S. Optoelectronic properties of MoS2/graphene heterostructures prepared by dry transfer for light-induced energy applications[J]. Journal of Electronic Materials,2022,51(8):4257-4269. doi: 10.1007/s11664-022-09672-x
    [109] Finn D J, Lotya M, Cunningham G, et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications[J]. Journal of Materials Chemistry C,2014,2(5):925-932. doi: 10.1039/C3TC31993H
    [110] Liu L X, Zhai T Y. Wafer-scale vertical van der Waals heterostructures[J]. Infomat,2021,3(1):3-21. doi: 10.1002/inf2.12164
    [111] Chen T, Zhou Y, Sheng Y, et al. Hydrogen-assisted growth of large-area continuous films of MoS2 on monolayer graphene[J]. ACS Applied Materials Interfaces,2018,10(8):7304-7314. doi: 10.1021/acsami.7b14860
    [112] Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology,2010,5(10):722-726. doi: 10.1038/nnano.2010.172
    [113] Li H, Wu J M T, Huang X, et al. A universal, rapid method for clean transfer of nanostructures onto various substrates[J]. ACS Nano,2014,8(7):6563-6570. doi: 10.1021/nn501779y
    [114] Wang P J, Song S P, Najafi A, et al. High-fidelity transfer of chemical vapor deposition grown 2D transition metal dichalcogenides via substrate decoupling and polymer/small molecule composite[J]. ACS Nano,2020,14(6):7370-7379. doi: 10.1021/acsnano.0c02838
    [115] Kwon K C, Choi S, Hong K, et al. Wafer-scale transferable molybdenum disulfide thin-film catalysts for photoelectrochemical hydrogen production[J]. Energy & Environmental Science,2016,9(7):2240-2248.
    [116] Liu Y, Zhang S, He J, et al. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials[J]. Nano-Micro Letters,2019,11(1):13. doi: 10.1007/s40820-019-0245-5
    [117] Cao X H, Shi Y M, Shi W H, et al. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries[J]. Small,2013,9(20):3433-3438. doi: 10.1002/smll.201202697
    [118] Tang Y, Cong H, Chen Z, et al. An array of Eiffel-tower-shape AlN nanotips and its field emission properties [J]. Applied Physics Letters, 2005, 86 (23).
    [119] Lan C Y, Dong R T, Zhou Z Y, et al. Large-scale synthesis of freestanding layer-structured PbI2 and MAPbI3 nanosheets for high-performance photodetection[J]. Advanced Materials,2017,29(39):1702759. doi: 10.1002/adma.201702759
    [120] Yu F F, Liu Q W, Gan X, et al. Ultrasensitive pressure detection of few-layer MoS2[J]. Advanced Materials,2017,29(4):1603266. doi: 10.1002/adma.201603266
    [121] Tao J G, Chai J W, Lu X, et al. Growth of wafer-scale MoS2 monolayer by magnetron sputtering[J]. Nanoscale,2015,7(6):2497-2503. doi: 10.1039/C4NR06411A
    [122] Flory N, Ma P, Salamin Y, et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity[J]. Nature Nanotechnology,2020,15(2):118-124. doi: 10.1038/s41565-019-0602-z
    [123] Zhang K, Fang X, Wang Y, et al. Ultrasensitive near-infrared photodetectors based on a graphene-MoTe2-graphene vertical van der Waals heterostructure[J]. ACS Applied Materials Interfaces,2017,9(6):5392-5398. doi: 10.1021/acsami.6b14483
    [124] Xiong Y F, Chen J H, Lu Y Q, et al. Broadband optical-fiber-compatible photodetector based on a graphene-MoS2-WS2 heterostructure with a synergetic photogenerating mechanism[J]. Advanced Electronic Materials,2019,5(1):1800562. doi: 10.1002/aelm.201800562
    [125] Liu Q, Cook B, Gong M, et al. Printable transfer-free and wafer-size MoS2/graphene van der Waals heterostructures for high-performance photodetection[J]. ACS Applied Materials Interfaces,2017,9(14):12728-12733. doi: 10.1021/acsami.7b00912
    [126] Liu K H, Zhang L M, Cao T, et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers [J]. Nature Communications, 2014, 54966.
    [127] Jang A R. Tuning schottky barrier of single-layer MoS2 field-effect transistors with graphene electrodes[J]. Nanomaterials,2022,12(17):3038. doi: 10.3390/nano12173038
    [128] Li P K, Guo H T, Duan R, et al. Excellent Optoelectronic Properties and Low Contact Resistance of Graphene/MoS2 Heterostructure Optoelectronic Devices: First- Principles Calculation and Experimental Verification[J]. ACS Applied Electronic Materials,2023,5(3):1676-1687. doi: 10.1021/acsaelm.2c01726
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  10
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 录用日期:  2024-04-09
  • 修回日期:  2024-04-08
  • 网络出版日期:  2024-04-15

目录

    /

    返回文章
    返回