留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A review of carbon-supported single-atom catalysts for electrochemical reactions

WANG Yi-cheng MA Xiao-bo Ayeza WANG Chen-xu LI Yang YANG Cheng-long WANG Zhe-fan WANG Chao HU Chao ZHANG Ya-ting

王翊丞, 马晓博, 王晨旭, 李阳, 杨成龙, 王哲帆, 汪超, 胡超, 张亚婷. 炭载单原子催化剂在电化学反应中的应用进展. 新型炭材料(中英文), 2024, 39(3): 407-438. doi: 10.1016/S1872-5805(24)60863-2
引用本文: 王翊丞, 马晓博, 王晨旭, 李阳, 杨成龙, 王哲帆, 汪超, 胡超, 张亚婷. 炭载单原子催化剂在电化学反应中的应用进展. 新型炭材料(中英文), 2024, 39(3): 407-438. doi: 10.1016/S1872-5805(24)60863-2
WANG Yi-cheng, MA Xiao-bo, Ayeza, WANG Chen-xu, LI Yang, YANG Cheng-long, WANG Zhe-fan, WANG Chao, HU Chao, ZHANG Ya-ting. A review of carbon-supported single-atom catalysts for electrochemical reactions. New Carbon Mater., 2024, 39(3): 407-438. doi: 10.1016/S1872-5805(24)60863-2
Citation: WANG Yi-cheng, MA Xiao-bo, Ayeza, WANG Chen-xu, LI Yang, YANG Cheng-long, WANG Zhe-fan, WANG Chao, HU Chao, ZHANG Ya-ting. A review of carbon-supported single-atom catalysts for electrochemical reactions. New Carbon Mater., 2024, 39(3): 407-438. doi: 10.1016/S1872-5805(24)60863-2

炭载单原子催化剂在电化学反应中的应用进展

doi: 10.1016/S1872-5805(24)60863-2
基金项目: 国家自然科学基金(51702254、52102051);中央高校基本科研业务费(xhj032021011-05);陕西省创新能力支撑计划项目(2019-TD-021);中国华能集团有限公司科技项目(HNKJ21-H32)
详细信息
    通讯作者:

    胡 超,教授. E-mail:huchao@mail.xjtu.edu.cn

    张亚婷,教授. E-mail:zhangyt@xust.edu.cn

  • 中图分类号: TB33

A review of carbon-supported single-atom catalysts for electrochemical reactions

Funds: This work was supported by the National Natural Science Foundation of China (51702254, 52102051), the Fundamental Research Funds for the Central Universities (xhj032021011-05), Shaanxi Provincial Innovation Capacity Support Programme Project (2019-TD-021), and Science and Technology Project of China Huaneng Group Co., Ltd. (HNKJ21-H32)
More Information
  • 摘要: 本文全面综述了用于电化学反应的炭载单原子催化剂(SAC)的最新进展。首先简要介绍了炭载单原子催化剂的发展和优势,然后详细总结了各种炭载单原子催化剂的合成策略,包括气相传输、高温热解和湿化学方法。随后,回顾了炭载 SAC 的先进表征技术,总结了炭载 SAC 在氧气还原反应、二氧化碳还原反应、氮气还原反应、氢气进化反应和氧气进化反应等不同领域的应用。特别强调了提高炭载SACs电催化性能的改性策略。最后,讨论了利用炭载 SAC 进行电化学反应的前景和挑战。
  • FIG. 3186.  FIG. 3186.

    FIG. 3186..  FIG. 3186.

    Figure  1.  Vapor phase transport methods for SACs preparation. (a) Scheme of the formation isolated copper sites (Cu ISAS/N-C) catalyst. (b) Aberration-corrected high-angle annular dark-field scanning transmission electron microscope (AC HAADF-STEM) image of NC. (c) AC HAADF-STEM image of Cu ISAS/NC. (d) Corresponding EDS mapping of Cu ISAS/NC. (e) Cu K-edge X-ray absorption near-edge structure (XANES) and (f) FT k3-weighted extended X-ray absorption fine structure (EXAFS) spectra of Cu ISAS/NC and the reference samples. (g) Corresponding FT-EXAFS fitting curves of Cu ISAS/NC (Reprinted with permission, Copyright 2019, Springer Nature.)[45]

    Figure  2.  High temperature pyrolysis methods for SACs preparation. (a) Formation process of single Co atoms with precise N-coordination. (b) TEM, HAADF-STEM and AC-HAADF-STEM images of Co SAs/N-C(800), showing that only Co single atoms are present in Co SAs/N-C. (c) XRD patterns of the as-prepared samples by annealing of Zn1Co1-BMOF at different temperatures. (d) Co K-edge XANES spectra and (e) the k3-weighted χ(k)-function of the EXAFS spectra. The corresponding EXAFS fitting curves for the samples (f) Co SAs/N-C(800) and (g) Co SAs/N-C(900). Insets are the proposed Co-Nx architectures. (h) N2 adsorption and desorption isotherms for Zn1Co1-BMOF, Co SAs/N-C, and Co NPs/N-C. (Reprinted with permission, Copyright 2016, Wiley-VCH)[50]

    Figure  3.  Wet-chemistry strategies for SAC preparation. (a) Schematic illustration of the preparation and model structure of the atomically dispersed noble metal catalysts. (b) HAADF-STEM images of 5Pt/meso S―C, 10Pt/meso S―C, 20Pt/meso S―C, and 30Pt/meso S―C. (c) XRD patterns of the Pt/meso S―C catalysts. The standard peaks of Pt (JCPDS no. 04-0802) were shown in red lines. (d) Normalized XANES spectra of 10Pt/meso S―C, 30Pt/meso S―C, H2PtCl6/meso S―C and Pt foil at the Pt L3-edge. (e) EXAFS spectra of 10Pt/meso S―C, 30Pt/meso S―C, Pt foil and PtO2. (Reprinted with permission, Copyright 2019, Science Advance.)[55]

    Figure  4.  (a) Illustration for the synthesis of Pt1/NCNS. (Reprinted with permission, Copyright 2022, Wiley-VCH.)[56] (b) Schematic of the formation of Pt-SAs/C and Pt-NP/C in the 2 sides of an H-cell under electroplating. (Reprinted with permission, Copyright 2020, The Royal Society of Chemistry.)[57] (c) The solid-phase synthesis of Fe-doped-ZIF-8 crystal and carbonization for final Fe―N―C catalyst. (Reprinted with permission, Copyright 2017, Wiley-VCH.)[58]

    Figure  5.  Experimental XANES spectra of (a) Co K-edge for Co-SAC, (b) Ni K-edge for Ni-SAC, (c) W L3-edge for W-SAC and first derivative curves (insets) with their reference samples (bulk metal and metal oxide). Fourier transform (FT) magnitudes of EXAFS spectra in R space of (d) Co-SAC, (e) Ni-SAC and (f) W-SAC with their bulk and oxide states respectively. (g–i) Relative comparison between experimentally obtained XANES spectra with the theoretically derived one based on M-N4C4 moieties embedded in the graphene structure (insets). (j-l) STEM images of (j) W-SAC, (k) Co-SAC, and (l) Ni-SAC, respectively, at higher magnification. (Reprinted with permission, Copyright 2019, WILEY-VCH.)[69]

    Figure  6.  In-situ Raman spectra of Fe SAs-Fe2P NPs/NPCFs-2.5 recorded in O2-saturated (a) 0.5 mol L−1 H2SO4 and (b) 0.1 mol L−1 KOH at room temperature. In-situ ATR-SEIRAS spectra of potential and time difference spectra for the Fe SAs-Fe2P NPs/NPCFs-2.5 recorded in O2-saturated (c–f) 0.5 mol L−1 H2SO4 and (g–j) 0.1 mol L−1 KOH at room temperature. (Reprinted with permission, Copyright 2022, Wiley-VCH)[27]

    Figure  7.  (a) SEM and TEM images of Cu/Zn―NC. (b) ORR polarization curves of Zn―NC, Cu―NC and Cu/Zn―NC and 20% Pt/C catalysts tested in O2-saturated 0.1 mol L−1 KOH electrolyte with a scanning rate of 5 mV s−1 at 1600 r min−1. (c) Eonset and E1/2 values of different catalysts. (d) The corresponding Tafel curves derived from (b). Free energy diagram for ORR process on the 3 models at the equilibrium potentials of (e) U=0 V and (f) U=1.23 V at pH 14. (g) Proposed ORR mechanism on the Cu−N4/Zn−N4 site (green: Zn atom, orange: Cu atom, blue: N atom, gray: C atom). (Reprinted with permission, Copyright 2021, Wiley-VCH.)[85]

    Figure  8.  (a) RDE voltammograms of Ru-N/G-Tannealing (Tannealing = 550, 650, 750 or 800 °C) catalysts prepared with different annealing temperatures on glassy carbon electrodes in an O2-saturated 0.1 mol L−1 HClO4 solution at a rotation rate of 1600 r min−1. The catalyst loading was 0.32 mg cm–2 for all samples. (b) RDE voltammograms of Ru-N/G-750 in O2-saturated 0.1 mol L−1 HClO4 solution at a rotation rate of 1600 r min−1, with Fe-N/G-750 and Pt/C as references. The inset shows the enlarged view of ORR currents near the onset region. (c) Free-energy diagram of the ORR on selected nitrogen-coordinated metal moieties embedded on graphene sheets. The proposed associative mechanism involves the following steps: (1) O2+* → O2*; (2) O2* + H+ + e → OOH*; (3) OOH* + H+ + e → O* + H2O; (4) O* + H+ + e → OH*; and (5) OH* + H+ + e → H2O, where * denotes the adsorption site on the catalyst surface. (d) Proposed reaction scheme of the associative mechanism for the ORR on Ru-oxo-N4 moiety in acidic medium. (Reprinted with permission, Copyright 2017, American Chemical Society.)[82] (e) LSV curves. (f) Onset potential and half-wave potential for Fe SA-NSC-900, Fe SA-NC-900, and Pt/C. The calculated charge density distribution in FeN4 and FeN3S (g). (h) Comparison of free-energy diagram of oxygenated intermediates in ORR on FeN3S and FeN4. (Reprinted with permission, Copyright 2021, American Chemical Society.)[83]

    Figure  9.  (a) Typical HAADF-STEM image of the optimal ZnNx/C catalyst. (b) EXAFS signal in R-space for the adsorbed ZnNx/C catalyst. (c) The proposed reaction pathways for complete CO2RR on carbon supported Zn―N4 active site and (d) the free energy diagrams for this process on ZnN4/C, N4/C and ZnC4. (e) Top: pH-corrected LSV of N-C and ZnNx/C in N2-saturated KH2PO4/K2HPO4 (pH 7.0) and CO2-saturated (pH 7.2) 0.5 mol L−1 KHCO3 solution; bottom: Comparison of LSV results for C, N―C, Zn―C, and ZnNx/C catalysts in CO2-saturated 0.5 mol L−1 KHCO3. (f) FEs of CO and H2 at various applied potentials on ZnNx/C catalyst. (g) TOFs of ZnNx/C catalyst at different applied potentials. (h) Long-term stability of ZnNx/C at a potential load of −0.43 V and the corresponding FEs of CO and H2. (Reprinted with permission, Copyright 2018, Wiley-VCH.)[109]

    Figure  10.  (a) LSV curves measured in the CO2 saturated 0.5 mol L−1 KHCO3 electrolyte. (b) FE curves for CO. (c) The proposed reaction pathways and free energy diagrams for electrochemical reduction of CO2 to CO. (Reprinted with permission, Copyright 2022, Elsevier.)[113] (d) Atomic-resolution AC-STEM image and corresponding enlarged AC-STEM image. Atomic-level dispersed Ni species are displaying in the form of bright dots highlighted by yellow circles. (e) Polarization curves of Ni―N4―O/C (red), Ni―N4/C (black), and NC (blue) in CO2-saturated (Solid) and Ar-saturated (Dash) 0.5 mol L−1 KHCO3 solutions. (f) CO FEs at different potentials for Ni―N4―O/C, Ni―N4/C, and NC. (g)DFT-based potential barriers for the optimized Ni―Nx―O/C (x=1, 2, 3 and 4) models: from the CO2* transition to COOH*, from the COOH* transition to CO* during the CO2RR, and the H2O* transition to H* during the water dissociation process. (Reprinted with permission, Copyright 2021, Wiley-VCH.)[111]

    Figure  11.  (a) The optimized structure of pristine g-C3N4 monolayer and the possible sites for the single metal atoms to adsorb on the g-C3N4 substrate. (b) The computed Gibbs free energy changes (∆G) of potential-determining step of NRR on various single metal atoms supported on g-C3N4 surface. (Reprinted with permission, Copyright 2019, Wiley-VCH.)[143] (c) Gibbs free energy diagram of NRR at different applied potentials on Fe2N4@graphene by the distal pathway. (Reprinted with permission, Copyright 2021, American Chemical Society.)[144] (d) Top and side views of the atomic structure of NiCo@GDY. (e) Free energy profiles for the NRR on the FeCo@GDY catalyst through the distal pathway at different applied potentials of the reaction intermediates. (Reprinted with permission, Copyright 2021, Elsevier.)[139]

    Figure  12.  (a) Atomic-resolution HAADF-STEM images for Pt-GDY1 and Elemental mapping for Pt-GDY2. (b) The polarization curves for Pt-GDY1, Pt-GDY2, and commercial Pt/C in 0.5 mol L−1 H2SO4 solution, with a scan rate of 5 mV s−1. (c) Tafel plots of Pt/C, Pt-GDY1, and Pt-GDY2 for HER. (d) The configuration of Pt-GDY2 with hydrogen adsorbed on and the calculated Gibbs free energy diagram for hydrogen evolution on different catalysts. (Reprinted with permission, Copyright 2018, Wiley-VCH.)[149]

    Figure  13.  (a) Configuration of the TM/pyrrolic-N4-G monolayer. (b) The scaling relationship of OER overpotential (η) versus (εd) on TM/pyrrolic-N4-G. (c) Representative HAADF-STEM image of Ru―N―C catalyst. (Reprinted with permission, Copyright 2019, Nature Communications.)[162] (d) Optimized structure of pristine g-CN and the possible sites for TM atoms adsorption on g-CN with the binding energies of TM atoms. (e) Free energy diagram for HER under standard conditions. (f) HER volcano curve of exchange current as a function of the Gibbs free energy (ΔGH*) of hydrogen adsorption on TM/g-CN. (Reprinted with permission, Copyright 2020, Elsevier.)[164]

  • [1] Dresselhaus M S, Thomas I L. Alternative energy technologies[J]. Nature,2001,414(6861):332-337. doi: 10.1038/35104599
    [2] Lang R, Du X R, Huang Y K, et al. Single-atom catalysts based on the metal-oxide interaction[J]. Chemical Reviews,2020,120(21):11986-12043. doi: 10.1021/acs.chemrev.0c00797
    [3] Li Z, Ji S F, Liu Y W, et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites[J]. Chemical Reviews,2020,120(2):623-682. doi: 10.1021/acs.chemrev.9b00311
    [4] Chen Y J, Ji S F, Chen C, et al. Single-atom catalysts: Synthetic strategies and electrochemical applications[J]. Joule,2018,2(7):1242-1264. doi: 10.1016/j.joule.2018.06.019
    [5] Corma A, Concepcion P, Boronat M, et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity[J]. Nature Chemistry,2013,5(9):775-781. doi: 10.1038/nchem.1721
    [6] Li H, Li L E, Li Y D. The electronic structure and geometric structure of nanoclusters as catalytic active sites[J]. Nanotechnology Reviews,2013,2(5):515-528. doi: 10.1515/ntrev-2012-0069
    [7] Wang J, Li Z J, Wu Y, et al. Fabrication of single-atom catalysts with precise structure and high metal loading[J]. Advanced Materials,2018,30(48):1801649. doi: 10.1002/adma.201801649
    [8] Qiao B T, Wang A Q, Yang X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry,2011,3(8):634-641. doi: 10.1038/nchem.1095
    [9] Liu P X, Zhao Y, Qin R X, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science,2016,352(6287):797-801. doi: 10.1126/science.aaf5251
    [10] Lang R, Li T B, Matsumura D, et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3[J]. Angewandte Chemie-International Edition,2016,55(52):16054-16058. doi: 10.1002/anie.201607885
    [11] Wang A Q, Li J, Zhang T. Heterogeneous single-atom catalysis[J]. Nature Reviews Chemistry,2018,2(6):65-81. doi: 10.1038/s41570-018-0010-1
    [12] Li H, Zhang H X, Yan X L, at al. Carbon-supported metal single atom catalysts[J]. New Carbon Materials,2018,33(1):1-11. doi: 10.1016/S1872-5805(18)60322-1
    [13] Li Z J, Wang D H, Wu Y, et al. Recent advances in the precise control of isolated single-site catalysts by chemical methods[J]. National Science Review,2018,5(5):673-689. doi: 10.1093/nsr/nwy056
    [14] Therrien A J, Hensley A J R, Marcinkowski M D, et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation[J]. Nature Catalysis,2018,1(3):192-198. doi: 10.1038/s41929-018-0028-2
    [15] Liu J Y. Single-atom catalysis for a sustainable and greener future[J]. Current Opinion in Green and Sustainable Chemistry,2020,22:54-64. doi: 10.1016/j.cogsc.2020.01.004
    [16] Li Y, Wang Y, Chong D, et al. Carbon taxation in Singapore's semiconductor sector: a mini-review on GHG emission metrics and reporting[J]. Carbon Research,2023,2(1):49. doi: 10.1007/s44246-023-00082-0
    [17] Raihan A. The contribution of economic development, renewable energy, technical advancements, and forestry to Uruguay's objective of becoming carbon neutral by 2030[J]. Carbon Research,2023,2(1):20. doi: 10.1007/s44246-023-00052-6
    [18] Raihan A, Tuspekova A. Dynamic impacts of economic growth, renewable energy use, urbanization, industrialization, tourism, agriculture, and forests on carbon emissions in Turkey[J]. Carbon Research,2022,1(1):20. doi: 10.1007/s44246-022-00019-z
    [19] Kibsgaard J, Chorkendorff I. Considerations for the scaling-up of water splitting catalysts[J]. Nature Energy,2019,4(6):430-433. doi: 10.1038/s41560-019-0407-1
    [20] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science,2017,355(6321):caad4998. doi: 10.1126/science.aad4998
    [21] Morales Guio C G, Cave E R, Nitopi S A, et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst[J]. Nature Catalysis,2018,1(10):764-771. doi: 10.1038/s41929-018-0139-9
    [22] Hu C, Bai S, Gao L, et al. Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts[J]. ACS Catalysis,2019,9(12):11579-11588. doi: 10.1021/acscatal.9b03175
    [23] Ma X B, Zhang Q Y, Gao L J, et al. Atomic-layer-deposited oxygen-deficient TiO2 on carbon cloth: an efficient electrocatalyst for nitrogen fixation[J]. ChemCatChem,2022,14:e202200756. doi: 10.1002/cctc.202200756
    [24] Lu Y K, Cheng B X, Zhan H Y, et al. Defect engineering of carbon-based electrocatalysts for the CO2 reduction reaction: A review[J]. New Carbon Materials,2024,39(1):17-41. doi: 10.1016/S1872-5805(24)60833-4
    [25] Su P P, Pei W, Wang X W, et al. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate[J]. Angewandte Chemie-International Edition,2021,60(29):16044-16050. doi: 10.1002/anie.202103557
    [26] Zhang Z P, Sun J T, Wang F, et al. Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework[J]. Angewandte Chemie-International Edition,2018,57(29):9038-9043. doi: 10.1002/anie.201804958
    [27] Pan Y, Ma X L, Wang M M, et al. Construction of N, P Co-doped carbon frames anchored with Fe single atoms and Fe2P nanoparticles as a robust coupling catalyst for electrocatalytic oxygen reduction[J]. Advanced Materials,2022,34(29):2203621. doi: 10.1002/adma.202203621
    [28] Wei Y S, Zhang M, Zou R Q, et al. Metal-organic framework-based catalysts with single metal sites[J]. Chemical Reviews,2020,120(21):12089-12174. doi: 10.1021/acs.chemrev.9b00757
    [29] Yao Y C, Hu S L, Chen W X, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nature Catalysis,2019,2(4):304-313. doi: 10.1038/s41929-019-0246-2
    [30] Shah K, Dai R Y, Mateen M, et al. Cobalt single atom incorporated in ruthenium oxide sphere: A robust bifunctional electrocatalyst for HER and OER[J]. Angewandte Chemie-International Edition,2022,61(4):e202114951. doi: 10.1002/anie.202114951
    [31] Zhu C Z, Fu S F, Shi Q R, et al. Single-atom electrocatalysts[J]. Angewandte Chemie-International Edition,2017,56(45):13944-13960. doi: 10.1002/anie.201703864
    [32] Wang Y, Wang D S, Li Y D. Rational design of single-atom site electrocatalysts: from theoretical understandings to practical applications[J]. Advanced Materials,2021,33(34):2008151. doi: 10.1002/adma.202008151
    [33] Li J, Yue M F, Wei Y M, et al. Synthetic strategies of single-atoms catalysts and applications in electrocatalysis[J]. Electrochimica Acta,2022,409:139835. doi: 10.1016/j.electacta.2022.139835
    [34] Hu C, Mu Y, Bai S L, et al. Polyvinyl pyrrolidone mediated fabrication of Fe, N-codoped porous carbon sheets for efficient electrocatalytic CO2 reduction[J]. Carbon,2019,153:609-616. doi: 10.1016/j.carbon.2019.07.071
    [35] Ma X B, Gao L J, Zhang Q Y, et al. Nano-CaCO3 templated porous carbons anchored with Fe single atoms enable high-efficiency N2 electroreduction to NH3[J]. Electrochimica Acta,2022,426:140805. doi: 10.1016/j.electacta.2022.140805
    [36] Zhao L, Zhang Y, Huang L B, et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts[J]. Nature Communications,2019,10:1278. doi: 10.1038/s41467-019-09290-y
    [37] Yao Y G, Huang Z N, Xie P F, et al. High temperature shockwave stabilized single atoms[J]. Nature Nanotechnology,2019,14(9):851-857. doi: 10.1038/s41565-019-0518-7
    [38] Chen B, Zhong X W, Zhou G M, et al. Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions[J]. Advanced Materials,2022,34(5):2105812. doi: 10.1002/adma.202105812
    [39] Cui T T, Ma L N, Wang S B, et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions[J]. Journal of the American Chemical Society,2021,143(25):9429-9439. doi: 10.1021/jacs.1c02328
    [40] Cui T T, Wang Y P, Ye T, et al. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery[J]. Angewandte Chemie-International Edition,2022,61(12):e202115219. doi: 10.1002/anie.202115219
    [41] Chen Y J, Gao R, Ji S F, et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance[J]. Angewandte Chemie-International Edition,2021,60(6):3212-3221. doi: 10.1002/anie.202012798
    [42] Chen S Y , Li X Q, Kao C W, et al. Unveiling the proton-feeding effect in sulfur-doped Fe−N−C single-atom catalyst for enhanced CO2 electroreduction[J]. Angewandte Chemie International Edition,2022,61(32):e202206233.
    [43] Sun X H, Tuo Y X, Ye C L, et al. Phosphorus induced electron localization of single iron sites for boosted CO2 electroreduction reaction[J]. Angewandte Chemie-International Edition,2021,60(44):23614-23618. doi: 10.1002/anie.202110433
    [44] Qu Y T, Li Z J, Chen W X, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms[J]. Nature Catalysis,2018,1(10):781-786. doi: 10.1038/s41929-018-0146-x
    [45] Yang Z K, Chen B X, Chen W X, et al. Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach[J]. Nature Communications,2019,10:3734. doi: 10.1038/s41467-019-11796-4
    [46] Muravev V, Spezzati G, Su Y Q, et al. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation[J]. Nature Catalysis,2021,4(6):469-478. doi: 10.1038/s41929-021-00621-1
    [47] Qin R X, Liu P X, Fu G, et al. Strategies for stabilizing atomically dispersed metal catalysts[J]. Small Methods,2018,2(1):1700286. doi: 10.1002/smtd.201700286
    [48] Zou L L, Wei Y S, Hou C C, et al. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications[J]. Small,2021,17(16):2004809. doi: 10.1002/smll.202004809
    [49] Zhang E H, Wang T, Yu K, et al. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction[J]. Journal of the American Chemical Society,2019,141(42):16569-16573. doi: 10.1021/jacs.9b08259
    [50] Yin P Q, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie-International Edition,2016,55(36):10800-10805. doi: 10.1002/anie.201604802
    [51] Zhao C M, Dai X Y, Yao T, et al. Ionic exchange of metal organic frameworks to access single nickel sites for efficient electroreduction of CO2[J]. Journal of the American Chemical Society,2017,139(24):8078-8081. doi: 10.1021/jacs.7b02736
    [52] Wang Q, Yang Y Q, Sun F F, et al. Molten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a high density of catalytically accessible FeN4 active sites and outstanding oxygen reduction reaction performance[J]. Advanced Energy Materials,2021,11(19):2100219. doi: 10.1002/aenm.202100219
    [53] Zhang M L, Wang Y G, Chen W X, et al. Metal (hydr)oxides@polymer core-shell strategy to metal single-atom materials[J]. Journal of the American Chemical Society,2017,139(32):10976-10979. doi: 10.1021/jacs.7b05372
    [54] Ni W P, Liu Z X, Zhang Y, et al. Electroreduction of carbon dioxide driven by the intrinsic defects in the carbon plane of a single Fe-N4 site[J]. Advanced Materials,2021,33(1):2003238. doi: 10.1002/adma.202003238
    [55] Wang L, Chen M X, Yan Q Q, et al. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts[J]. Science Advances,2019,5(10):eaax6322. doi: 10.1126/sciadv.aax6322
    [56] Li J J, Banis M N, Ren Z H, et al. Unveiling the nature of Pt single-atom catalyst during electrocatalytic hydrogen evolution and oxygen reduction reactions[J]. Small,2021,17(11):2007245. doi: 10.1002/smll.202007245
    [57] Wang Z Y, Yang J, Gan J, et al. Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A,2020,8(21):10755-10760. doi: 10.1039/D0TA02351E
    [58] Liu Q T, Liu X F, Zheng L R, et al. The solid-phase synthesis of an Fe-N-C electrocatalyst for high-power proton-exchange membrane fuel cells[J]. Angewandte Chemie-International Edition,2018,57(5):1204-1208. doi: 10.1002/anie.201709597
    [59] Qi P, Wang J, Djitcheu X, et al. Techniques for the characterization of single atom catalysts[J]. RSC Advances,2021,12(2):1216-1227.
    [60] Wang G, Ke X, Sui M. Advanced TEM characterization for single-atom catalysts: from ex-situ towards in-situ[J]. Chemical Research in Chinese Universities,2022,38(5):1172-1184. doi: 10.1007/s40242-022-2245-0
    [61] Song Z, Li J, Davis K D, et al. Emerging applications of synchrotron radiation X-ray techniques in single atomic catalysts[J]. Small Methods,2022,6(11):2201078. doi: 10.1002/smtd.202201078
    [62] Wang K Y, Wang X F, Liang X H. Synthesis of high metal loading single atom catalysts and exploration of the active center structure[J]. ChemCatChem,2021,13(1):28-58. doi: 10.1002/cctc.202001255
    [63] He Q, Lee J H, Liu D B, et al. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst[J]. Advanced Functional Materials,2020,30(17):2000407. doi: 10.1002/adfm.202000407
    [64] Lyu D D, Mollamahale Y B, Huang S L, et al. Ultra-high surface area graphitic Fe-N-C nanospheres with single-atom iron sites as highly efficient non-precious metal bifunctional catalysts towards oxygen redox reactions[J]. Journal of Catalysis,2018,368:279-290. doi: 10.1016/j.jcat.2018.10.025
    [65] Xiao F, Xu G L, Sun C J, et al. Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction[J]. Nano Energy,2019,61:60-68. doi: 10.1016/j.nanoen.2019.04.033
    [66] Shang Y, Duan X, Wang S, et al. Carbon-based single atom catalyst: Synthesis, characterization, DFT calculations[J]. Chinese Chemical Letters,2022,33(2):663-673. doi: 10.1016/j.cclet.2021.07.050
    [67] Loy A C M, Teng S Y, How B S, et al. Elucidation of single atom catalysts for energy and sustainable chemical production: Synthesis, characterization and frontier science[J]. Progress in Energy and Combustion Science,2023,96:101074. doi: 10.1016/j.pecs.2023.101074
    [68] Shen M X, Qi J L, Gao K, et al. Chemical vapor deposition strategy for inserting atomic FeN4 sites into 3D porous honeycomb carbon aerogels as oxygen reduction reaction catalysts in high-performance Zn-air batteries[J]. Chemical Engineering Journal,2023,464:142719. doi: 10.1016/j.cej.2023.142719
    [69] Hossain M D, Liu Z, Zhuang M, et al. Rational design of graphene-supported single atom catalysts for hydrogen evolution reaction[J]. Advanced Energy Materials,2019,9(10):1803689. doi: 10.1002/aenm.201803689
    [70] Tan H Y, Wang J, Lin S C, et al. Dynamic coordination structure evolutions of atomically dispersed metal catalysts for electrocatalytic reactions[J]. Advanced Materials Interfaces,2023,10(4):2202050. doi: 10.1002/admi.202202050
    [71] Jin Z, Li P, Fang Z, et al. Emerging electrochemical techniques for probing site behavior in single-atom electrocatalysts[J]. Accounts of Chemical Research,2022,55(5):759-769. doi: 10.1021/acs.accounts.1c00785
    [72] Sun B, Li Z Q, Xiao D F, et al. Unveiling pH-dependent adsorption strength of *CO2 intermediate over high-density Sn single atom catalyst for acidic CO2-to-HCOOH electroreduction [J]. Angewandte Chemie-International Edition, 2024, 63(14): e202318874.
    [73] Shi L, Li Ya , Yin H, et al. Carbon-based metal-free nanomaterials for the electrosynthesis of small-molecule chemicals: A review[J]. New Carbon Materials,2024,39(1):42-63.
    [74] Wang Y, Tang Y J, Zhou K. Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts[J]. Journal of the American Chemical Society,2019,141(36):14115-14119. doi: 10.1021/jacs.9b07712
    [75] Wang X, Li Z, Qu Y, et al. Review of metal catalysts for oxygen reduction reaction: from nanoscale engineering to atomic design[J]. Chem,2019,5(6):1486-1511. doi: 10.1016/j.chempr.2019.03.002
    [76] Shao M, Chang Q, Dodelet J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews,2016,116(6):3594-657. doi: 10.1021/acs.chemrev.5b00462
    [77] Wang Y, Su H, He Y, et al. Advanced electrocatalysts with single-metal-atom active sites[J]. Chemical Reviews,2020,120(21):12217-12314. doi: 10.1021/acs.chemrev.0c00594
    [78] Zhang J, Yang H, Liu B. Coordination engineering of single-atom catalysts for the oxygen reduction reaction: A review[J]. Advanced Energy Materials,2021,11(3):2002473. doi: 10.1002/aenm.202002473
    [79] Zhao C X, Li B Q, Liu J N, et al. Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction[J]. Angewandte Chemie-International Edition,2021,60(9):4448-4463. doi: 10.1002/anie.202003917
    [80] Zhang H, Zhou W, Chen T, et al. A modular strategy for decorating isolated cobalt atoms into multichannel carbon matrix for electrocatalytic oxygen reduction[J]. Energy & Environmental Science,2018,11(8):1980-1984.
    [81] Gong L, Zhang H, Wang Y, et al. Bridge bonded oxygen ligands between approximated FeN4 Sites confer catalysts with high ORR performance[J]. Angewandte Chemie-International Edition,2020,59(33):13923-13928. doi: 10.1002/anie.202004534
    [82] Zhang C, Sha J, Fei H, et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium[J]. ACS Nano,2017,11(7):6930-6941. doi: 10.1021/acsnano.7b02148
    [83] Wang M, Yang W, Li X, et al. Atomically dispersed Fe-heteroatom (N, S) bridge sites anchored on carbon nanosheets for promoting oxygen reduction reaction[J]. ACS Energy Letters,2021,6(2):379-386. doi: 10.1021/acsenergylett.0c02484
    [84] Li X, Liu L, Ren X, et al. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion[J]. Science Advances,2020,6(39):eabb6833. doi: 10.1126/sciadv.abb6833
    [85] Tong M, Sun F, Xie Y, et al. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction[J]. Angewandte Chemie-International Edition,2021,60(25):14005-14012. doi: 10.1002/anie.202102053
    [86] Yu D, Ma Y, Hu F, et al. Dual-Sites coordination engineering of single atom catalysts for flexible metal-air batteries[J]. Advanced Energy Materials,2021,11(30):2101242. doi: 10.1002/aenm.202101242
    [87] Xiao M, Chen Y, Zhu J, et al. Climbing the apex of the ORR volcano plot via binuclear site construction: Electronic and geometric engineering[J]. Journal of the American Chemical Society,2019,141(44):17763-17770. doi: 10.1021/jacs.9b08362
    [88] Zhu C, Shi Q, Xu B Z, et al. Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance[J]. Advanced Energy Materials,2018,8(29):1801956. doi: 10.1002/aenm.201801956
    [89] Zhang J, Zhao Y, Chen C, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions[J]. Journal of the American Chemical Society,2019,141(51):20118-20126. doi: 10.1021/jacs.9b09352
    [90] Han A, Wang X, Tang K, et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance[J]. Angewandte Chemie-International Edition,2021,60(35):19262-19271. doi: 10.1002/anie.202105186
    [91] Tian Y, Chen R, Liu X, et al. Fluorine-regulated carbon nanotubes decorated with Co single atoms for multi-site electrocatalysis toward two-electron oxygen reduction[J]. Ecomat,2023,5(5):e12336. doi: 10.1002/eom2.12336
    [92] Liu X, Chen R, Peng W, et al. Multiatom activation of single-atom electrocatalysts via remote coordination for ultrahigh-rate two-electron oxygen reduction[J]. Journal of Energy Chemistry,2023,76:622-630. doi: 10.1016/j.jechem.2022.10.015
    [93] Peng W, Liu J, Liu X, et al. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production[J]. Nature Communications,2023,14(1):4430. doi: 10.1038/s41467-023-40118-y
    [94] Shen H, Qiu N, Yang L, et al. Boosting oxygen reduction for high-efficiency H2O2 electrosynthesis on oxygen-coordinated Co-N-C catalysts[J]. Small,2022,18(17):2200730. doi: 10.1002/smll.202200730
    [95] Vasileff A, Zheng Y, Qiao S Z. Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2[J]. Advanced Energy Materials,2017,7(21):1700759. doi: 10.1002/aenm.201700759
    [96] Birdja Y Y, Perez Gallent E, Figueiredo M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy,2019,4(9):732-745. doi: 10.1038/s41560-019-0450-y
    [97] Jin S, Hao Z, Zhang K, et al. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization[J]. Angewandte Chemie-International Edition,2021,60(38):20627-20648. doi: 10.1002/anie.202101818
    [98] Liu A, Gao M, Ren X, et al. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts[J]. Journal of Materials Chemistry A,2020,8(7):3541-3562. doi: 10.1039/C9TA11966C
    [99] Wang Z L, Li C, Yamauchi Y. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide[J]. Nano Today,2016,11(3):373-391. doi: 10.1016/j.nantod.2016.05.007
    [100] Zhang L, Zhao Z J, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angewandte Chemie-International Edition,2017,56(38):11326-11353. doi: 10.1002/anie.201612214
    [101] Yi J D, Si D H, Xie R, et al. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2[J]. Angewandte Chemie-International Edition,2021,60(31):17108-17114. doi: 10.1002/anie.202104564
    [102] Zhang J, Zeng G, Chen L, et al. Tuning the reaction path of CO2 electroreduction reaction on indium single-atom catalyst: Insights into the active sites[J]. Nano Research,2022,15(5):4014-4022. doi: 10.1007/s12274-022-4177-x
    [103] Yang H, Wu Y, Li G, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol[J]. Journal of the American Chemical Society,2019,141(32):12717-12723. doi: 10.1021/jacs.9b04907
    [104] Fu L, Wang R, Zhao C, et al. Construction of Cr-embedded graphyne electrocatalyst for highly selective reduction of CO2 to CH4: A DFT study[J]. Chemical Engineering Journal,2021,414:128857. doi: 10.1016/j.cej.2021.128857
    [105] Sun M, Wong H H, Wu T, et al. Entanglement of spatial and energy segmentation for C1 pathways in CO2 reduction on carbon skeleton supported atomic catalysts[J]. Advanced Energy Materials,2022,12(14):2103781. doi: 10.1002/aenm.202103781
    [106] Chen Z, Zhang X, Liu W, et al. Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level[J]. Energy & Environmental Science,2021,14(4):2349-2356.
    [107] Hou Y, Liang Y L, Shi P C, et al. Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity[J]. Applied Catalysis B-Environmental,2020,271:118929. doi: 10.1016/j.apcatb.2020.118929
    [108] Zhang N, Zhang X, Kang Y, et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction[J]. Angewandte Chemie-International Edition,2021,60(24):13388-13393. doi: 10.1002/anie.202101559
    [109] Yang F, Song P, Liu X, et al. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst[J]. Angewandte Chemie-International Edition,2018,57(38):12303-12307. doi: 10.1002/anie.201805871
    [110] Wang Y, Park B J, Paidi V K, et al. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction[J]. ACS Energy Letters,2022,7(2):640-649. doi: 10.1021/acsenergylett.1c02446
    [111] Wang X, Wang Y, Sang X, et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction[J]. Angewandte Chemie-International Edition,2021,60(8):4192-4198. doi: 10.1002/anie.202013427
    [112] Jiang K, Siahrostami S, Zheng T, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction[J]. Energy & Environmental Science,2018,11(4):893-903.
    [113] Guo Y, Yao S, Xue Y, et al. Nickel single-atom catalysts intrinsically promoted by fast pyrolysis for selective electroreduction of CO2 into CO[J]. Applied Catalysis B-Environmental,2022,304:120997. doi: 10.1016/j.apcatb.2021.120997
    [114] Cheng Y, Zhao S, Li H, et al. Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2[J]. Applied Catalysis B-Environmental,2019,243:294-303. doi: 10.1016/j.apcatb.2018.10.046
    [115] He Q, Liu D, Lee J H, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts[J]. Angewandte Chemie-International Edition,2020,59(8):3033-3037. doi: 10.1002/anie.201912719
    [116] Zeng Z, Gan L Y, Yang H B, et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution[J]. Nature Communications,2021,12(1):4088. doi: 10.1038/s41467-021-24052-5
    [117] Liu S, Yang H B, Hung S F, et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst[J]. Angewandte Chemie-International Edition,2020,59(2):798-803. doi: 10.1002/anie.201911995
    [118] Cheng H, Wu X, Feng M, et al. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction[J]. ACS Catalysis,2021,11(20):12673-12681. doi: 10.1021/acscatal.1c02319
    [119] Feng M, Wu X, Cheng H, et al. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction[J]. Journal of Materials Chemistry A,2021,9(42):23817-23827. doi: 10.1039/D1TA02833B
    [120] Mohanty B, Basu S, Jena B K. Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction[J]. Journal of Energy Chemistry,2022,70:444-471. doi: 10.1016/j.jechem.2022.02.045
    [121] Zhang J, Cai W, Hu F X, et al. Recent advances in single atom catalysts for the electrochemical carbon dioxide reduction reaction[J]. Chemical Science,2021,12(20):6800-6819. doi: 10.1039/D1SC01375K
    [122] Khakpour R, Farshadfar K, Dong S T, et al. Mechanism of CO2 electroreduction to multicarbon products over iron phthalocyanine single-atom catalysts[J]. Journal of Physical Chemistry C,2024,128(14):5867-5877. doi: 10.1021/acs.jpcc.3c08347
    [123] Lv Z, Wang C, Liu Y, et al. Improving CO2-to-C2 conversion of atomic CuFONC electrocatalysts through F, O-codrived optimization of local coordination environment [J]. Advanced Energy Materials, 2024. DOI: https://doi.org/10.1002/aenm.202400057.
    [124] Zhang Q, Guan J. Single-atom catalysts for electrocatalytic applications[J]. Advanced Functional Materials,2020,30(31):2000768. doi: 10.1002/adfm.202000768
    [125] Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials,2018,8(22):1800369. doi: 10.1002/aenm.201800369
    [126] Ren Y, Yu C, Tan X, et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives[J]. Energy & Environmental Science,2021,14(3):1176-1193.
    [127] Zhao X, Hu G, Chen G F, et al. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction[J]. Advanced Materials,2021,33(33):2007650. doi: 10.1002/adma.202007650
    [128] Li J, Chen S, Quan F, et al. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions[J]. Chem,2020,6(4):885-901. doi: 10.1016/j.chempr.2020.01.013
    [129] Tian Y, Chang B, Wang G, et al. Magnetron sputtering tuned “π back-donation” sites over metal oxides for enhanced electrocatalytic nitrogen reduction[J]. Journal of Materials Chemistry A,2022,10(6):2800-2806. doi: 10.1039/D1TA10273G
    [130] Guo X, Gu J, Lin S, et al. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts[J]. Journal of the American Chemical Society,2020,142(12):5709-5721. doi: 10.1021/jacs.9b13349
    [131] Chen X, Ong W J, Zhao X, et al. Insights into electrochemical nitrogen reduction reaction mechanisms: Combined effect of single transition-metal and boron atom[J]. Journal of Energy Chemistry,2021,58:577-585. doi: 10.1016/j.jechem.2020.10.043
    [132] Gu Y, Xi B, Tian W, et al. Boosting selective nitrogen reduction via geometric coordination engineering on single-tungsten-atom catalysts[J]. Advanced Materials,2021,33(25):2100429. doi: 10.1002/adma.202100429
    [133] Huang C X, Lv S Y, Li C, et al. Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for ammonia synthesis under ambient conditions[J]. Nano Research,2022,15(5):4039-4047. doi: 10.1007/s12274-021-4009-4
    [134] Zhao W, Zhang L, Luo Q, et al. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia[J]. ACS Catalysis,2019,9(4):3419-3425. doi: 10.1021/acscatal.8b05061
    [135] Zang W, Yang T, Zou H, et al. Copper single atoms anchored in porous nitrogen-doped carbon as efficient ph-universal catalysts for the nitrogen reduction reaction[J]. ACS Catalysis,2019,9(11):10166-10173. doi: 10.1021/acscatal.9b02944
    [136] Wang R, He C, Chen W, et al. Design strategies of two-dimensional metal-organic frameworks toward efficient electrocatalysts for N2 reduction: cooperativity of transition metals and organic linkers[J]. Nanoscale,2021,13(45):19247-19254. doi: 10.1039/D1NR06366A
    [137] Mukherjee S, Yang X, Shan W, et al. Atomically dispersed single Ni site catalysts for nitrogen reduction toward electrochemical ammonia synthesis using N2 and H2O[J]. Small Methods,2020,4(6):1900821. doi: 10.1002/smtd.201900821
    [138] Ma Y, Yang T, Zou H, et al. Synergizing Mo single atoms and Mo2C nanoparticles on CNTs synchronizes selectivity and activity of electrocatalytic N2 reduction to ammonia[J]. Advanced Materials,2020,32(33):2002177. doi: 10.1002/adma.202002177
    [139] Ma D, Zeng Z, Liu L, et al. Theoretical screening of the transition metal heteronuclear dimer anchored graphdiyne for electrocatalytic nitrogen reduction[J]. Journal of Energy Chemistry,2021,54:501-950. doi: 10.1016/j.jechem.2020.06.032
    [140] Ma D, Wang Y, Liu L, et al. Electrocatalytic nitrogen reduction on the transition-metal dimer anchored N-doped graphene: performance prediction and synergetic effect[J]. Physical Chemistry Chemical Physics,2021,23(6):4018-4029. doi: 10.1039/D0CP04843G
    [141] Lv X, Wei W, Huang B, et al. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation[J]. Nano Letters,2021,21(4):1871-1878. doi: 10.1021/acs.nanolett.0c05080
    [142] Ling C, Bai X, Ouyang Y, et al. Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions[J]. Journal of Physical Chemistry C,2018,122(29):16842-16847. doi: 10.1021/acs.jpcc.8b05257
    [143] Chen Z, Zhao J, Cabrera C R, et al. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction[J]. Small Methods,2019,3(6):1800368. doi: 10.1002/smtd.201800368
    [144] Zhang Z, Huang X, Xu H. Anchoring an Fe dimer on nitrogen-doped graphene toward highly efficient electrocatalytic ammonia synthesis[J]. ACS Applied Materials & Interfaces,2021,13(36):43632-43640.
    [145] Chen D, Chen Z, Zhang X, et al. Exploring single atom catalysts of transition-metal doped phosphorus carbide monolayer for HER: A first-principles study[J]. Journal of Energy Chemistry,2021,52:155-162. doi: 10.1016/j.jechem.2020.03.061
    [146] Wuerger T, Feiler C, Vonbun Feldbauer G B, et al. A first-principles analysis of the charge transfer in magnesium corrosion[J]. Scientific Reports,2020,10(1):15006. doi: 10.1038/s41598-020-71694-4
    [147] de Chialvo M R G, Chialvo A C. Kinetics of hydrogen evolution reaction with Frumkin adsorption: re-examination of the Volmer-Heyrovsky and Volmer-Tafel routes[J]. Electrochimica Acta,1998,44(5):841-851. doi: 10.1016/S0013-4686(98)00233-3
    [148] Yang J, Li W H, Tan S, et al. The electronic metal-support interaction directing the design of single atomic site catalysts: achieving high efficiency towards hydrogen evolution[J]. Angewandte Chemie-International Edition,2021,60(35):19085-19091. doi: 10.1002/anie.202107123
    [149] Yin X P, Wang H J, Tang S F, et al. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution[J]. Angewandte Chemie-International Edition,2018,57(30):9382-9386. doi: 10.1002/anie.201804817
    [150] Ramalingam V, Varadhan P, Fu H C, et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution[J]. Advanced Materials,2019,31(48):1903841. doi: 10.1002/adma.201903841
    [151] Kumar A, Bui V Q, Lee J, et al. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution[J]. Nature Communications,2021,12(1):6766. doi: 10.1038/s41467-021-27145-3
    [152] Zhang L, Wang Q, Si R, et al. New insight of pyrrole-like nitrogen for boosting hydrogen evolution activity and stability of Pt single atoms[J]. Small,2021,17(16):2004453. doi: 10.1002/smll.202004453
    [153] Yang Y, Qian Y, Li H, et al. O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution[J]. Science Advances,2020,6(23):eaba6586. doi: 10.1126/sciadv.aba6586
    [154] Song H, Wu M, Tang Z, et al. Single atom ruthenium-doped CoP/CDs nanosheets via splicing of carbon-dots for robust hydrogen production[J]. Angewandte Chemie-International Edition,2021,60(13):7234-7244. doi: 10.1002/anie.202017102
    [155] Zeng X, Shui J, Liu X, et al. Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties[J]. Advanced Energy Materials,2018,8(1):1701345. doi: 10.1002/aenm.201701345
    [156] Wang M J, Ji M, Zheng X, et al. Enhanced hydrogen evolution of single-atom Ru sites via geometric and electronic engineering: N and S dual coordination[J]. Applied Surface Science,2021,551:148742. doi: 10.1016/j.apsusc.2020.148742
    [157] Lai W H, Zhang L F, Hua W B, et al. General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting[J]. Angewandte Chemie-International Edition,2019,58(34):11868-11873. doi: 10.1002/anie.201904614
    [158] Gao X, Zhou Y, Liu S, et al. Single cobalt atom anchored on N-doped graphyne for boosting the overall water splitting[J]. Applied Surface Science,2020,502:144155. doi: 10.1016/j.apsusc.2019.144155
    [159] Zhu C, Shi Q, Feng S, et al. Single-atom catalysts for electrochemical water splitting[J]. ACS Energy Letters,2018,3(7):1713-1721. doi: 10.1021/acsenergylett.8b00640
    [160] Zhang Q, Duan Z, Li M, et al. Atomic cobalt catalysts for the oxygen evolution reaction[J]. Chemical Communications,2020,56(5):794-797. doi: 10.1039/C9CC09007J
    [161] Bai L, Hsu C S, Alexander D T L, et al. A cobalt-iron double-atom catalyst for the oxygen evolution reaction[J]. Journal of the American Chemical Society,2019,141(36):14190-9. doi: 10.1021/jacs.9b05268
    [162] Cao L, Luo Q, Chen J, et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nature Communications,2019,10:4849. doi: 10.1038/s41467-019-12886-z
    [163] Li Y, Wu Z S, Lu P, et al. High-valence nickel single-atom catalysts coordinated to oxygen sites for extraordinarily activating oxygen evolution reaction[J]. Advanced Science,2020,7(5):1903089. doi: 10.1002/advs.201903089
    [164] Lv X, Wei W, Wang H, et al. Holey graphitic carbon nitride (g-CN) supported bifunctional single atom electrocatalysts for highly efficient overall water splitting[J]. Applied Catalysis B-Environmental,2020,264:118521. doi: 10.1016/j.apcatb.2019.118521
    [165] Qiu H J, Du P, Hu K, et al. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-Air batteries[J]. Advanced Materials,2019,31(19):1900843. doi: 10.1002/adma.201900843
    [166] Du C, Gao Y, Wang J, et al. A new strategy for engineering a hierarchical porous carbon-anchored Fe single-atom electrocatalyst and the insights into its bifunctional catalysis for flexible rechargeable Zn-air batteries[J]. Journal of Materials Chemistry A,2020,8(19):9981-9990. doi: 10.1039/D0TA03457F
    [167] Luo F, Zhu J, Ma S, et al. Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable zinc-air batteries[J]. Energy Storage Materials,2021,35:723-730. doi: 10.1016/j.ensm.2020.12.006
    [168] Li X, Su Z, Zhao Z, et al. Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study[J]. Journal of Colloid and Interface Science,2022,607:1005-1013. doi: 10.1016/j.jcis.2021.09.045
    [169] Niu H, Wang X, Wang X, et al. Single-atom rhodium on defective g-C3N4: a promising bifunctional oxygen electrocatalyst[J]. ACS Sustainable Chemistry & Engineering,2021,9(9):3590-3599.
    [170] Chen D, Chen Z, Lu Z, et al. Transition metal-N4 embedded black phosphorus carbide as a high-performance bifunctional electrocatalyst for ORR/OER[J]. Nanoscale,2020,12(36):18721-18732. doi: 10.1039/D0NR03339A
    [171] Yang C, Wu Y, Wang Y, et al. Electronic properties of double-atom catalysts for electrocatalytic oxygen evolution reaction in alkaline solution: a DFT study[J]. Nanoscale,2021,14(1):187-195.
    [172] Wu J, Xiong L, Zhao B, et al. Densely populated single atom catalysts[J]. Small Methods,2020,4(2):1900540. doi: 10.1002/smtd.201900540
    [173] Hai X, Xi S B, Mitchell S, et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries[J]. Nature Nanotechnology,2022,17(2):174-181. doi: 10.1038/s41565-021-01022-y
  • 加载中
图(14)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  65
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 录用日期:  2024-05-10
  • 修回日期:  2024-05-09
  • 网络出版日期:  2024-05-17
  • 刊出日期:  2024-06-15

目录

    /

    返回文章
    返回