留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光引发合成聚丙烯腈研究

李立山 刘沛沛 苏亚男 张兴华 张寿春

李立山, 刘沛沛, 苏亚男, 张兴华, 张寿春. 光引发合成聚丙烯腈研究. 新型炭材料, 2021, 36(2): 429-434. doi: 10.19869/j.ncm.1007-8827.20190031
引用本文: 李立山, 刘沛沛, 苏亚男, 张兴华, 张寿春. 光引发合成聚丙烯腈研究. 新型炭材料, 2021, 36(2): 429-434. doi: 10.19869/j.ncm.1007-8827.20190031
LI Li-shan, LIU Pei-pei, SU Ya-nan, ZHANG Xing-hua, ZHANG Shou-chun. Preparation and characterization of polyacrylonitrile for carbon fiber manufacture by photo-induced polymerization. New Carbon Mater., 2021, 36(2): 429-434. doi: 10.19869/j.ncm.1007-8827.20190031
Citation: LI Li-shan, LIU Pei-pei, SU Ya-nan, ZHANG Xing-hua, ZHANG Shou-chun. Preparation and characterization of polyacrylonitrile for carbon fiber manufacture by photo-induced polymerization. New Carbon Mater., 2021, 36(2): 429-434. doi: 10.19869/j.ncm.1007-8827.20190031

光引发合成聚丙烯腈研究

doi: 10.19869/j.ncm.1007-8827.20190031
基金项目: 国家自然科学基金(U1510119);中科院重点部署项目(CXJJ-16M127);中科院青年创新促进会优秀会员资助(2012140);山西省重点研发计划项目(202003D111002);中国科学院战略性先导科技专项(A类) 子课题(XDA17040519); 山西省重点研发计划(201803D121042)
详细信息
    作者简介:

    李立山,硕士研究生. E-mail:18335164300@163.com

    通讯作者:

    张兴华,副研究员. E-mail:zhangxh@sxicc.ac.cn

  • 中图分类号: TQ342+.74

Preparation and characterization of polyacrylonitrile for carbon fiber manufacture by photo-induced polymerization

Funds: National Natural Science Foundation of China (U1510119); Key Development Projects for Chinese Academy of Sciences (CXJJ-16M127); Youth Innovation Promotion Association Funds for Chinese Academy of Sciences (2012140); Key R & D project of Shanxi Province (202003D111002); Special Project of Strategic Leading Science and Technoligy of Chinese Academy of Sciences(A) Sub Topic (XDA17040519), and Key R & D Projects of Shanxi Province (201803D121042)
More Information
  • 摘要: 调控聚丙烯腈分子量及其分布一直是炭纤维制备的重要问题。本文以丙烯腈为反应单体,二甲基亚砜为溶剂,采用光引发方式结合溶液聚合方法研究聚丙烯腈的合成。分别用乌氏黏度计和凝胶色谱仪测定了聚合物的分子量和分子量分布,并用红外光谱仪以及核磁共振仪对聚合物的分子结构进行了分析。结果表明,不含化学引发剂的光引发溶液聚合方法所合成的产物为聚丙烯腈;随着反应温度的不断上升或者单体浓度的持续增加,转化率和黏均分子量均增大;与传统化学引发剂引发的丙烯腈自由基聚合相比,采用光引发丙烯腈聚合体系,能够大幅度降低聚合物的分子量分布指数,制得分子量高、分布指数较窄的聚丙烯腈。
  • FIG. 577.  FIG. 577.

    FIG. 577..  FIG. 577.

    图  1  聚丙烯腈的光引发制备示意图

    Figure  1.  Schematic diagram of photo-induced acrylonitrile polymerization.

    图  2  丙烯腈光引发聚合产物的红外吸收光谱图

    (a. 60 ℃/20%/6 h; b. 20 ℃/20%/12 h; c. 40 ℃/20%/6 h; d. 60 ℃/10%/6 h; e. 60 ℃/25%/6 h).

    Figure  2.  Infrared spectra of photo-induced polymeriaztion products from acrylonitrile.

    图  3  丙烯腈光引发聚合产物的13C-NMR谱图

    Figure  3.  13C-NMR spectrum of photo-induced polymerization products from acrylonitrile.

    图  4  聚合温度对转化率的影响

    Figure  4.  The effect of temperature on the monomer conversion.

    图  5  聚合温度对黏均分子量的影响

    Figure  5.  The effect of temperature on the viscosity average molecular weight.

    图  6  单体浓度对转化率的影响

    Figure  6.  The effect of the monomer concentration on the conversion.

    图  7  单体浓度对黏均分子量的影响

    Figure  7.  The effect of the monomer concentration on the viscosity average molecular weight.

    图  8  单体浓度对分子量及分子量分布的影响

    Figure  8.  The effect of concentration on the molecular weight and its polydispersity index.

  • [1] 陈祥宝. 聚合物基复合材料手册[M]. 北京: 化学工业出版, 2004: 121-309.

    Chen X B. Polymer Matrix Composites Handbook[M]. Beijing: Chemical industry press, 2004: 121-309.
    [2] 贺福, 王茂章. 炭纤维及其复合材料[M]. 北京: 科学出版社, 1995: 1-65.

    He F, Wang M Z. Carbon Fiber and Its Composites[M]. Beijing: Science press, 1995: 1-65.
    [3] 王鹏. PAN/DMSO溶液的流变性能及干湿纺可防性能研究[D]. 东华大学硕士学位论文, 2005.

    Wang P. Study on the rheological properties of PAN/DMSO solution and the defensibility of dry and wet spinning[D]. Dong Hua University, 2005.
    [4] Lin X, Wang C G, Yu M J, et al. The effect of molecular weight on the structure and properties of PAN precuesor[J]. Adv Mater Res,2013,781:2609-2613.
    [5] Chung DDL. Carbon Fiber and Composites[M]. Butterworth-Heinemann, Boston, 1994: 1-121.
    [6] Ismar E, Sarac A S. Synthesis and characterization of poly (acrylonitrile-co-acrylic acid) as precursor of carbon nanofibers[J]. Polymers for Advanced Technologies,2016,27(10):1383-1388. doi: 10.1002/pat.3807
    [7] Kaur J, Millington K, Smith S. Producing high-quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review[J]. Journal of Applied Polymer Science,2016,133(38):1-14.
    [8] Krishnan G S, Thomas P, Murali N. Synthesis, characterization, and thermo-mechanical properties of poly(acrylonitrile-co-2,3-dimethyl-1,3-butadiene-co-itaconic acid) as carbon fibre polymer precursors[J]. RSC Adv,2016,6(8):6182-6190. doi: 10.1039/C5RA24185E
    [9] El-Sawy, Naeem M. Radiation-induced graft polymerization of acrylonitrile onto isotactic polypropylene and poly(tetrafluoroethylene–ethylene) copolymer films[J]. Polymer international,1996,40(3):193-199. doi: 10.1002/(SICI)1097-0126(199607)40:3<193::AID-PI546>3.0.CO;2-F
    [10] Zou J T, Wang Y S, Pang W M, et al. Radiation-induced inclusion polymerization of acrylonitrile in urea canals: Toward synthesis of completely isotactic polyacrylonitrile with controlled molecular weight[J]. Macromolecules,2013,46(5):1765-1771. doi: 10.1021/ma3026089
    [11] Norman G, MatyjaszewskiK, PaikH, et al. Synthesis of well-defined polyacrylonitrile by atom transfer radical polymerization[J]. Macromolecules,1997,30:6398-6400. doi: 10.1021/ma9706384
    [12] Jia Li, Chiantore O, Mendichi RMA, et al. López-quintela. Synthesis of polyacrylonitrile-block-polystyrene copolymers by atom transfer radical polymerization[J]. Macromol Chem Phys,2005,206:1382-1388. doi: 10.1002/macp.200500159
    [13] Mah S, Park S, Nam H, et al. Photopolymerization of acrylonitrile in concentrated aqueous zinc halide solutions[J]. Journal of Applied Polymer Science,2000,77:2588-2594. doi: 10.1002/1097-4628(20000919)77:12<2588::AID-APP50>3.0.CO;2-D
    [14] Wang G X, Lu M, Hou ZH, et al. Photo-induced single-electron transfer living radical polymerization (SET-LRP) of MMA in the presence of ZnO[J]. Iranian Polymer Journal,2015,24(5):359-365. doi: 10.1007/s13726-015-0328-1
    [15] Gaylord N G, Dixit S, Patnaik B K, et al. Photochemically initiated copolymerization of styrene with methyl methacrylate and acrylonitrile in presence of triethylaluminum[J]. Polymer letters,1971,9:927-930. doi: 10.1002/pol.1971.110091211
    [16] Jo SM, Matyjaszewski K, Paik H, et al. An investigation into the CuX/2,2-bipyridine (X = Br or Cl) mediated atom transfer radical polymerization of acrylonitrile[J]. Macromolecules,1999,32:6431-6438. doi: 10.1021/ma9905526
    [17] Li J, Ding C, Zhang Z, et al. Photo-induced reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile at ambient temperature: A simple system to obtain high-molecular-weight polyacrylonitrile[J]. Reactive and Functional Polymers,2017,113:1-5. doi: 10.1016/j.reactfunctpolym.2017.02.003
    [18] Tang W, Dong H, Matyjaszewski K. Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP[J]. Macromolecules,2007,40:2974-2977. doi: 10.1021/ma070424e
    [19] Lamson M, Kopeć M, Ding H, et al. Synthesis of well-defined polyacrylonitrile by ICAR ATRP with low concentrations of catalyst[J]. Polym Sci, Part A: Polym Chem,2016,54:1961-1968. doi: 10.1002/pola.28055
    [20] Hou C, Guo Z, LIU J, et al. Atom-transfer radical polymerization of acrylonitrile under microwave irradiation[J]. Journal of Applied Polymer Science,2007,104(3):1382-1385. doi: 10.1002/app.24140
    [21] 蒋佳玉. 基于可见光引发的丙烯腈自由基聚合体系研究[D]. 江南大学硕士学位论文, 2017.

    Jiang J Y. Study on free radical polymerization of acrylonitrile based on visible light[D]. Jiangnan university, 2017.
    [22] 何斌鸿. 光照射下丙烯腈活性自由基聚合的研究[J]. 湖南理工学院学报,2015,28(1):62-66.

    He B H. Study on active radical polymerization of acrylonitrile under light irradiation[J]. Hunan University of Science and Technology,2015,28(1):62-66.
    [23] Pan X, Lamson M, Yan J, et al. Photoinduced metal-free atom transfer radical polymerization of acrylonitrile[J]. ACS Macro Letters,2015,4(2):192-196. doi: 10.1021/mz500834g
    [24] Chen M, Zhong M, Johnson J A. Light-controlled radical polymerization: Mechanisms, methods, and applications[J]. Chem Rev,2016,116(17):10167-10201. doi: 10.1021/acs.chemrev.5b00671
    [25] 李鑫, 羊梦诗, 徐灿, 等. 丙烯腈单体自由基反应及光谱分析的研究[J]. 光谱学与光谱分析,2014,34(9):2331-2336. doi: 10.3964/j.issn.1000-0593(2014)09-2331-06

    Li X, Yang M S, Xu C, et al. Study on free radical reaction and spectrum analysis of acrylonitrile monomer[J]. Spectroscopy and Spectral Analysis,2014,34(9):2331-2336. doi: 10.3964/j.issn.1000-0593(2014)09-2331-06
    [26] Frank E, Steudle L M, Ingildeev D, et al. Carbon fibers: Precursor systems, processing, structure, and properties[J]. Angew Chem Int Ed Engl,2014,53(21):5262-5299. doi: 10.1002/anie.201306129
    [27] Bol’bit N M, Dubova E A, Duflot V R, et al. The effect of the polymerization mechanism on the microstructure of chains and the rheology of polyacrylonitrile solutions[J]. Polymer Science Series A,2011,53(4):289-295. doi: 10.1134/S0965545X11040018
    [28] Kuz’min N I, Makarov A V, Podol’skaya T I, et al. Rheological properties of concentrated solutions of high-molecular-weight polyacrylonitrile in dimethyl sulfoxide[J]. Fibre Chemistry,2011,43(1):104. doi: 10.1007/s10692-011-9314-3
    [29] Zhang S C, Wen Y F, Yang Y G, et al. Effect of itaconic acid content on the thermal behavior ofpolyacrylonitrile[J]. New Carbon Materials,2003,18(4):315-318.
    [30] Morris E A, Weisenberger M C, Bradley S B, et al. Synthesis, spinning, and properties of very high molecular weight poly (acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber[J]. Polymer,2014,55(25):6471-6482. doi: 10.1016/j.polymer.2014.10.029
  • 加载中
图(9)
计量
  • 文章访问数:  1136
  • HTML全文浏览量:  714
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-06
  • 修回日期:  2019-05-17
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回