Abstract:
Petroleum coke-based activated carbons (ACs) were modified through H
2 reduction and HNO
3 oxidation. Pore structures and surface chemistry of the ACs were characterized by N
2 adsorption and X-ray photoelectron spectroscopy. The Brunauer-Emmett-Teller surface areas of ACs were slightly decreased after such treatment. Although surface oxygen groups (especially carbonyl groups) were generated when ACs were treated by HNO
3, electric double layer capacitance, internal resistance (IR), equivalent series resistance (ESR), and selfdischarge of an AC electrode exhibited a remarkable increase. At the same time, the number of surface oxygen groups of ACs modified by H
2 remarkably decreased and the capacitance was markedly increased , while IR, ESR, and self-discharge decreased. This reduction modification of ACs is beneficial in improving electrochemical properties and probably provides suitable pores for electrolyte to penetrate electrochemically.