留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
高级检索
优先发表栏目展示本刊经同行评议确定正式录用的文章,这些文章目前处在编校过程,尚未确定卷期及页码,但可以根据DOI进行引用。
炭载单原子催化剂在电化学反应中的应用
WANG Yi-cheng, MA Xiao-bo, , WANG Chen-xu, LI Yang, YANG Cheng-long, WANG Zhe-fan, WANG Chao, HU Chao, ZHANG Ya-ting
当前状态:  doi: 10.1016/S1872-5805(24)60863-2
摘要(43) HTML(13) PDF(9)
摘要:
Recent advances in the use of carbon-supported single-atom catalysts (SACs) for electrochemical reactions are comprehensively reviewed. The development and advantages of carbon-supported SACs are briefly introduced, followed by a detailed summary of the synthesis strategies used, including vapor phase transport, high temperature pyrolysis and wet chemical methods. Advanced characterization techniques for carbon-supported SACs are also reviewed. The use of carbon-supported SACs in different fields, such as the oxygen reduction reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction are summarized. Special emphasis is given to the modification strategies used to enable carbon-supported SACs to have an excellent electrocatalytic performance. Finally, the prospects and challenges associated with using carbon-supported SACs for electrochemical reactions are discussed.
磺酰氯促进金属氯化物插层石墨以实现高效钠存储
LAN Shu-qin, REN Wei-cheng, WANG Zhao, YU Chang, YU Jin-he, LIU Ying-bin, XIE Yuan-yang, ZHANG Xiu-bo, WANG Jian-jian, QIU Jie-shan
当前状态:  doi: 10.1016/S1872-5805(24)60851-6
摘要(41) HTML(15) PDF(13)
摘要:
Metal chloride-intercalated graphite with excellent conductivity and a large interlayer spacing is highly desired for use in sodium ion batteries. However, halogen vapor is usually indispensable in initiating the intercalation process, which makes equipment design and experiments challenging. In this work, SO2Cl2 was used as a chlorine generator to intensify the intercalation of BiCl3 into graphite (BiCl3-GICs), which avoided the potential risks, such as Cl2 leakage, in traditional methods. The operational efficiency in experiment was also improved. After the reaction of SO2Cl2, BiCl3, and graphite at 200 °C for 20 h, the synthesized BiCl3-GICs had a large interlayer spacing (1.26 nm) and a high amount of BiCl3 intercalation (42%), which gave SIBs a high specific capacity of 213 mAh g1 at 1 A g1 and an excellent rate performance (170 mAh g1 at 5 A g1). In-situ Raman spectra revealed that the electronic interaction between graphite and intercalated BiCl3 is weakened during the first discharge, which is favorable for the sodium storage. This work broadly enables the increased intercalation of other metal chloride-intercalated graphites, offering possibilities for developing advanced energy storage devices.
硼氮共掺杂海藻酸钠基多孔炭及其快速高效储锌
LU Ya-ping, WANG Hong-xing, LIU Lan-tao, PANG Wei-wei, CHEN Xiao-hong
当前状态:  doi: 10.1016/S1872-5805(24)60847-4
摘要(35) HTML(15) PDF(9)
摘要:
In recent years, zinc-ion hybrid capacitors (ZIHCs) have attracted increasing attention due to their environmental friendliness and excellent electrochemical properties. However, their performance is mainly limited by the electrochemical performance of the cathode, so it is necessary to develop an advanced cathode material. In this work, the N, B co-doped sodium alginate-based porous carbon (NBSPC) was prepared by one-step co-carbonization using sodium alginate as the matrix and NH4B5O8 as the N and B source. This N, B co-doping strategy improves the pore structure of the carbon materials and increases the number of surface functional groups, greatly improving the capacitive behavior of the raw materials and thus improving their electrochemical performance. When used as the cathode in ZIHCs, the NBSPC had an excellent rate performance (85.4 mA h g1 even at ultra-high current density of 40 A g1) and cycling stability (15 000 cycles at 20 A g1 with a capacity retention rate of 94.5%).
石油焦炭基储钠材料层间距扩大闭孔研究
ZHUANG Hong-kun, LI Wen-cui, HE Bin, LV Jia-he, WANG Jing-song, SHEN Ming-yuan, LU An-hui
当前状态:  doi: 10.1016/S1872-5805(24)60858-9
摘要(28) HTML(24) PDF(8)
摘要:
Petroleum coke (PC) is a valuable precursor for sodium-ion battery (SIB) anodes due to its high carbon content and low cost. The regulation of the microcrystalline state and pore structure of the easily-graphitized PC-based carbon is crucial for creating abundant Na+ storage sites. Here we used a precursor transformation strategy to increase the carbon interlayer spacing and generate abundant closed pores in PC-based carbon, significantly increasing its Na+ storage capacity in the plateau region. This was achieved by introducing a large number of oxygen functional groups through mixed acid treatment and then using high-temperature carbonization to decompose the oxygen functional groups and rearrange the carbon microcrystallites, resulting in a transition from open to closed pores. The optimized samples provide a large reversible capacity of 356.0 mAh g1 at 0.02 A g1, of which approximately 93% is below 1.0 V. Galvanostatic intermittent titration and in-situ X-ray diffraction analysis indicate that the sodium storage capacity in the low voltage plateau region involves a joint contribution of interlayer insertion and closed pore filling processes. This study presents a comprehensive method for the development of high-performance carbon anodes using low-cost and highly aromatic precursors.
可控构建分级多孔炭载CoP纳米颗粒催化剂用于高效氧还原反应
YAN Xiao-li, WANG Kui, HAO Shu-wei, ZHOU Guang-da, YANG Hao-wei, ZHANG Hua, GUO Jun-jie
当前状态:  doi: 10.1016/S1872-5805(24)60848-6
摘要(82) HTML(48) PDF(21)
摘要:
Exploring cost-efficient and high-efficient noble metal-free catalysts for the oxygen reduction reactions (ORRs) involved in sustainable energy devices remains a great challenge. Transition-metal phosphides supported on heteroatom-doped carbons have shown potential as alternative candidates for precious metals because of their tunable electronic structures and higher catalytic performance. Phosphating was used to construct CoP nanoparticles (NPs) anchored on a nitrogen-doped porous carbon framework (CoP@NC) from Co NPs loaded on NC, using PH3 gas released from NaH2PO2 during heat treatment. The dodecahedral structure of Co NPs was retained in their transformation to CoP NPs. The CoP@NC electrocatalyst shows remarkable ORR activity with a half-wave potential up to 0.92 V under alkaline conditions, which is attributed to the combined coupling between the well dispersed CoP nanoparticles on the nitrogen-doped carbon and the efficient mass transport in the porous structure. Zinc-air batteries assembled with the CoP@NC electrocatalyst as a cathode have a high open-circuit voltage of 1.51 V and power density of 210.1 mW cm2. This work provides a novel strategy to develop low-cost catalysts with excellent ORR performance to promote their practical use in metal-air batteries.
可控生长石墨炔/氢氧化钴异质界面用于高效产氯
LIU Hui-min, LUAN Xiao-yu, YAN Jia-yu, BU Fan-le, XUE Yu-rui, LI Yu-liang
当前状态:  doi: 10.1016/S1872-5805(24)60861-9
摘要(36) HTML(15) PDF(3)
摘要:
The chlor-alkali process plays a key and irreplaceable role in the chemical industry because of its use in various industrial processes. However, the low selectivity and efficiency of the reported chlorine evolution reaction (CER) electrocatalysts obviously hinder its practical use. We report a simple method for the controlled growth of high-performance CER electrocatalysts by first growing cobalt hydroxide on the surface of carbon cloth, followed by the in-situ growth of graphdiyne (GDY/Co(OH)2). As expected, the as-synthesized catalyst has a small overpotential of only 83 mV at 10 mA cm2, a maximum Faradaic Efficiency (FE) of 91.54%, and a high chlorine yield of 157.11 mg h1 cm2 in acidic simulated seawater. Experimental results demonstrate that the in-situ growth of GDY on the Co(OH)2 surface leads to the formation of heterointerfaces with strong electron transfer between GDY and Co atoms, resulting in a higher conductivity, larger active specific surface area and more active sites, thereby improving the overall electrocatalytic selectivity and efficiency.
双金属电催化CO2还原催化剂的合成、表征和机理研究进展
LIAO Yin-li, HUANG Heng-bo, ZOU Ru-yu, SHEN Shu-ling, LIU Xin-juan, TANG Zhi-hong
当前状态:  doi: 10.1016/S1872-5805(24)60860-7
摘要(41) HTML(21) PDF(5)
摘要:
The electrocatalytic CO2 reduction reaction (CO2RR) is an environmentally friendly way to convert CO2 into valuable chemicals. However, CO2 conversion is a complex process, which contains 2, 4, 6, 8, and 12 electron transfer processes. It is very important to develop efficient catalysts to precisely control the number of electron transfers for the chemicals required. Single-metal catalysts have some deficiencies, including slow reaction kinetics, low product selectivity and inadequate stability. In response to these challenges, bimetallic catalysts have received significant attention owing to their unique structure and improved performance. The introduction of secondary metals alters the catalyst’s electronic structure, and creates novel active sites, as well as optimizing their interaction with the intermediates. This review provides a comprehensive account of atomically distributed bimetals based on carbon materials and non-atomic distributed bimetals such as alloys and heterostructures, including their synthesis methods, characterization, and the outcomes of different catalysts. Catalytic mechanisms of different bimetallic catalysts are proposed and challenges encountered in the CO2RR are considered.
氧化石墨烯和石墨烯的高浓度加工、致密化及应用
WANG Yue, LUO Jia-liang, LU Zhe-hong, DI Jun, WANG Su-wei, JIANG Wei
当前状态:  doi: 10.1016/S1872-5805(24)60856-5
摘要(22) HTML(16) PDF(1)
摘要:
Dense graphene assemblies, composed of tightly stacked graphene sheets, have outstanding chemical stability and excellent mechanical, thermal, and electrical properties. They also do not have the problems of low density, low mechanical strength, poor electrical conductivity, or poor thermal conductivity found in porous graphene aerogels, making them ideal materials for future portable electronic and smart devices. We summarize work on high-concentration graphene oxide (GO) and graphene dispersions prepared by mechanical dispersion, evaporation concentration, centrifugal concentration, and liquid phase exfoliation, as well as two-dimensional (2D) dense graphene-based films and three-dimensional (3D) dense graphene-based structures prepared by vacuum-assisted filtration, interfacial self-assembly, and press-forming, and evaluate the advantages and disadvantages of each method. The applications of dense graphene-based assemblies in energy storage, thermal management, and electromagnetic interference (EMI) shielding are summarized. Finally, their challenges and prospects in future research are outlined. This review provides a reference for exploring and developing their large-scale, cost-effective manufacture and use.
废旧三元锂电池石墨负极电化学除杂及其性能研究
张锐, 田勇, 张维丽, 宋佳音, 闵杰, 庞博, 陈建军
当前状态:  doi: 10.1016/S1872-5805(24)60843-7
摘要(140) HTML(63) PDF(20)
摘要:
随着新能源汽车迅速发展,动力锂离子电池应用越来越广泛,大量锂电池也迎来退役高峰期,废旧锂电池的回收综合利用引起各国高度关注。废旧锂电池石墨负极层状结构基本未变化,因此回收时不需高温石墨化,只需关注其内部杂质的去除。本文将废旧石墨负极进行热处理、超声分离和酸浸处理后,创新性地采用电化学处理将内部金属杂质深度去除。对比不同回收阶段的石墨,发现石墨中有机杂质的存在会严重影响各项电化学性能,微量Cu、Fe等无机杂质的存在对初始放电比容量影响不大,但会降低石墨的循环稳定性。最终回收的石墨内部主要金属杂质含量低于20 mg/kg,在0.1 C倍率下放电比容量达到358.7 mAh/g,循环150圈后容量保持率为95.85%。对比已报道的废旧石墨回收方法,此方法可深度去除石墨负极内部杂质,解决了目前酸碱用量大、除杂不彻底、能耗高等问题,回收再生石墨负极电化学性能较好,为废旧锂电池石墨负极提供了一条新的回收再生路径。
石墨炔在水系离子电池中的研究进展
徐显敏, 封文聪, 任静柯, 罗雯
当前状态:  doi: 10.1016/S1872-5805(24)60852-8
摘要(102) HTML(25) PDF(20)
摘要:
石墨炔(Graphdiyen,GDY)是一种全新的炭材料,具有特殊的炭杂化排列方式、独特的化学性质和电子结构以及独特的孔隙结构等优点,在电化学储能领域具有良好的应用前景。新兴的水系离子电池具有低成本和高安全性等优点,然而,高性能电极材料的开发、新型隔膜体系的设计以及稳定界面的策略等仍是水系离子电池面临的主要挑战。石墨炔在负极保护、正极包覆、隔膜设计以及稳定界面pH值等方面,可以改善离子传输与界面沉积行为、电解液不稳定等问题。特别是石墨炔自下而上的分子结构设计策略使其具有易修饰、掺杂的特点,改性的石墨炔类似物具有更加优异的性能,拓宽了其在水系离子电池中的应用。本文系统综述了石墨炔的结构与性质以及合成方法,特别对石墨炔在水系离子电池中的研究进行了总结。此外,对石墨炔在水系离子电池中应用时仍存在的问题与挑战进行了探讨,对石墨炔在水系离子电池中的发展进行了展望。
氮掺杂构型对超级电容器高频响应的影响机制研究
FAN Ya-feng, YI Zong-lin, ZHOU Yi, XIE Li-jing, SUN Guo-hua, WANG Zhen-bing, Huang Xian-hong, SU Fang-yuan, CHEN Cheng-meng
当前状态:  doi: 10.1016/S1872-5805(24)60849-8
摘要(27) HTML(13) PDF(5)
摘要:
Nitrogen doping strategy has been widely used to enhance the performance of carbon electrodes in supercapacitors, particularly in terms of high-frequency response. However, the charge storage and ion response mechanisms of different nitrogen dopants at high frequencies are still unclear. In this study, we employ carbonized melamine foam with an open surface structure as a simplified model electrode material, enabling a comprehensive analysis of their impact on the ionic response behavior of high-frequency supercapacitors. Through a combination of experiments and first-principles calculations, we uncover that pyrrolic nitrogen, characterized by a higher adsorption energy, enhances the charge storage capacity of the electrode at high frequencies. On the other hand, graphitic nitrogen, with a lower adsorption energy, promotes rapid ion response. Furthermore, we propose the use of adsorption energy as a practical descriptor for electrode/electrolyte design in high-frequency applications, offering a more universal approach for optimizing the performance of N-doped carbon materials. This research contributes to the advancement of high-frequency supercapacitor technology and provides guidance for the development of improved N-doped carbon materials.
含氮/氯芳烃制备高性能合成沥青
ZHANG Yu-kun, LIN Xiong-chao, GAO Hong-feng, XI Wen-shuai, WANG Cai-hong, WANG Yong-gang
当前状态:  doi: 10.1016/S1872-5805(24)60864-4
摘要(11) HTML(3) PDF(2)
摘要:
Preparation of synthetic pitch using aromatic monomers could easily regulate the oriented structure at molecular level, which is conducive to the fabrication of high-performance carbon fiber. In this study, the isotopically synthetic pitch was successfully prepared using N- and Cl-bearing aromatic hydrocarbon precursors by halogen-induced method. The halogenation enhanced synthetic process was systematically verified by investigating the structural variation under different synthetic conditions; and the reaction mechanism was thoroughly probed for preparation of high-performance carbon fibers. The result shows that the pyridine N in quinoline has strong electrophilic function, which is found be the effective active site to induce the polymerization reaction by coupling with Cl-bearing aromatic hydrocarbons. The mutual reaction among such free radicals would cause strong homopolymerization and oligomerization. Higher synthesis temperature and longer retention time are beneficial to increase the polymerization degree and thus elevate the softening point of synthetic pitch. Moreover, linear molecular structure was formed by the designated Cl and methyl substitution process, which was available for the preparation of high spinnable pitch. Consequently, a high-quality spinnable pitch with a softening point of 258.6 °C and as-prepared carbon fiber with a tensile strength of 1163.82 MPa was obtained. This study is expected to provide a relatively simple and safe method for the preparation of high-quality spinnable pitch.
基于碳质材料的Z型和S型异质结光催化清洁能源的综述
Sahil Rana, Amit Kumar, WANG Tong-tong, Gaurav Sharma, Pooja Dhiman, Alberto García-Penas
当前状态:  doi: 10.1016/S1872-5805(24)60857-7
摘要(35) HTML(11) PDF(3)
摘要:
Carbonaceous materials including carbon nanotubes/nanofibers, graphene, graphene oxide, reduced graphene oxide, graphyne, graphdiyne, carbon quantum dots and fullerenes have gained considerable attention in the recent years for their unique properties such as high conductivity, excellent stability and biocompatibility. The integration of these carbonaceous materials into Z-scheme and S-scheme heterojunctions has emerged as a transformative strategy to enhance the photocatalytic efficiency for energy conversion applications. This review delves into the fundamental principles of clean energy generation such as photocatalytic H2 generation and CO2 reduction, elucidating their respective mechanisms and advantages. Furthermore, various types of carbonaceous materials, their synthesis and construction of Z-scheme and S-scheme heterojunctions are discussed emphasizing their role in promoting charge separation, reducing recombination losses and extending the spectral response range. With the focus on solar fuel production, the recent advancements in carbonaceous based Z-scheme and S-scheme heterojunctions are discussed and summarized for photocatalytic H2 generation and CO2 reduction. Lastly, the current bottlenecks and challenges in the field of carbonaceous based photocatalysts are discussed with the valuable insights for future development in this particular field.
Photodetectors based on graphene/molybdenum dichalcogenide van der Waals heterostructure: A review
ZHANG Xin-hua, LIU Wei-di, GONG You-pin, LIU Qing-feng, CHEN Zhi-gang
当前状态:  doi: 10.1016/S1872-5805(24)60853-X
摘要(80) HTML(21) PDF(18)
摘要:
Graphene is widely used in photodetection owing to its high carrier mobility and wide spectral absorption range. However, the high dark current due to its low light absorption severely limits the performance of photodetection. Molybdenum dihalide (MoX2, X= S, Se and Te) has a high absorption coefficient, which can compensate high dark current in graphene-based photodetectors and result in outstanding photoelectronic properties of photodetectors based on graphene/MoX2 van der Waals heterostructure (vdWH). In this review, we firstly review working principles, performance indicators, and structures of photodetectors. After that, the significance of graphene/MoX2 vdWH photodetectors are highlighted from a material fundamental perspective. Preparation methodologies and performance enhancement strategies of graphene/MoX2 vdWH photodetectors are summarized. In the end, we discuss the current challenges and future directions of the graphene/MoX2 vdWH photodetectors. This review will guide the design of high-performance vdWH photodetectors.
催化法制备中间相沥青的研究进展
MA Zi-hui, YANG Tao, SONG Yan, CHEN Wen-sheng, DUAN Chun-feng, SONG Huai-he, TIAN Xiao-dong, GONG Xiang-jie, LIU Zheng-yang, LIU Zhan-jun
当前状态:  doi: 10.1016/S1872-5805(24)60862-0
摘要(49) HTML(17) PDF(4)
摘要:
Mesophase pitch, due to its high purity and orientation, is a superior precursor for high-performance carbon materials. However, the preparation of top-notch mesophase pitch faces challenges. Catalytic polycondensation at low temperature is more favorable to synthesize mesophase pitch which circumvents the high-temperature free radical reaction of other thermal polycondensation approaches. Besides, the reaction is gentle and easily controlled. It has the potential to significantly improve the yield of mesophase pitch and easily introduce the naphthenic characteristics into the molecules, hence, catalytic polycondensation is a preferentially recommended methodology to synthesize highly spinnability mesophase pitch. This paper furnishes a synopsis of the selection pretreatment of raw materials to prepare diverse mesophase pitches, and explains the reaction mechanism and associated research advancements of different catalytic systems in recent years. Ultimately, how to manufacture high-quality mesophase pitch by employing a catalyst-promoter system is summarized and prospected, it is expected to present original concepts and dependable theoretical direction for the design of high-quality pitch molecular in the future.
PES-C增韧E51/DETDA环氧树脂及其炭纤维复合材料的研究
WU Rong-peng, ZHANG Xing-hua, WEI Xing-hai, JING De-qi, SU Wei-guo, ZHANG Shou-chun
当前状态:  doi: 10.1016/S1872-5805(23)60741-3
摘要(211) HTML(130) PDF(51)
摘要:
A toughener that can effectively improve the interlaminar toughness in carbon fiber composites even with a low dosage is crucial for various applications and the pursuit of such, in worthwhile. In this paper, the toughening effect of phenolphthalein-based poly (ether sulfone) (PES-C) on E51/ DETDA epoxy and its carbon fiber composites (CFCs) was investigated. The SEM results showed that PES-C/epoxy blends formed sea-island phase and bicontinuous phase structure, associated with reaction-induced phase separation. After adding 15 g m−2 PES-C, the glass transition temperature (Tg) of the blends was increased by 51.5 °C. Meanwhile, the flexural strength, impact strength and fracture toughness of the blends were improved by 41.1%, 186.2% and 42.7%, respectively. These improvements could be attributed to the phase separation structure of the PES-C/epoxy system. Moreover, PES-C film was used to improve the mode-II fracture toughness (GIIC) of CFCs. GIIC value of the 7 μm PES-C film toughened laminate was improved by 80.3% compared to that of the control laminate. The increase in GIIC could be attributed to cohesive failure and plastic deformation in the interleaving region.
高石墨化度多孔炭的制备及其乙烷/乙烯分离性能
刘汝帅, 唐帆, 史晓东, 郝广平, 陆安慧
当前状态:  doi: 10.1016/S1872-5805(24)60859-0
摘要(35) HTML(12) PDF(6)
摘要:
乙烷(C2H6)与乙烯(C2H4)的高效分离对于制备聚合物级C2H4至关重要,需要开发选择性高和稳定性好的C2H6/C2H4吸附剂。本文以酚醛树脂为前驱体,FeCl3为铁源,通过在室温下聚合及800 ºC下炭化的方法制备了高石墨化度多孔炭GC-800。利用VASP计算证实了石墨化的多孔炭表面与C2H6分子间的结合能更高。石墨化度的增加可以有效提高多孔炭对C2H6的吸附能力,但高温下Fe的催化石墨化过程会破坏多孔炭的微孔结构,从而降低C2H6/C2H4的分离能力。通过调控炭化温度,实现了对多孔炭的石墨化度与孔隙结构的协同优化。拉曼光谱和XPS的数据分析表明,GC-800具有高的石墨化度,且sp2 C的含量高达73%。低温N2物理吸附技术测算出GC-800的比表面积高达574 m2·g−1。在298 K和1 bar的条件下GC-800对C2H6的平衡吸附容量为2.16 mmol·g−1,C2H6/C2H4(1:1和1:9,v/v)IAST选择性分别达到2.4和3.8,显著高于大多数报道的高性能C2H6选择性吸附剂。动态穿透实验表明GC-800可以从C2H6和C2H4混合物中一步获得高纯度的C2H4。动态循环测试证实了GC-800具有良好的循环稳定性,含湿条件下GC-800仍然能高效分离C2H6/C2H4
等离子体辅助制备炭布负载大层间距NiCoAl-LDHs及其电化学去离子性能
姜秋彤, 王国庆, 李益, 黄宏伟, 李倩, 杨建
当前状态:  doi: 10.1016/S1872-5805(24)60854-1
摘要(66) HTML(31) PDF(19)
摘要:
电容去离子技术近年来被认为是一种新兴的海水淡化技术,尤其在苦咸水范围内具有经济节能的特点。然而,目前关于除氯电极的研究较少,同时缓慢的除盐动力学也制约了除氯电极的发展。本工作通过在表面酸处理后的柔性炭布上原位生长NiCoAl-LDHs纳米片阵列并进行等离子体处理,制备了具有扩大层间距的Ar-NiCoAl-LDHs@ACC材料。炭布基底抑制了NiCoAl-LDHs纳米片的团聚并提高了电导率,等离子体处理则使得NiCoAl-LDHs层间距进一步扩大并改善了亲水性,提供了快速的氯离子扩散通道,并释放了更多的层间活性位点,实现了高除盐动力学。将Ar-NiCoAl-LDHs@ACC作为除氯电极与活性碳组装了混合式电容去离子器件。在1000 mg L−1NaCl溶液及1.2 V工作电压下,除盐容量可达到93.26 mg g−1,除盐速率可达到0.27 mg g−1 s−1,电荷效率高达0.97。在300 mg L−1NaCl溶液及0.8 V工作电压下,经过100次循环后容量保持率仍在85%以上。本工作的制备策略为大层间距二维金属氢氧化物材料的可控制备和高性能电化学除氯电极的设计构建提供了新思路。
基于还原氧化石墨烯与碳化硅的多孔电磁屏蔽薄膜及其多层结构
LI Jing, Qi Yi-quan, ZHAO Shi-xiang, QIU Han-xun, YANG Jun-he, YANG Guang-zhi
当前状态:  doi: 10.1016/S1872-5805(24)60855-3
摘要(20) HTML(13) PDF(4)
摘要:
Development of lightweight and flexible thin films for electromagnetic interference (EMI) shielding is of great significance. In this paper, RGO@SiC porous thin films were prepared for EMI shielding. The porous structure was easily obtained by 3 s of solid phase microwave irradiation, which resulted in an efficient reduction of GO and a significant increase of the film thickness from around 20 to 200 μm. The SET of the RGO@SiC porous thin film reached 35.6 dB, while the SER was only 2.8 dB. The addition of SiC whiskers was critical for the multi-reflection, interfacial polarization and dielectric attenuation of EM waves. Further, the multilayer composites with a gradient change from transmission to reflection were constructed by stacking the RGO@SiC porous films and using multi-walled carbon nanotubes buckypaper as the reflection layer. The highest SET reached 75.1 dB with a SER value of 2.7 dB and a thickness of about 1.5 mm. We believe the porous RGO@SiC thin films were promising for designing multilayer or sandwich structure as EMI absorption packaging or lining materials.
高韧性低黏度碳纳米管/聚醚酰亚胺/聚醚醚酮纳米复合材料的研究
SONG Jiu-peng, ZHAO Yan, LI Xue-kuan, XIONG Shu, LI Shuang, WANG Kai
当前状态:  doi: 10.1016/S1872-5805(22)60643-7
摘要(475) HTML(249) PDF(38)
摘要:
Polyether ether ketone (PEEK) has favorable mechanical properties. However, its high melt viscosity limits its applications because it is hard to process. In this study, PEEK nanocomposites modified with carbon nanotubes (CNTs) and polyether imide (PEI) were prepared using a direct wet powder blending method. The melt viscosity of the nanocomposites decreased by approximately 50%. Under optimal conditions, the addition of CNTs and PEI resulted in a synergistic increase in the toughness of the nanocomposites. The elongation at break increased by 129%, and the fracture energy increased by 97%. The uniformly dispersed CNTs/PEI powder reduces the processing difficulty of PEEK nanocomposites without affecting the heat resistance. The nanocomposites prepared by this method have lower melt viscosity. This improvement of the properties of PEEK would facilitate its use in the preparation of thermoplastic composites by powder impregnation or laser sintering technology.
多孔硅碳复合材料实现高性能锂离子电池
TIAN Zhen-yu, WANG Ya-fei, QIN Xin, Shaislamov Ulugbek, Hojamberdiev Mirabbos, ZHENG Tong-hui, DONG Shuo, ZHANG Xing-hao, KONG De-bin, ZHI Lin-jie
当前状态:  doi: 10.1016/S1872-5805(24)60850-4
摘要(51) HTML(67) PDF(20)
摘要:
Silicon anodes as a promising candidate for lithium-ion batteries. However, their significant volume expansion leads to severe material fracture and electrical disconnection, which limits their practical application. This study proposed a new top-down strategy for microsized porous silicon and introducing polyacrylonitrile (PAN) as nitrogen-doped carbon coating, which designed to maintain the internal space and alleviate the outward expansion of the silicon anode during the lithiation and delithiation process. Subsequently, we explored the effect of temperature on the thermal transition behavior of PAN and the electrochemical behavior of the composite electrode. After the treatment at 400 °C, the PAN coating retained a high nitrogen doping content of 11.35 wt%, which explicitly confirmed the existence of C-N and C-O bonds that improved the ionic-electronic transport properties. This treatment not only retained a more intact carbon layer structure, but also introduced carbon defects, exhibiting remarkably stable cycling even at high rates. When cycled at 4 A g−1, the optimized anode exhibited a specific capacity of 857.6 mAh g−1 even after 200 cycles, demonstrating great potential for high-capacity energy storage applications.
真空抽滤结合反应熔渗法制备ZrB2-ZrC-SiC改性碳/碳复合材料的力学性能及烧蚀行为
ZHANG Jia-ping, SU Xiao-xuan, LI Xin-gang, WANG Run-ning, FU Qian-gang
当前状态:  doi: 10.1016/S1872-5805(24)60841-3
摘要(169) HTML(103) PDF(47)
摘要:
The development of advanced aircrafts relies on high performance thermal-structural materials and composites of carbon/carbon (C/C) with ultrahigh-temperature ceramics are ideal candidates. However, traditional routes of compositing are either inefficient and expensive or lead to non-uniform distribution of ceramics in the matrix. Here, vacuum filtration of ZrB2 was successfully applied to introduce ZrB2-ZrC-SiC into C/C as a supplement for reactive melt infiltration ZrSi2, which contributed to the content increase and uniform distribution of the introduced ceramic phases. The mass and linear ablation rates of the composites were reduced by 68.9% and 29.7%, respectively, compared to those of C/C-ZrC-SiC composites prepared through reactive melt infiltration. The ablation performance was improved because of the volatilization of B2O3, taking a part of the heat away, and more uniformly distributed ZrO2 that could promote the formation of ZrO2-SiO2 continuous protective layer. This efficiently resisted the mechanical denudation and hindered the oxygen infiltration.
炭纤维/聚醚酮酮湿法复合诱导非晶态粘附以增强界面剪切强度的研究
ZHANG Feng, LI Bo-lan, JIAO Meng-xiao, LI Yan-bo, WANG Xin, YANG Yu, YANG Yu-qiu, ZHANG Xiao-hua
当前状态:  doi: 10.1016/S1872-5805(22)60646-2
摘要(393) HTML(260) PDF(54)
摘要:
Interfacial adhesion between carbon fiber (CF) and polyetherketoneketone (PEKK) is a key factor that affects the mechanical performances of their composites. Therefore, it is of great importance to impregnate PEKK into CF bundles as efficiently as possible. Here we report that owing to the high dissolubility, PEKK can be introduced onto CF surfaces via a wet strategy. The excellent wettability of PEKK guarantees a full covering and tight binding on CFs, making it possible to evaluate the interfacial shear strength (IFSS) with the microdroplet method. Furthermore, the interior of CF bundles can be completely and uniformly filled with PEKK by the solution impregnation, leading to a high interlaminar shear strength (ILSS). The maximum IFSS and ILSS can reach 107.8 and 99.3 MPa, respectively. Such superior shear properties are ascribed to the formation of amorphous PEKK confined in the limited spacing between CFs.
2024 年 2 期中文目次
2024, 39(2): 1-1.  
摘要(125) HTML(28) PDF(28)
摘要:
2024年 2 期英文目次
2024, 39(2): 1-7.  
摘要(58) HTML(22) PDF(15)
摘要:
综合评述
石墨炔:一种用于合成水污染物有效吸附剂的新型炭材料
GauravSharma, YakshaVerma, AmitKumar, PoojaDhiman, WANGTong-tong, FlorianJ. Stadler
2024, 39(2): 173-200.   doi: 10.1016/S1872-5805(24)60830-9
摘要(326) HTML(72) PDF(123)
摘要:
Graphdiyne (GDY), a new two-dimensional (2D) carbon molecule, is expected to have applications in the removal of contaminants from aqueous media. It has superior conjugation, unusual and varied electronic properties, and exceptional chemical and thermal stability because of its framework of sp and sp2 hybridized carbon bonds that are combined to produce benzene rings and diacetylenic bonds in a two-dimensional symmetrical network. Its molecular chemistry is the result of it having carbon-carbon triple bonds, with a regular distribution of triangular pores in its structure, which provide reaction sites and various reaction pathways. GDY is an adsorbent with an excellent efficiency for the removal of oil, organic pollutants, dyes, and metals from contaminated water, but there is limited evidence of it being used as an adsorbent in the literature. This review discusses its synthesis and its use as an adsorbent together with its prospects for pollutant removal.
金属氧化物/炭复合材料抑制锂硫电池穿梭效应的研究进展
周志强, 王惠民, 杨璐彬, 马成, 王际童, 乔文明, 凌立成
2024, 39(2): 201-222.   doi: 10.1016/S1872-5805(24)60838-3
摘要(268) HTML(78) PDF(109)
摘要:
Lithium-sulfur (Li-S) batteries are among the most promising next-generation electrochemical energy-storage systems due to their exceptional theoretical specific capacity, inexpensive production cost and environmental friendliness. However, the poor conductivity of S and Li2S, severe lithium polysulfide (LiPS) shuttling and the sluggish redox kinetics of the phase transformation greatly hinder their commercialization. Carbonaceous materials could be potentially useful in Li-S batteries to tackle these problems with their high specific surface area to host LiPSs and sulfur and excellent electrical conductivity to increase electron transfer rate. However, non-polar carbon materials are unable to interact closely with the highly polar polysulfides, resulting in a low sulfur utilization and a serious shuttle effect. Because of their advantages of strong polarity and a large number of adsorption sites, integrating transition metal oxides (TMOs) with carbon-based materials (CMs) increases the chemical adsorption of LiPSs and electrochemical reaction activity for LiPSs. The working principles and main challenges of Li-S batteries are discussed followed by a review of recent research on the ex-situ and in-situ synthesis of TMO/CM composites. The formation of TMO/CMs with the dimensionalities of CMs from 1D to 3D are then reviewed together with ways of changing their structure, including heterostructure design, vacancy engineering and facet manipulation. Finally, the outlook for using TMO/CMs in Li-S batteries is considered.
石墨烯基材料在电磁屏蔽领域的研究进展
杨赏娟, 曹赟, 贺艳兵, 吕伟
2024, 39(2): 223-239.   doi: 10.1016/S1872-5805(24)60840-1
摘要(535) HTML(235) PDF(153)
摘要:

通信技术在为人类的生活带来便利的同时,其产生的电磁辐射对社会安全、人体健康产生的危害也受到了社会各界的广泛关注,宽屏蔽范围、高吸收效率和高稳定性的电磁屏蔽材料逐渐成为研究热点。石墨烯是一种导电性高、比表面积大且可调控性高的轻质材料,可有效实现电磁衰减,保护精密电子设备和人体健康,在电磁屏蔽领域具有广阔的应用前景。本综述从电磁屏蔽的基本原理与石墨烯基材料的结构特性角度,阐述了石墨烯及其衍生物的电磁屏蔽特点,总结了结构调控以及表面异质化、复合化策略在电磁屏蔽领域的应用。结构调控有利于提高石墨烯基材料对电磁波的吸收损耗和多重反射损耗;表面异质化和复合化策略有利于提高石墨烯基材料的界面极化和磁特性,从而加强对电磁波的吸收损耗和磁损耗。总结了石墨烯基电磁屏蔽材料的改性方法,旨在为开发新一代绿色、轻薄、高屏蔽带宽的电磁屏蔽材料提供启发,指明石墨烯基电磁屏蔽材料的未来发展方向。

三维整体式碳基光热转换材料在太阳能界面水蒸发中的应用研究进展
韩悦, 张鹏, 赵晓明
2024, 39(2): 240-253.   doi: 10.1016/S1872-5805(24)60827-9
摘要(388) HTML(357) PDF(116)
摘要:

光热驱动的海水淡化技术被认为是最具潜力的解决全球淡水资源短缺难题的方法之一。其中,太阳能界面水蒸发(SVG)是海水淡化效率的核心过程,是保证光热海水淡化技术具有能量转换效率高、设备简单、成本效益高的关键。在所有高效SVG候选材料中,三维整体式碳基光热转换材料具有成本低、吸光效率高、结构可调性好、水蒸发速率高、无二次污染等优点。本综述首先简述了SVG 的基本原理,以此为依据介绍了高效 SVG 材料的工作机制和设计原则,最后系统归纳和概述了4种不同类型的三维整体式碳基光热转换材料的研究进展。本综述为未来三维整体式碳基光热转换材料的构建及其在SVG领域的应用研究提供理论基础和研究指导。

用于电催化合成过氧化氢的碳电极综述
黄显怀, 杨鑫科, 桂玲, 刘绍根, 王坤, 荣宏伟, 韦伟
2024, 39(2): 254-270.   doi: 10.1016/S1872-5805(24)60846-2
摘要(139) HTML(63) PDF(60)
摘要:
Electrocatalytic oxygen reduction by a 2e pathway enables the instantaneous synthesis of H2O2, a process that is far superior to the conventional anthraquinone process. In recent years, the electrocatalytic synthesis of H2O2 using carbon electrodes has attracted more and more attention because of its excellent catalytic performance and superior stability. The relationship between material modification, wettability and the rate of H2O2 synthesis and service life is considered together with the three-phase interface. The structure of the carbon electrodes and the principles of electrocatalytic H2O2 synthesis are first introduced, and four major catalysts are reviewed, namely, monolithic carbon materials, metal-free catalysts, noble metal catalysts and non-precious metal catalysts. The effects of the metal anode and the electrolyte on the three-phase interface are described. The relationship between carbon electrode wettability and the three-phase interface is described, pointing out that modification focusing on improving the selectivity of the 2e pathway can also impact electrode wettability. In addition, the relationship between the design of the components in the electrochemical system and their effect on the efficiency of H2O2 synthesis is discussed for carbon electrodes. Finally, we present our analysis of the current problems in the electrocatalytic synthesis of H2O2 for carbon electrodes and future research directions.
研究论文
聚酰亚胺辅助制备高定向石墨烯基全炭泡沫及其在导热聚合物复合材料中的应用
熊科, 孙智鹏, 胡吉辰, 马成, 王际童, 葛翔, 乔文明, 凌立成
2024, 39(2): 271-282.   doi: 10.1016/S1872-5805(24)60835-8
摘要(177) HTML(57) PDF(92)
摘要:
Graphene and its derivatives are often preferentially oriented horizontally during processing because of their two-dimensional (2D) layer structure. As a result, thermal interface materials (TIMs) composed of a polymer matrix and graphene-derived fillers often have a high in-plane (IP) thermal conductivity (K), however, the low through-plane (TP) K makes them unsuitable for practical use. We report the development of high-quality polyimide/graphite nanosheets (PG) perpendicular to the plane using a directional freezing technique that increase the TP K of polymer-based composites. Graphene-derived nanosheets (GNs) were obtained by the crushing of scraps of highly thermally conductive graphene films. A water-soluble polyamic acid salt solution was used to disperse the hydrophobic GNs filler to achieve directional freezing. The polyimide, which facilitated the directional alignment of the GNs, was then graphitized. The introduction of the GNs increases the order and density of the PG, thus improving the strength and heat transfer performance of its polydimethylsiloxane (PDMS) composite. The obtained PG/PDMS composite (21.1% PG, mass fraction) has an impressive TP K of14.56 W·m1·K1, 81 times that of pure PDMS. This simple polyimide-assisted 2D hydrophobic fillers alignment method provides ideas for the widespread fabrication of anisotropic TIMs and enables the reuse of scraps of graphene films.
以MoS2修饰的3D打印还原石墨烯气凝胶制备微型超级电容器电极
王梦雅, 李世友, 高灿坤, 樊晓琦, 权银, 李小华, 李春雷, 张宁霜
2024, 39(2): 283-296.   doi: 10.1016/S1872-5805(24)60823-1
摘要(185) HTML(139) PDF(75)
摘要:
Micro-supercapacitors (MSCs) are of interest because of their high power density and excellent cycling performance, offering a broad array of potential applications. However, preparing electrodes for the MSCs with an extremely high areal capacitance and energy density remains a challenge. We constructed MSC electrodes with an ultra-high area capacitance and a high energy density, using reduced graphene oxide aerogel (GA) and MoS2 as the active materials, combined with 3D printing and surface modification. Using 3D printing, we obtained electrodes with a stable macrostructure and a GA-crosslinked micropore structure. We also used a solution method to load the surface of the printed electrode with molybdenum disulfide nanosheets, further improving the electrochemical performance. The surface capacitance of the electrode reached 3.99 F cm2, the power density was 194 W cm2, and the energy density was 1997 mWh cm2, confirming its excellent electrochemical performance and cycling stability. This work provides a simple and efficient method for preparing MSC electrodes with a high areal capacitance and energy density, making them ideal for portable electronic devices.
采用两步炭化法和熔盐模板法制备N、S 共掺杂煤基硬炭及共储钠性能
牛慧祝, 王海花, 孙立宇, 杨晨榕, 王雨, 曹瑞, 杨存国, 王洁, 舒珂维
2024, 39(2): 297-307.   doi: 10.1016/S1872-5805(24)60842-5
摘要(255) HTML(149) PDF(108)
摘要:
Hard carbon, known for its abundant resources, stable structure and high safety, has emerged as the most popular anode material for sodium-ion batteries (SIBs). Among various sources, coal-derived hard carbon has attracted extensive attention. In this work, N and S co-doped coal-based carbon material (NSPC1200) was synthesized through a combination of two-step carbonization process and heteroatom doping using long-flame coal as a carbon source, thiourea as a nitrogen and sulfur source, and NaCl as a template. The two-step carbonization process played a crucial role in adjusting the structure of carbon microcrystals and expanding the interlayer spacing. The N and S co-doping regulated the electronic structure of carbon materials, endowing more active sites. Additionally, the introduction of NaCl as a template contributed to the construction of pore structure, which facilitates better contact between electrodes and electrolytes, enabling more efficient transport of Na+ and electrons. Under the synergistic effect, NSPC1200 exhibited exceptional sodium storage capacity, reaching 314.2 mAh g−1 at 20 mA g−1. Furthermore, NSPC1200 demonstrated commendable cycling stability, maintaining a capacity of 224.4 mAh g−1 even after 200 cycles. This work successfully achieves the strategic tuning of the microstructure of coal-based carbon materials, ultimately obtaining hard carbon anode with excellent electrochemical performance.
一种新型的负极材料助力高倍率及长寿命的锂/钠储存
张春晖, 张家源, 湛杰杨, 于健, 范林林, 杨安平, 刘红, 高广刚
2024, 39(2): 308-320.   doi: 10.1016/S1872-5805(24)60845-0
摘要(128) HTML(69) PDF(57)
摘要:
It is imperative to design suitable anode materials for both lithium-ion (LIBs) and sodium-ion batteries (SIBs) with a high-rate performance and ultralong cycling life. We fabricated a MoO2/MoS2 heterostructure that was then homogeneously distributed in N,S-doped carbon nanofibers (MoO2/MoS2@NSC) by electrospinning and sulfurization. The one-dimensional carbon fiber skeleton serves as a conductive frame to decrease the diffusion pathway of Li+/Na+, while the N/S doping creates abundant active sites and significantly improves the ion diffusion kinetics. Moreover, the deposition of MoS2 nanosheets on the MoO2 bulk phase produces an interface that enables fast Li+/Na+ transport, which is crucial for achieving high efficiency energy storage. Consequently, as the anode for LIBs, MoO2/MoS2@NSC gives an excellent cycling stability of 640 mAh g1 for 2000 cycles under 5.0 A g1 with an ultralow average capacity drop of 0.002% per cycle and an exceptional rate capability of 614 mAh g1 at 10.0 A g1. In SIBs, it also produces a significantly better electrochemical performance (reversible capacity of 242 mAh g1 under 2.0 A g1 for 2000 cycles and 261 mAh g1 under 5.0 A g1). This work shows how introducing a novel interface in the anode can produce rapid Li+/Na+ storage kinetics and a long cycling performance.
氮掺杂空心碳纳米球嵌入氮掺杂石墨烯负载钯纳米粒子作为甲酸氧化的高效电催化剂
房越, 杨富开, 曲微丽, 邓超, 王振波
2024, 39(2): 321-333.   doi: 10.1016/S1872-5805(24)60844-9
摘要(94) HTML(54) PDF(58)
摘要:
Efficient electrocatalysts with a low cost, high activity and good durability play a crucial role in the use of direct formic acid fuel cells. Pd nanoparticles supported on N-doped hollow carbon nanospheres (NHCNs) embedded in an assembly of N-doped graphene (NG) with a three-dimensional (3D) porous structure by a simple and economical method were investigated as direct formic acid fuel cell catalysts. Because of the unique porous configuration of interconnected layers doped with nitrogen atoms, the Pd/NHCN@NG catalyst with Pd nanoparticles has a large catalytic active surface area, superior electrocatalytic activity, a high steady-state current density, and a strong resistance to CO poisoning, far surpassing those of conventional Pd/C, Pd/NG, and Pd/NHCN catalysts for formic acid electrooxidation. When the HCN/GO mass ratio was 1∶1, the Pd/NHCN@NG catalyst had an outstanding performance in the catalytic oxidation of formic acid, with an activity 4.21 times that of Pd/C. This work indicates a way to produce superior carbon-based support materials for electrocatalysts, which will be beneficial for the development of fuel cells.
基于工程化设备通过调控纺丝温度提高中间相沥青炭纤维力学和导热性能
叶高明, 石奎, 吴晃, 黄东, 叶崇, 欧阳婷, 朱世鹏, 樊桢, 刘洪波, 刘金水
2024, 39(2): 334-344.   doi: 10.1016/S1872-5805(24)60826-7
摘要(192) HTML(95) PDF(78)
摘要:
Mesophase-pitch-based carbon fibers (MPCFs) were prepared using industrial equipment with a constant extrusion rate of pitch while controlling the spinning temperature. The influence of spinning temperature on their microstructures, mechanical properties and thermal conductivities was investigated. SEM images of the fractured surface of MPCFs show that the graphite layers have a radiating structure at all spinning temperatures, but change from the fine-and-folded to the large-and-flat morphology when increasing the spinning temperature from 309 to 320 oC . At the same time the thermal conductivity and tensile strength of the MPCFs respectively increase from 704 W·m1·K1 and 2.16 GPa at 309 oC to 1 078 W·m1·K1 and 3.23 GPa at 320 oC. The lower viscosity and the weaker die-swell effect of mesophase pitch at the outlets of the spinnerets at the higher spinning temperature contribute to the improved orientation of mesophase pitch molecules in the pitch fibers, which improves the crystallite size and orientation of the MPCFs.
柔性多功能Fe2O3/CC正极宿主实现高效吸附与催化多硫化物的锂硫电池
田真, 薛磊磊, 丁红元
2024, 39(2): 345-353.   doi: 10.1016/S1872-5805(24)60825-5
摘要(131) HTML(55) PDF(62)
摘要:

锂硫电池因其高能量密度和低成本而成为最有发展前景的电化学储能器件之一。然而,多硫化物的“穿梭效应”、硫导电率低是锂硫电池商业化面临的主要挑战。本工作中,以Fe(NO)3·9H2O为铁源,NH4F为表面活性剂,通过简单的水热及煅烧处理制备了Fe2O3纳米棒修饰炭布(CC)的柔性Fe2O3/CC复合材料。其中,Fe2O3中介孔的存在有利于电解质的渗透和充放电过程中锂离子的传输和扩散,同时其密集阵列暴露出的丰富活性位点可以实现多硫化物的高效吸附和快速转化,降低多硫化物的穿梭效应。电化学分析显示:Fe2O3/CC正极在0.1 C(1 C=1672 mA g−1)的电流密度下具有1250 mAh g−1的高放电比容量,经100圈循环后比容量保持在789 mAh g−1。在2 C的倍率下循环1000圈后仍能达到576 mAh g−1的放电比容量,容量保持率为70%,明显优于对比样品。因此,Fe2O3/CC能够很好地抑制多硫化物的穿梭,提高电池倍率性能和循环稳定性。

由乙烯焦油制备锂离子电池负极材料用碳质前驱体的氧化反应机理与反应动力学
郭天瑞, 陈荣起, 高伟, 王艳莉, 詹亮
2024, 39(2): 354-366.   doi: 10.1016/S1872-5805(22)60597-3
摘要(418) HTML(320) PDF(159)
摘要:
The oxidation reaction mechanism and its kinetics for ethylene tar were investigated in order to obtain a suitable anode material for Li-ion batteries. The oxidation of ethylene tar was divided into 3 stages (350–550, 550–700 and 700–900 K) according to the thermogravimetric curve. To reveal the oxidation reaction mechanism, the components of the gases evolved at different stages were analyzed by mass spectrometry and infrared technology. Based on these results the reaction was divided into 4 stages (323–400, 400–605, 605–750 and 750–860 K) to perform simulation calculations of the kinetics. Using the iso-conversion method (Coats-Redfern) to analyze the linear regression rates (R2) between 17 common reaction kinetics models and experimental data, an optimum reaction kinetics model for expressing the oxidation of ethylene tar was determined and the results were as follows. (1) During oxidation, the side chains of aromatic compounds first react with oxygen to form alcohols and aldehydes, leaving peroxy-radicals on aromatic rings. Subsequently, the aromatic compounds with peroxy-radicals undergo polymerization/condensation reactions to form larger molecules. (2) A fourth-order reaction model was used to describe the first 3 stages in the oxidation process, and the activation energies are 47.33, 18.69 and 9.00 kJ·mol1 at 323–400, 400–605, 605–750 K, respectively. A three-dimensional diffusion model was applied to the fourth stage of the oxidation process, and the activation energy is 88.37 kJ·mol1 at 750–860 K. A high softening point pitch was also produced for use as a coating of the graphite anode, and after it had been applied the capacity retention after 300 cycles increased from 51.54% to 79.07%.