Advance Search
Articles in Press
Display Method:
Wet-composition-induced amorphous adhesion toward a high interfacial shear strength between carbon fiber and polyetherketoneketone
ZHANG Feng, LI Bo-lan, JIAO Meng-xiao, LI Yan-bo, WANG Xin, YANG Yu, YANG Yu-qiu, ZHANG Xiao-hua
 doi: 10.1016/S1872-5805(22)60646-2
Abstract(298) HTML(190) PDF(40)
Interfacial adhesion between carbon fiber (CF) and polyetherketoneketone (PEKK) is a key factor that affects the mechanical performances of their composites. Therefore, it is of great importance to impregnate PEKK into CF bundles as efficiently as possible. Here we report that owing to the high dissolubility, PEKK can be introduced onto CF surfaces via a wet strategy. The excellent wettability of PEKK guarantees a full covering and tight binding on CFs, making it possible to evaluate the interfacial shear strength (IFSS) with the microdroplet method. Furthermore, the interior of CF bundles can be completely and uniformly filled with PEKK by the solution impregnation, leading to a high interlaminar shear strength (ILSS). The maximum IFSS and ILSS can reach 107.8 and 99.3 MPa, respectively. Such superior shear properties are ascribed to the formation of amorphous PEKK confined in the limited spacing between CFs.
Display Method:
2023, 38(6).  
Abstract(15) HTML(5) PDF(8)
2023, 38(6): 1-5.  
Abstract(17) HTML(1) PDF(7)
Carbon-based photothermal materials for the simultaneous generation of water vapor and electricity
QIU Zi-han, ZHAO Guan-yu, SUN Yang, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan
2023, 38(6): 997-1017.   doi: 10.1016/S1872-5805(23)60785-1
Abstract(67) HTML(24) PDF(25)
Solar-driven interfacial vapor generation (SIVG) is increasingly used for fresh water production, having the advantages of low energy consumption, eco-friendliness, and high efficiency. Carbon-based photothermal materials (CPTMs) can introduce temperature and salinity gradients in the SIVG process because of their outstanding photothermal conversion properties, which have given SIVG great potential for both steam and power generation. Various kinds of CPTMs for clean water and electricity generation are discussed in this review. The basic principles and key performance indices of SIVG are first described and the photothermal and SIVG performance of various CPTMs including graphene oxides, carbon nanotubes, carbon dots and carbonized biomass are then summarized. Finally, current research concerning water/electricity cogeneration and ways to deal with the problems encountered are presented, to provide some guidelines for the use of multifunctional CPTMs for simultaneous steam and electricity generation.
Research progress on biomass carbon as the cathode of a metal-air battery
LU Li-lai, LI Qing-shan, SUN Yuan-na, KUANG Kun-bin, LI Zhi, WANG Tao, GAO Ying, WANG Jun-bo
2023, 38(6): 1018-1034.   doi: 10.1016/S1872-5805(23)60784-X
Abstract(101) HTML(34) PDF(30)
Metal-air batteries have received significant attention as highly efficient energy conversion and storage devices. Nevertheless, several difficulties, such as the sluggish reaction kinetics of the cathode and the high cost of precious metals, have significantly hampered their commercialization. Biomass carbon materials have emerged as an important alternative for the development of high-performance cathode materials in metal-air batteries, owing to their remarkable electrochemical characteristics, environmental friendliness and cost effectiveness. In recent years, there has been huge progress in the preparation and design of biomass carbon materials. This review summarizes the most recent research on these materials, and the effects of the reaction mechanism, synthesis method and multidimensional (1D, 2D, 3D) structure on their electrocatalytic performance are reviewed. Finally, problems associated with their use and possible new developments are discussed. The review presents new perspectives on the structure of these materials, and provides a basis for the development of efficient, affordable, and stable cathode materials for metal-air batteries.
Research articles
3D porous NiCo2(CO3)3/reduced graphene oxide aerogel with heterogeneous interfaces for high-efficiency microwave absorption
WU Dan-dan, ZHANG Han-xiao, WANG Zheng-yan, ZHANG Yan-lan, WANG Yong-zhen
2023, 38(6): 1035-1049.   doi: 10.1016/S1872-5805(23)60780-2
Abstract(58) HTML(32) PDF(19)
Advanced electromagnetic absorbing materials (EAMs) with strong absorption and a wide effective absorption bandwidth (EAB), using innovative microstructural design and suitable multicomponents remain a persistent challenge. Here, we report the production of a material by the hydrothermal reduction of a mixture of graphene oxide (GO), Ni(NO3)2·6H2O, and Co(NO3)2·6H2O, resulting in reduced GO (RGO) with a self-assembled 3D mesh structure filled with NiCo2(CO3)3 . The unique microstructure of this assembly not only solves the problem of NiCo2(CO3)3 particles agglomerating but also changes the electromagnetic parameters, thereby improving the impedance matching and attenuation ability. High electromagnetic wave absorption (EMA) was achieved by combining the 3D interconnected mesh structure and the various interfaces between NiCo2(CO3)3 and RGO. The minimal reflection loss (RLmin) was −58.5 dB at 2.3 mm, and the EAB was 6.5 GHz. The excellent EMA performance of the aerogel can be attributed to the multiple reflection, scattering, and relaxation process of the porous 3D structure as well as the strong polarization of the interfacial matrix.n of the interfacial matrix.
Fabrication of coal-based oxygen-rich porous carbon nanosheets for high-performance supercapacitors
CHE Xiao-gang, JIN Jiao, ZHANG Yi-xiao, LIU Si-yu, WANG Man, YANG Juan
2023, 38(6): 1050-1058.   doi: 10.1016/S1872-5805(23)60752-8
Abstract(125) HTML(77) PDF(41)
The modification and optimization of porous carbon electrodes is key to achieving high-performance supercapacitors. Oxygen-rich porous carbon nanosheets (OPCNs) with a two-dimensional (2D) structure produced from the solid by-products of the coal industry were prepared by taking advantage of the rigid confinement of 2D MgAl-layered double hydroxides (MgAl-LDH) combined with KOH activation. The influence of carbonization temperature on the microstructure and surface properties of the OPCNs was investigated. The surface morphologies/compositions and surface textures of the prepared OPCNs were observed and analyzed by SEM, TEM, N2 adsorption and desorption, elemental analysis, etc. The optimized carbon sample activated at 700 °C (OPCN-700) had a high oxygen content of 24.4 wt%, a large specific surface area of 2 388 m2 g−1, and good wettability. In addition, the abundant micropores and 2D nanosheet structure of OPCN-700 provide efficient storage and transport for electrolyte ions. Because of this, when used as the electrode for a supercapacitor it has a high specific capacitance of 382 F g−1 at 0.5 A g−1, an excellent rate performance and cycling stability.
Mott-Schottky heterojunction formation between Co and MoSe2 on carbon nanotubes for superior hydrogen evolution
REN Xian-pei, HU Qi-wei, LING Fang, WU Fei, LI Qiang, PANG Liu-qing
2023, 38(6): 1059-1069.   doi: 10.1016/S1872-5805(23)60782-6
Abstract(86) HTML(18) PDF(30)
Molybdenum selenide (MoSe2) has been regarded as an advanced electrocatalyst for the hydrogen evolution reaction (HER). However, its electrocatalytic performance is far inferior to platinum (Pt). Combining semiconductors with metals to construct Mott-Schottky heterojunctions has been considered as an effective method to enhance HER activity. In this work, we report a typical Mott-Schottky heterojunction composed of metal Co and semiconductor MoSe2 on carbon nanotubes (Co/MoSe2@CNT), prepared by a sol-gel process followed by thermal reduction. The characterization and theoretical calculations show that a Co/MoSe2 Mott-Schottky heterojunction can cause electron redistribution at the interface and form a built-in electric field, which not only optimizes the free energy of hydrogen atom adsorption, but also improves the charge transfer efficiency during hydrogen evolution. Thus, the Co/MoSe2@CNT has excellent catalytic activity with a low overpotential of 185 mV at 10 mA cm−2 and a small Tafel slope of 69 mV dec−1. This work provides a new strategy for constructing Co/MoSe2 Mott-Schottky heterojunctions and highlights the Mott-Schottky effect, which may inspire the future development of more attractive Mott-Schottky electrocatalysts for H2 production.
A 2D montmorillonite-carbon nanotube interconnected porous network that prevents polysulfide shuttling
ZHOU Ming-xia, ZHOU Wen-hua, LONG Xiang, ZHU Shao-kuan, Xu Peng, OUYANG Quan-sheng, SHI Bin, SHAO Jiao-jing
2023, 38(6): 1070-1079.   doi: 10.1016/S1872-5805(23)60783-8
Abstract(27) HTML(11) PDF(15)
A commercial polypropylene (PP) separator was modified by a one-dimensional carbon nanotube (CNT) and two-dimensional montmorillonite (MMT) hybrid material (CNT-MMT). Because of the high electron conductivity of the CNTs, and the strong polysulfide (LiPS) adsorption ability and easy lithium ion transport through MMT, the interconnected porous CNT-MMT interlayer with excellent structural integrity strongly suppresses LiPS shuttling while maintaining high lithium-ion transport, producing a high utilization of the active sulfur. Lithium-sulfur batteries assembled with this interlayer have a high lithium-ion diffusion coefficient, a high discharge capacity and stable cycling performance. They had an initial specific capacity of 1373 mAh g−1 at 0.1 C, and a stable cycling performance with a low decay rate of 0.062% per cycle at 1 C after 500 cycles.
A one-pot method to prepare a multi-metal sulfide/carbon composite with a high lithium-ion storage capability
ZHANG Wei-cai, YANG Chao-wei, HU Shu-yu, FANG Ya-wei, LIN Xiao-min, XIE Zhuo-hao, ZHENG Ming-tao, LIU Ying-liang, LIANG Ye-ru
2023, 38(6): 1080-1091.   doi: 10.1016/S1872-5805(23)60781-4
Abstract(99) HTML(21) PDF(31)
Because of their high electrochemical activity, good structural stability, and abundant active sites, multi-metal sulfide/carbon (MMS/C) composites are of tremendous interest in diverse fields, including catalysis, energy, sensing, and environmental science. However, their cumbersome, inefficient, and environmentally unfriendly synthesis is hindering their practical application. We report a straightforward and universal method for their production which is based on homogeneous multi-phase interface engineering. The method has enabled the production of 14 different MMS/C composites, as examples, with well-organized composite structures, different components, and dense heterointerfaces. Because of their composition and structure, a typical composite has efficient, fast, and persistent lithium-ion storage. A ZnS-Co9S8/C composite anode showed a remarkable rate performance and an excellent capacity of 651 mAh·g−1 at 0.1 A·g−1 after 600 cycles. This work is expected to pave the way for the easy fabrication of MMS/C composites.
A highly selective and sensitive electrochemical Cu(II) detector based on ion-imprinted magnetic carbon nanospheres
LI Rui-zhen, QIN Lei, FU Dong-ju, WANG Mei-ling, SONG Xing-fu, BAI Yong-hui, LIU Wei-feng, LIU Xu-guang
2023, 38(6): 1092-1103.   doi: 10.1016/S1872-5805(23)60772-3
Abstract(66) HTML(39) PDF(24)
An electrochemical sensor for Cu(II) based on ion-imprinted polymers was prepared by combining surface imprinting with electrochemical polymerization deposition. The sensor was modified by ion-imprinted magnetic carbon nanospheres with a specific selectivity and sensitivity for Cu(II). The morphology and structure of the materials were characterized and analyzed. Sensors with the imprinted electrode had a stronger selectivity and higher sensitivity towards Cu(II) compared with their original counterparts. Within relative concentrations of Cu(II) from 10−6 to 10−10 mol L−1, the detection limit of the sensor was as low as 5.138×10−16 mol L−1 (S/N=3). The sensor is resistant to interference, and has good reproducibility, and stability, making it excellent for the electrochemical detection of metal ions.
A highly efficient, rapid, room temperature synthesis method for coal-based water-soluble fluorescent carbon dots and its use in Fe3+ ion detection
CHENG Zhong-fu, WU Xue-yan, LIU Lei, HE Long, YANG Zu-guo, CAO Chang, LU Yan, GUO Ji-xi
2023, 38(6): 1104-1115.   doi: 10.1016/S1872-5805(23)60706-1
Abstract(137) HTML(61) PDF(28)
We report a method for the of coal-based fluorescent carbon dots (CDs) at room temperature using a mixture of hydrogen peroxide (H2O2) and formic acid (HCOOH) as the oxidant instead of concentrated HNO3 or H2SO4. The CDs have an excitation dependent behavior with a high quantum yield (QY) of approximately 7.2%. The CDs are water soluble and have excellent photo-stability, good resistance to salt solutions, and are insensitive to pH in a range of 2.0-12.0. The CDs were used as a very sensitive probe for the turn-off sensing of Fe3+ ion with a detection limit as low as 600 nmol/L and a detection range from 2 to 100 μmol/L. This work provides a way for the high value-added utilization of coal.
Contribution of surface roughness and oxygen-containing groups to the interfacial shear strength of carbon fiber/epoxy resin composites
LIANG Yi-cai, ZHANG Xing-hua, WEI Xing-hai, JING De-qi, SU Wei-guo, ZHANG Shou-chun
2023, 38(6): 1116-1126.   doi: 10.1016/S1872-5805(23)60720-6
Abstract(166) HTML(104) PDF(22)
The interfacial shear strength (IFSS) between carbon fibers (CFs) and the matrix is crucial to the performance of CF-reinforced polymer composites. To evaluate the contribution of mechanical interlocking and chemical anchoring at the interfaces of a polyacrylonitrile-based CF (TORAYCA T800SC-12000-10E)-reinforced epoxy resin (EP: bisphenol A type epoxy resin and tetrafunctional epoxy resin) composites, the surface roughness and content of oxygen-containing functional groups of the CFs were respectively altered by ammonia treatment and electrochemical oxidation. The results showed that ammonia treatment increased the surface roughness without much change to the surface elemental composition, while electrochemical oxidation increased the number of surface oxygen groups without changing the surface roughness. The IFSS of CF/EP composites was tested by the micro-droplet method. The relationships between IFSS, and surface roughness and oxygen content were obtained by linear fitting. The results showed that in the interfacial bonding of CF to epoxy resin, the contribution of chemical anchoring to the IFSS is larger than that of mechanical interlocking.
Effect of chemical vapor infiltration on the flexural properties of C/C-SiC composites prepared by the precursor infiltration pyrolysis method
JIA Lin-tao, WANG Meng-qian, GUO Xiao-feng, ZHU Jie, LI Ai-jun, PENG Yu-qing
2023, 38(6): 1127-1134.   doi: 10.1016/S1872-5805(23)60732-2
Abstract(143) HTML(96) PDF(46)
Carbon/carbon-silicon carbide (C/C-SiC) composites were prepared by impregnation, hot-pressing with curing, carbonization at 800 oC and high-temperature heat treatment (800-1600 oC) using a 2D laminated carbon cloth as the reinforcing filler, and furfurone resin mixed with silicon, carbon from furfurone resin and SiC powders as the matrix. The effects of the addition of the three powders as well as subsequent chemical vapor infiltration (CVI) by methane on the density, microstructure and bend strength of the composites were investigated by scanning electron microscopy, density measurements, X-ray diffraction and mechanical testing. Both the SiC powders formed by the reaction at 1600 oC between the added Si and C particles and the added SiC powder, play a role in the reinforcement of the materials. In three-point bending, the composites had a pseudoplastic fracture mode and showed interlaminar cracking. After 10 h CVI with methane, pyrolytic carbon was formed at the interface between some of the carbon fibers and the resin carbon matrix, which produced maximum increases in the density and flexural strength of the composites of 4.98% and 38.86%, respectively.
Raman mapping microspectroscopy of the effects of cryogenic cycling on the interfacial micromechanics of carbon fiber-reinforced polyimide composites
JIA Li-shuang, WU Qi-lin, CHEN Hui-fang
2023, 38(6): 1135-1142.   doi: 10.1016/S1872-5805(23)60712-7
Abstract(26) HTML(14) PDF(14)
Raman spectroscopy has unique advantages in studying the micro-mechanical behavior of interfaces. Carbon nanotubes (CNTs) acting as stress sensors were added to both polyimide films (CNT-PI) and those reinforced with carbon fibers (CF/CNT-PI) . Raman mapping microspectroscopy was then used to investigate the interfacial stress distributions of the films during different cryogenic-room temperature cycles (-198-25 °C, 0-300 cycles). It was found that the micro stress of CNT-PI films (around 175 MPa) had no significant changes even after 300 cycles. The cryogenic cycling had very little effect on the internal stress, indicating that PI had a good low temperature resistance. For the CF/CNT-PI films, the micro stress distributions of CFs, interface, and matrix regions were successfully obtained. It was found that the CFs bear a greater stress than the matrix, showing that CFs had always been the major stress bearer, confirming the strengthening effect of CFs. When the CF/CNT-PI films were cycled fewer than 250 times, the effect of cryogenic cycling on the micro stress was insignificant. But once the number of cycles reached 300, the compressive stresses on the fiber and interface increased by 21% and 12.9%, respectively, implying a deterioration of the mechanical properties. By Raman mapping, the micro-mechanical distributions of the reinforced material, matrix and interface of the composites under cyclic temperature changes were effectively quantified. This is therefore an effective method for evaluating the safety of composite materials.
Research progress on electrode materials and electrolytes for supercapacitors
JIAO Chen, ZHANG Wei-ke, SU Fang-yuan, YANG Hong-yan, LIU Rui-xiang, CHEN Cheng-meng
2017, 32(2): 106-115.  
Abstract(1890) PDF(3454)
Influence of graphene oxide additions on the microstructure and mechanical strength of cement
WANG Qin, WANG Jian, LU Chun-xiang, LIU Bo-wei, ZHANG Kun, LI Chong-zhi
2015, 30(4): 349-356.   doi: 10.1016/S1872-5805(15)60194-9
Abstract(1033) PDF(521)
研究了不同掺量下氧化石墨烯(GO)对水泥石以及胶砂微观结构和力学性能的影响。含16.5%水的水泥浆、0.05%GO及3倍于水泥的沙子共混物作为添加剂制备成砂浆。通过SEM、液氮吸附仪和一系列标准实验分别对水泥石的微观形态、孔隙结构、抗压抗折强度以及水泥净浆的流动度、黏度、凝结时间进行表征;考察不同GO掺量下水泥水化放热的变化情况。结果表明:GO对水泥浆有显著增稠和促凝作用;GO的掺入可以有效降低水泥的水化放热量;GO对水泥石有显著的增强增韧效果,28天龄期时,GO质量分数为0.05%的水泥石,3、7和28 d抗压强度和抗折强度同比对照组分别增加52.4%、46.5%、40.4%和86.1%、68.5%、90.5%,胶砂的抗压强度和抗折强度同比对照组分别增加43.2%、33%、24.4%和69.4%、106.4%、70.5%;GO在水泥硬化过程中对水泥石中晶体产物的产生有促进作用并能规整晶体的排布而形成针状晶体簇,改善水泥石中的孔结构,降低水泥石中微孔的体积,增加水泥石的密实度,对水泥石有显著地增强增韧效果。
A review of the control of pore texture of phosphoric acid-activated carbons
ZUO Song-lin
2018, 33(4): 289-302.  
Abstract(1275) PDF(754)
Advances in the ablation resistance of C/C composites
FU Qian-gang, ZHANG Jia-ping, LI He-jun
2015, 30(2): 97-105.  
Abstract(1395) PDF(1365)
C/C复合材料因优异的高温性能被认为是高温结构件的理想材料。然而,C/C复合材料在高温高速粒子冲刷环境下的氧化烧蚀问题严重制约其应用。因此,如何提高C/C复合材料的抗烧蚀性能显得尤为重要。笔者综述C/C复合材料抗烧蚀的研究现状。目前,提高C/C复合材料抗烧蚀性能的途径主要集中于优化炭纤维预制体结构、控制热解炭织构、基体中陶瓷掺杂改性和表面涂覆抗烧蚀涂层等4种方法。主要介绍以上4种方法的研究现状,重点介绍基体改性和抗烧蚀涂层的最新研究进展。其中,涂层和基体改性是提高C/C复合材料抗烧蚀性能的两种有效方法。未来C/C 复合材料抗烧蚀研究的潜在方向主要集中于降低制造成本、控制热解炭织构、优化掺杂的陶瓷相以及将基体改性和涂层技术相结合。
A review of carbon-carbon composites for engineering applications
SU Jun-ming, ZHOU Shao-jian, LI Rui-zhen, XIAO Zhi-chao, CUI Hong
2015, 30(2): 106-114.  
Abstract(1673) PDF(1309)
评价了中国40多年来在航天、航空、光伏、粉末冶金、工业高温炉领域成功应用的针刺C/C,正交3D C/C、径编C/C、穿刺C/C、轴编C/C等五类C/C复合材料的物理、力学、热学、烧蚀、摩擦磨损、使用寿命等性能及特点,并与其他国家相应材料性能进行分析对比,为建立工程应用C/C复合材料共享的数据库平台奠定基础。揭示了炭纤维预制体、炭基体类型、界面结合状态与材料性能的关联度。指出炭纤维预制体结构单元精细化研究和其结构的梯度设计,以及炭基体的优化组合匹配技术,仍是C/C复合材料性能稳定化提升的重点研究方向。
Preparation and properties of reduced graphene oxide/polyimide composites produced by in-situ polymerization and solution blending methods
MA Lang, WANG Guo-jian, DAI Jin-feng
2016, 31(2): 129-134.  
Abstract(1215) PDF(1416)
利用化学氧化还原法制备出石墨烯。通过原位聚合法及溶液混合法制备出石墨烯/聚酰亚胺复合材料,考察不同复合材料制备方法对其机械性能及导电性能的影响,并对其作用机理进行探讨。结果表明,制备的石墨烯为二维的单层或寡层材料,加入到聚酰亚胺中能够增强其机械性能及电导率。相比溶液混合法,采用原位聚合法时石墨烯在聚酰亚胺基体中分散更均匀,对其团聚作用有更好的抑制作用,制备的复合材料性能更优异。采用该法加入石墨烯的量为1.0 wt%时,拉伸强度达到了132.5 MPa,提高了68.8%;加入量增加到3.0 wt%时,电导率达6.87×10-4S·m-1,提高了8个数量级,对聚酰亚胺的性能有显著的增强作用。
Rheological behavior of fresh cement pastes with a graphene oxide additive
WANG Qin, WANG Jian, LU Chun-xiang, CUI Xin-you, LI Shi-yu, WANG Xi
2016, 31(6): 574-584.   doi: 10.1016/S1872-5805(16)60033-1
Abstract(900) PDF(790)
Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries
GUO Meng-qing, HUANG Jia-qi, KONG Xiang-yi, PENG Hong-jie, SHUI Han, QIAN Fang-yuan, ZHU Lin, ZHU Wan-cheng, ZHANG Qiang
2016, 31(3): 352-362.  
Abstract(1001) PDF(721)
碳纳米管优异的物理性质和可调的化学组成使其拥有广泛的应用前景。采用低温过程在碳骨架中引入磷原子预期带来可调的化学特性。本研究采用170℃下水热处理碳纳米管-磷酸混合物获得磷掺杂的碳纳米管。磷掺杂的碳管的磷含量为1.66%,比表面积为132 m2/g,热失重峰在纯氧环境下提升至694℃。当掺磷碳纳米管用于氧还原反应时,其起始电位为-0.20 V,电子转移数为2.60,反应电流显著高于无掺杂的碳纳米管。当其用作锂硫电池正极导电材料时,电极的起始容量为1106 mAh/g,电流密度从0.1 C提升至1 C时容量保留率为80%,100次循环的衰减率为每圈0.25%。
The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes
LU Qian, XU Yuan-yuan, MU Sha-jiang, LI Wen-cui
2017, 32(5): 442-450.   doi: 10.1016/S1872-5805(17)60133-1
Abstract(557) PDF(499)
以新疆不粘煤为原料,三聚氰胺为氮源,硼酸为硼源,通过球磨和后续活化过程合成硼,氮掺杂及硼氮共掺杂煤基活性炭。氮吸附结果显示杂原子掺杂可提高活性炭中介孔的含量。红外和X光电子能谱结果显示,硼、氮原子存在于炭骨架中。循环伏安,恒流充放电及电化学阻抗分析说明硼、氮掺杂活性炭的电化学性能优于非掺杂活性炭。其中,硼氮共掺杂活性炭具有176 F·g-1的高比容量。循环20 000次容量保持率为96%。共掺杂活性炭优异的电化学性能归因于硼氮的协同作用。
Research progress and potential applications for graphene/polymer composites
ZENG You, WANG Han, CHENG Hui-ming
2016, 31(6): 555-567.  
Abstract(1068) PDF(1646)
Recent progress in the preparation of ordered mesoporous carbons using a self-assembled soft template
HUANG Zheng-hong
2012, 27(05): 321-336.  
Abstract(1998) PDF(54)
The preparation of self-assembled ordered mesoporous carbons (SA-OMCs) using a soft template method has many advantages, such as low cost, ease of preparation and control. This paper review the development periods, the basic principles and preparation procedures with an emphasis on the control of morphology and multi-level pore structure of OMCs based on SA-OMCs. And suggest that further research in this area can be focused on expanding the scope of the precursor, improving the flexibility and conductivity of the shaped products, such as fibers and membranes.
Preparation of graphene by chemical vapor deposition
REN Wen-cai, GAO Li-bo, MA Lai-peng, CHENG Hui-ming
2011, 26(01): 71-80.  
Abstract(3202) PDF(343)
Chemical vapor deposition (CVD) is an effective way for the preparation of graphene with large area and high quality. In this review, the mechanism and characteristics of the four main preparation methods of graphene are briefly introduced, including micromechanical cleavage, chemical exfoliation, SiC epitaxial growth and CVD. The recent advances in the CVD growth of graphene and the related transfer techniques in terms of structure control, quality improvement and large area graphene synthesis were discussed. Other possible methods for the CVD growth of graphene were analyzed including the synthesis and nondestructive transfer of large area single crystalline graphene, graphene nanoribbons and graphene macrostructures.