炭纸上原位生长CNF/CP复合体的氧气电催化反应性能

Electrocatalytic oxygen-reduction reaction on a carbon nanofiber/carbon paper composite

  • 摘要: 采用沉淀方法制备了直径分布狭窄的均匀Fe3O4纳米颗粒。Fe3O4纳粒形体几近一致,平均粒径为10.33nm±2.99nm(平均粒径±标准偏差)。在超声作用下将MgO纳米颗粒分散在一定量Fe3O4纳米颗粒的水溶液中获得MgO负载Fe3O4的纳米颗粒。以甲烷为碳源,Fe3O4/MgO 为催化剂,经化学气相沉积,在Fe3O4纳粒上制得了大量直径近乎均匀的单壁碳纳米管(SWCNTs)束。TEM显示:SWCNTs的平均直径1.22nm。热重分析显示:样品在400℃~600℃温度区间失重量约19%。拉曼光谱显示:SWCNTs 的ID/IG的强度比为0.03,表明采用Fe3O4/MgO催化剂可制得高石墨化程度的单壁碳纳米管。

     

    Abstract: A carbon nanofiber/carbon paper (CNF/CP) composite was synthesized directly on CP by a catalytic chemical vapor-deposition method, and the physicochemical properties of and oxygen-reduction reaction (ORR) on this composite were investigated. Scanning electron microscopy shows that the CNFs are uniformly distributed on the CP, and high-resolution transmission electron microscopy results show that the CNFs have a narrow size distribution. The CNF/CP composite has a large surface area, and its mesoporous character is confirmed by N2 physisorption. Raman spectrum studies show that the CNF/CP composite has a high ratio of edge atoms to basal atoms compared with that of CP. From cyclic voltammetry studies, the CNF/CP composite was found to be more active than CP in terms of ORR, which may be due to the contribution from the CNFs. The CNF/CP composite shows a higher exchange current density and more positive equilibrium potential than CP, as verified by Tafel analysis. Moreover, linear-sweep voltammetry confirms that ORR on the CNF/CP composite is conducted through a two-electron reaction pathway.

     

/

返回文章
返回