通过pH值调控的氧化石墨烯片层尺寸、表面化学和电化学性质

pH-dependent size, surface chemistry and electrochemical properties of graphene oxide

  • 摘要: 通过调节氧化石墨烯水溶胶的pH值,可以得到尺寸和表面化学性质可控的氧化石墨烯片层。由于氧化石墨烯片层上的羧基在酸性条件下质子化,而在碱性条件下部分被脱除,因此可以通过调控氧化石墨烯水溶胶的pH值对具有不同片层大小和官能团的氧化石墨烯进行筛选。研究发现,羧基的存在可提高氧化石墨烯的电化学活性,而且较大的片层也同样有利于电化学活性的提高。另外,氧化石墨烯对H2O2的检测具有较高的活性,因而在生物传感器上具有广阔的应用前景。

     

    Abstract: The size and surface chemistry of graphene oxide (GO) dispersed in an aqueous solution are tuned by adjusting the pH value of the parent GO hydrosol. This method is based on the protonation of the carboxyl groups on GO nanosheets (GONs) in an acidic environment and the partial removal of oxygen-containing functional groups in strong basic conditions. GONs with a high electrochemical activity can be obtained by tuning the pH-dependent sheet sizes and the fraction of functional groups. It is found that the functional groups of a GON are more crucial in providing a high electrochemical activity than are the plane edges, and the size of a GON is also a key factor to influence the chemical activity. GONs with smaller sheet sizes but similar functional groups show a weaker electrochemical activity than those with larger sizes. In addition, GONs possess a high activity towards H2O2 detection and hence are promising for use as an electrode of biosensors.

     

/

返回文章
返回