利用稻杆衍生吸附剂去除液相中呋喃丹

Rice straw-derived activated carbons for the removal of carbofuran from an aqueous solution

  • 摘要: 以KOH为活化剂进行两段式活化程序,将废弃生物质材料转化为活性炭,并评估此活性炭吸对液相中农药(呋喃丹)的去除能力。结果表明,此活性炭具有大比表面积与高吸附能力可快速有效地去除液相中的呋喃丹。吸附前后的活性炭用扫描电子显微镜、元素分析仪与傅里叶变换红外光谱仪进行特征分析。活性炭的比表面积与平均孔径分别为1304.8m2/g与2.39nm。同时对不同的吸附参数进行批次分析,包括呋喃丹初始浓度,吸附时间、温度与酸碱度。最大吸附量(296.52mg/g)的吸附参数为90min、30℃、吸附剂剂量100mg/L、180r/min、呋喃丹初始浓度200mg/L。根据三种平衡吸附等温线(Langmuir, Freundlich and Temkin)与动力学分析,Langmuir模式最符合此活性炭的吸附结果,伪二级动力学方程可预测此活性炭的吸附动力学。

     

    Abstract: Activated carbon was prepared from rice straw by carbonization and KOH activation, and was used as an adsorbent for the removal of a kind of pesticide, carbofuran (2,3-dihydro-2,2-dimethylbenzofuran-7-yl methylcarbamate) from aqueous solution. The effects of the initial carbofuran concentration, contact time, temperature and pH, on its adsorption capacity and kinetics were studied using a batch method. The surface area and average pore diameter of the activated carbon were 1304.8m2/g and 2.39nm, respectively. The maximum adsorption capacity of the activated carbon (296.52mg/g) for carbofuran was found to occur at 90min, 30℃ and 200mg/L initial carbofuran concentration with an adsorbent loading of 100mg/L. Equilibrium adsorption isotherms were fitted better by the Langmuir model than the Freundlich and Temkin models. The adsorption follows a pseudo-second-order kinetics model.

     

/

返回文章
返回