孔有效利用的活性炭基非对称电极膜/电容脱盐系统

An asymmetrical activated carbon electrode configuration for increased pore utilization in a membrane-assisted capacitive deionization system

  • 摘要: 采用活性炭纤维为原料制备出膜/电容脱盐系统,提纯含氯化钠的水。OG系列活性炭纤维作为电极的活性材料,其比表面积和孔分布不同而呈现不同的活化程度。将这些材料用于膜/电容脱盐系统,评价了他们对钠离子或氯离子的脱盐性能。膜/电容实验在不同操作电位窗口、含盐溶液的进料速率和浓度下进行。OG系列活性炭纤维对每种离子的脱盐效率和电吸附量来评价膜/电容性能。结果表明,BET比表面积是确保高性能的必要因素。另外,炭材料最上端的浅孔有助于活性炭纤维比表面积的充分利用。OG7A样品的孔结构适合于钠离子吸附,OG10A和OG15A适于大量孔吸附氯离子。因此,非对称电极排列施加于吸附离子的尺寸,应考虑炭材料比表面积和孔面积的有效利用,以得到高性能的膜/电容脱盐系统。   
    支撑材料

     

    Abstract: A membrane-assisted capacitive deionization (CDI) system was developed for the purification of water containing sodium chloride using activated carbon fibers (ACFs) as capacitor electrode materials. The ACFs have different degrees of activation with different surface areas and pore size distributions. Their desalination performance for sodium or chloride ions was investigated. Results indicate that the salt removal efficiency and surface area-normalized electrosorption capacity for each ion depend on the surface area, pore depth and the match between the pore sizes of the ACFs and the radius of each hydrated ion. A high surface area and shallow pores favor the salt removal efficiency and a high surface area-normalized electrosorption capacity. The ACF with a median pore size of 0.69 nm performs best for sodium ion removal and those with median pore sizes of 1.09 and 1.52 nm are best for chloride ion removal, which could be ascribed to the fact that the radius of a hydrated sodium ion (0.66 nm) is smaller than that of a hydrated chloride ion (0.72 nm). An asymmetric electrode material configuration is needed to optimize both the anion and cation adsorption in the membrane-assisted CDI system.
    Supporting Information

     

/

返回文章
返回