电子封装用石墨泡沫/Sn-Bi合金复合材料微观结构和热物理性能

Microstructure and thermophysical properties of graphite foam/Sn-Bi alloy composites for use as a thermal sink for electronics

  • 摘要: 以中间相沥青为原料,采用加压发泡法制备出不同结构和性能的高导热石墨泡沫。通过Sn-Bi合金高温熔融浸渍石墨泡沫,制备了电子封装用高导热石墨泡沫/Sn-Bi合金复合材料,系统研究了该材料的微观结构和热物理性能。结果表明,Sn-Bi合金均匀分散于石墨泡沫的孔隙结构中;复合材料的密度为3.83±0.01 g/cm3,其热扩散系数达到163.1±3 mm2/s,材料的热膨胀系数为8.08±0.02 ppm/K明显低于合金材料的20.7±0.02 ppm/K。通过石墨泡沫基体密度和结构的调控,可制备出低膨胀系数(8.08±0.02,16.4±0.02 ppm/K)的电子封装用高性能石墨泡沫/Sn-Bi合金复合材料。

     

    Abstract: Two mesophase pitch-based graphite foams with densities of 0.62±0.01 (GF1) and 0.84±0.01 g/cm3 (GF2) were prepared by foaming the pitch in an autoclave at 723 K, 6.0 MPa and 763 K, 13.4 MPa, respectively, followed by carbonization at 1273 K for 2 h and graphitization at 2973 K for 0.5 h. The GFs were infiltrated by a Sn-Bi liquid to prepare GF/Sn-Bi alloy composites for use as thermal sinks for electronics. The microstructures and thermophysical properties of the composites were investigated. Results indicated that GF1 had a larger cells and thinner cell walls than GF2. The Sn-Bi liquid was well infiltrated into cells of the GFs, resulting in composites with densities of 5.60±0.01 and 3.83±0.01 g/cm3 for GF1 and GF2, respectively. The thermal diffusivity and coefficient of thermal expansion (CTE) of the GF1/Sn-Bi composite were 51.6±2 mm2/s and 16.6±0.02 ppm/K, respectively. The corresponding values for the GF2/Sn-Bi were 163.1±3 mm2/s and 8.08±0.02 ppm/K. The GF2/Sn-Bi composite had a high thermal diffusivity and a low CTE value matching that of semiconductor chips and packaging materials.

     

/

返回文章
返回