层次孔超细炭纤维及其对乙醇和丙酮的吸附性能

Ultrafine hierarchically porous carbon fibers and their adsorption performance for ethanol and acetone

  • 摘要: 以酚醛树脂和乙酰丙酮铁为前驱体,通过静电纺丝和后续氨气气氛热处理制备得到层次孔超细炭纤维,并研究了其对挥发性有机物(VOCs)气体的吸附性能。本文阐述了层次孔性对于不同样品VOC吸附性能的影响。新型的层次孔超细炭纤维在高压力时展现了提高的乙醇和丙酮吸附量。酚醛树脂基层次孔超细炭纤维25℃时的乙醇和丙酮最高吸附量分别为7.55和12.56 mmol g-1,超过了原始超细炭纤维和聚丙烯腈(PAN)基超细炭纤维的吸附量。酚醛树脂作为静电纺丝前驱体用于制备新型纤维明显优于PAN。因此,该新型自支撑超细炭纤维是一种很有前景的用于去除VOC的吸附剂材料。

     

    Abstract: Ultrafine hierarchically porous carbon fibers (HPCFs) were produced by electrospinning from phenolic resin and Fe(acetylacetonate)3, carbonization under an NH3 atmosphere and HCl/water leaching to remove the Fe species. Their adsorption performance for ethanol and acetone and their pore structure were compared with fibers produced from polyacrylonitrile (PAN) and Fe(acetylacetonate)3 (HPCFs(PAN)), and phenolic resin without the Fe(acetylacetonate)3 addition (PCFs). Results indicate that HPCFs and HPCFs(PAN) are hierarchically porous with abundant micropores and mesopores while PCFs are dominantly microporous. The addition of Fe(acetylacetonate)3 promotes graphitization. The hierarchical pore structure increases the uptake of both ethanol and acetone vapors at high pressures by multilayer adsorption while the microporous structure contributes to the uptake at low pressures by monolayer adsorption. The highest ethanol and acetone adsorption uptakes were found for the HPCFs, and are 7.55 and 12.56 mmol g-1 at 25℃, respectively. Superiority of phenolic resin to PAN as the carbon precursor is demonstrated. The freestanding characteristic of the ultrafine carbon fibers as a result of their electrospining is advantageous as an adsorbent for the removal of volatile organic compounds.

     

/

返回文章
返回