生物质和煤/重质油废弃物炭材料的制备及其能源存储应用进展

A review of the synthesis of carbon materials for energy storage from biomass and coal/heavy oil waste

  • 摘要: 本文综述了生物质和废弃物制备炭材料及其在超级电容器、锂离子电池领域应用研究进展。具有天然分级结构的生物质包括海产品和农业废弃物以及煤和重质油的副产物已被广泛应用于制备炭材料的前驱体。本文介绍了多种炭材料包括零维碳量子点、一维炭纤维、二维炭纳米片以及三维炭框架结构的制备进展,并介绍了炭材料孔结构调控方法研究进展,如KOH活化法、KOH和自模板活化结合法、自活化法、自模板法以及N, O, P杂原子掺杂和共掺杂法,阐述了炭材料的孔结构和杂原子对其电化学性能的影响。最后介绍了生物质和废弃物炭在合成、结构调控、超级电容器和锂离子电池应用中面临的挑战。

     

    Abstract: Recent progress in the synthesis of carbon materials from biomass and coal/heavy oil waste and their use as the electrode materials of supercapacitors and Li-ion batteries is reviewed. The carbon precursors include seafood and agricultural waste, and coal and heavy oil by-products. The carbon materials include 0D carbon quantum dots, 1D carbon nanofibers, 2D carbon nanosheets, and 3D carbon frameworks. Techniques to tailor the carbon porosity/surface include KOH activation with and without self-templating, self-activation and/or in-situ templating, and heteroatom doping with N, O, P and their co-doping. The effects of porosity and heteroatom doping on the electrochemical performance are summarized. The challenges for the synthesis, microstructural tailoring of these materials and their potential use in supercapacitors and Li-ion batteries are analyzed.

     

/

返回文章
返回