Abstract:
The matrix graphite (MG) of pebble fuel elements for a High Temperature Gas-cooled Reactor (HTGR), composed of 71wt% natural graphite, 18 wt% artificial graphite and 11 wt% phenolic resin-derived carbon, was purified by high temperature treatment (HTT), and its properties and microstructure were analyzed to investigate the effect of different HTT temperatures and optimize the purification temperature. Results showed that with increasing HTT temperature, its density and thermal conductivity gradually increased, but pore size and
d002 gradually decreased. The rate of erosion caused by friction as the fuel pebbles move in the reactor also decreased. The ash content decreased significantly from to 18.2 to 12.3×10
−6 after HTT at 1 600 ℃, but changed little when the HTT temperature was further increased to 1 900 ℃, especially for catalytic metals such as Fe, Ni and Ca that are related to its corrosion rate. The microstructure improvement and ash content reduction at high temperatures jointly contributed to the increase in the anti-corrosion performance of MG. Based on properties such as crushing strength, erosion resistance, and corrosion rate, a HTT of 1 600 ℃ is adequate although the MG gradually became more ordered with a further increase of HTT temperature from 1 600 to 1 900 ℃. This determination of an appropriate HTT temperature for the production of MG for the fuel elements of an HTGR should improve the production efficiency and reduce the mass production cost of this material for a commercial HTGR.