多孔炭复合V2O3纳米材料用于锂离子电容器的研究

Porous V2O3/C composite anodes with pseudocapacitive characteristics for lithium-ion capacitors

  • 摘要: 以NaCl为模板、结合冷冻干燥技术合成了多孔炭复合V2O3纳米材料,研究其用作锂离子电池负极材料的动力学特征,并与商业化活性炭构建锂离子电容器,测试其电化学性能。结果表明,多孔炭复合V2O3纳米材料具有赝电容行为,所构建的锂离子电容器同时具有高能量、高功率和长效循环稳定性,是一种很有前景的锂离子电容器负极材料。

     

    Abstract: Vanadium trioxide materials have attracted great interest owing to their low cost and high theoretical lithium storage capacity. In this work, porous V2O3@C composites were prepared via a NaCl template-assisted freeze-drying strategy. Benefiting from the unique three-dimensional porous carbon-based structure, the V2O3@C composite anode exhibits a high-rate pseudocapacitive behavior. A lithium-ion capacitor (LIC) based on this V2O3@C composite anode and a commercial AC cathode was constructed. Results show that the as-constructed device exhibits high energy density, high power density as well as long cycling stability, indicating the great promise of our porous V2O3@C composites for the high-performance LICs.

     

/

返回文章
返回