王信, 黄润青, 牛树章, 徐磊, 张启程, AbbasAmini, 程春. 石墨烯基材料在高性能锂金属电池中的研究进展[J]. 新型炭材料, 2021, 36(4): 711-728. DOI: 10.1016/S1872-5805(21)60081-1
引用本文: 王信, 黄润青, 牛树章, 徐磊, 张启程, AbbasAmini, 程春. 石墨烯基材料在高性能锂金属电池中的研究进展[J]. 新型炭材料, 2021, 36(4): 711-728. DOI: 10.1016/S1872-5805(21)60081-1
WANG Xin, HUANG Run-qing, NIU Shu-zhang, XU Lei, ZHANG Qi-cheng, Abbas Amini, CHENG Chun. Research progress on graphene-based materials for high-performance lithium-metal batteries[J]. New Carbon Mater., 2021, 36(4): 711-728. DOI: 10.1016/S1872-5805(21)60081-1
Citation: WANG Xin, HUANG Run-qing, NIU Shu-zhang, XU Lei, ZHANG Qi-cheng, Abbas Amini, CHENG Chun. Research progress on graphene-based materials for high-performance lithium-metal batteries[J]. New Carbon Mater., 2021, 36(4): 711-728. DOI: 10.1016/S1872-5805(21)60081-1

石墨烯基材料在高性能锂金属电池中的研究进展

Research progress on graphene-based materials for high-performance lithium-metal batteries

  • 摘要: 由于相对较低的能量密度,商用锂离子电池(LIB)难以满足便携式电子和电动汽车对储能设备能量密度日益增长的需求。锂(Li)金属具有高理论比容量(3860 mAh g−1)和低的密度(0.59 g cm−3),被认为是下一代高能密度锂电池最具前途的负极之一,如Li-S和Li-O2电池。 然而,由于固态电解质界面层的不稳定,导致锂枝晶生长不可控和库伦效率低等问题,限制了锂金属电池的实际应用。 石墨烯基材料(GBMs)具有高比表面积、可调节的孔结构和表面化学特性,已被证明可以显著解决上述问题。 本文综述了利用石墨烯基材料来保护锂金属负极的各种策略,并详细讨论了在锂金属保护中具有不同功能和作用的石墨烯基纳米材料的合理设计。文中还讨论了石墨烯基纳米材料用于锂金属负极中未来发展面临的挑战和可能的解决方案。

     

    Abstract: Due to their relatively low energy density, commercial lithium-ion batteries (LIBs) have faced difficulty in meeting the increasing requirements of energy storage devices for portable electronics and electric vehicles. Lithium (Li) with a high theoretical specific capacity (3860 mAh g−1) and low density (0.59 g cm−3) is regarded as one of the best anodes for next-generation high energy density Li metal batteries, e.g., Li-S and Li-O2 batteries. However, the safety problems induced by uncontrollable Li dendrite growth and a low Coulombic efficiency caused by an unstable solid electrolyte interphase layer, have limited their practical application. Graphene-based materials (GBMs) with a high specific surface area and controllable structures and chemical properties, have been shown to be important in solving these problems. Various protection strategies for Li metal anodes using GBMs are summarized and the design of GBMs with different roles and functions in Li metal protection is discussed. Challenges and possible solutions for the future development of GBMs used in Li metal anodes are discussed.

     

/

返回文章
返回